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Noise in Grover’s quantum search algorithm

B. Pablo-Norman and M. Ruiz-Altaba
Instituto de Fı´sica, Universidad Nacional Auto´noma de Me´xico, A.P. 20-364, 01000 Me´xico, D.F., Mexico

~Received 22 July 1999; published 8 December 1999!

Grover’s quantum algorithm improves any classical search algorithm. We show how random Gaussian noise
at each step of the algorithm can be modeled easily because of the exact recursion formulas available for
computing the quantum amplitude in Grover’s algorithm. We study the algorithm’s intrinsic robustess when no
quantum correction codes are used, and evaluate how much noise the algorithm can bear with, in terms of the
size of the phone book and a desired probability of finding the correct result. The algorithm loses efficiency
when noise is added, but does not slow down. We also study the maximal noise under which the iterated
quantum algorithm is just as slow as the classical algorithm. In all cases, the width of the allowed noise scales
with the size of the phone book asN22/3.

PACS number~s!: 03.67.Lx
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I. INTRODUCTION

There exist problems where the algorithm that solv
them scales exponentially as the size of the input is
creased, for example computing all possible chess gam
factoring a very large number, etc. This dependence on
size makes them physically unsolvable for large enough
puts. Quantum algorithms have been invented to bypass
problem, like Shor’s@1#, that turns tractable the problem o
factoring numbers, and Grover’s@2#, that improves the clas
sical search for an item in a phone book. In fact, the class
search algorithm does not scale exponentially. Rather,
linear in the size of the phone book; Grover’s quantum al
rithm improves it to a square-root dependence. Recently
experimental application of a quantum algorithm was imp
mented@7#, and agreement between theory and experim
was found.

Nevertheless, the strength of a quantum algorithm is a
its weakness: a quantum computer performs simultane
operations over large superpositions of states, which are
sensitive to decoherence. Fortunately, quantum correc
codes have been developed@3,4# with which a quantum com-
puter can recover from errors in the presence of mode
decoherence. But these quantum correction codes are t
selves subject to decoherence, and it is not fully underst
how decoherence affects the correction itself. In this wo
we study the intrinsic robustness of Grover’s algorith
when quantum correction codes are not implemented.

II. GROVER’S QUANTUM SEARCH ALGORITHM

Any classical algorithm for finding an item in a random
ordered phone book~whether deterministic or probabilistic!
requiresN/2 steps on the average, because the only wa
perform the search is to analyze each item one by one u
the searched–for item is found. Recently, Grover invente
quantum algorithm@2# that runs likeO(AN). Let us review
it briefly.

In a phone book withN52n entries, each item can b
represented by a binary label of lengthn or, equivalently, by
a pure state ofn spin-12 particles. The algorithm is based o
constructing a coherent superposition of all these states,
repeatedly applying certain unitary transformations to it.
1050-2947/99/61~1!/012301~5!/$15.00 61 0123
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Assume, for concreteness, that the item we are looking
is represented by the stateu↓↓•••↓&, i.e. by n spin-down
particles. The algorithm works via the repeated action of
unitary steps below, starting from an initial state which w
take to be the full coherent superposition of all states in
system, namely,

C05
1

AN S 1

1

A

1

D . ~2.1!

Of course, one could start equally well with some other i
tial state@5#. The two unitary steps to be repeated are
following

First, invert the phase of the looked–for state trough
unitary transformation

U15S 21 0 ••• 0

0 1 0 A

A 0 � 0

0 0 ••• 1

D . ~2.2!

Second, invert, with respect to the average, the phase o
looked-for state trough the unitary diffusion matrix

~U2! i j 5
2

N
2d i j . ~2.3!

These two steps are equivalent to the action of the follow
single unitary transformation:

U5U2U15
2

NS 211
N

2
1 ••• 1

21 12
N

2
1 A

A 1 � 1

21 1 1 12
N

2

D .

~2.4!
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When the unitary transformationU has been appliedm
times to the initial stateC0, the new quantum state will be

Cm5UmC05S Am

Bm

A

Bm

D . ~2.5!

The action ofU on the initial stateC0 yields only two dis-
tinct amplitudesAm andBm , whereby it is possible to recas
the recursion relation in just two dimensions. The restrict
of U to this two–dimensional subspace will be denoted byS.
Explicitly, the amplitudesAm andBm are given by the recur
sion formula

S Am11

Bm11
D 5S 12

2

N
22

2

N

22

N
12

2

N

D S Am

Bm
D 5SS Am

Bm
D

5Sm11S 1

AN

1

AN

D , ~2.6!

The two-dimensional matrixS has eigenvaluese6 iw, with
cosw512(1/N), whereby

Am5
1

AN
~cosmw1AN21sinmw!, ~2.7!

Bm5
1

AN
S cosmw2

1

AN21
sinmw D . ~2.8!

From Eq.~2.7!, the probability of finding the state we ar
looking for if we measureCm is thus

P~m!5uAmu25
1

N
~cosmw1AN21sinmw!2. ~2.9!

With the change of variablesw52u, P(m) can be written as
@6#

P~m!5sin2@u~2m11!#, ~2.10!

Clearly, P(m) is periodic, with maxima at

u~2m11!5np, n integer, ~2.11!

The first maximum for largeN is approximately at

mmax.
pAN

4
~2.12!

and Pmax5P(mmax).1. The number of steps required
find the state with almost certainty scales likeAN, as shown
in Eq. ~2.12!.
01230
n

III. MODELING NOISE IN GROVER’S ALGORITHM

As stated in Sec. I, quantum correction codes have b
developed and it is supposed that in the presence of low
physically realistic levels of noise they are useful@3,4#.
These codes can be implemented only if a small eno
subset of the quantum computer’sq bits undergo errors, and
when the probability of occurrence of an error in the co
putation is lower than a certain bound. On the other hand,
real effect of the noise introduced by these correction co
over the original algorithm is not completely known, becau
they are quantum computations too. Hopefully, such err
are small and tractable. But what happens if they are not?
even worse, what happens if manyq bits undergo errors? Is
it still possible to make sense of the computation under
hypothetical noisy situation when quantum correction co
do not suffice or cannot be implemented? If it does, h
much noise the algorithm can bear with on its own? We n
turn to the answer to these questions.

In the particular case of Grover’s algorithm, there is
simple way to model noise, because of the explicit recurs
formula ~2.6! for the amplitudes of the searched-for sta
Suppose that in each step of the algorithm, a white or Ga
ian noise modifies the state of the whole phone book acc
ing to

S Am11

Bm11
D 5

1

N FSS Am

Bm
D 1S am

bm
D G , ~3.1!

where S is defined in Eq.~2.6!, and botham and bm are
noise, determined randomly by the standard deviations
~common to both, for simplicity! of their Gaussian distribu-
tion. Of course, the new stateCm11 is appropriately normal-
ized ~that’s what the denominatorN is for!. Explicitly,

S am

bm
D 5A22s logx1S sin 2px2

cos 2px2
D , ~3.2!

where x1 and x2 are computer-generated random variab
uniformly distributed over the interval@0,1#. The two Gauss-
ian variablesam and bm are mutually independent, an
change, randomly, from one iteration of Eq.~3.1! to the next.
Note that whens50, am andbm are always zero, and thu
there is no noise.

A crucial caveatis in order here: note that we introduc
only two different errors, one for the searched-for state a
one for all the other pure states. This approximation is phy
cally unrealistic, but worthy of study. The full noisy situatio
would call for allowingN different random variables to b
added independently to each of theN components of the
state vector, instead of restricting ourselves to noise in
two-dimensional subspace whereS ~instead ofU) acts.

Now we want to find the maximal allowed noise, quan
fied by s, in terms of both~a! the sizeN of the phone book
and ~b! a given probabilityPcut for finding the searched-fo
state after a suitable number of iterations. If we setPcut
5Pmax, then of courses can only be zero. As we allow fo
a decreased certainty of finding the result, and thus decr
Pcut, the algorithm can bear with an increasing amount
1-2
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noise. In the absurd limit of being happy withPcut.0, which
means we will not find the result, then any amount of nois
allowed. Of course, for any givenPcut.0, a large enough
noise will destroy the algorithm. In Sec. IV we establish t
dependence of this maximal allowed noise,smax, in terms of
N andPcut.

Computations and results

To find when the algorithm breaks down as we incre
the noise, we treat the noise as a perturbation on the e
algorithm ~recovered whens50). Beforehand, we fix the
phone book’s sizeN and the desired probability of findin
the resultPcut.

First, we take a very small initial value ofs and evolve
the initial stateC0 in Eq. ~2.1! according to the noisy itera
tion given in Eq.~3.1!. After m iterations, the probability
P(m) of finding the result is stilluAmu2, where now the am-
plitudeAm includesm additions of noise. It turns out that, o
the average,P(m) still reaches its maximum aftermmax
steps. This is a pleasant surprise. At first thought, one co
have imagined that noise not only decreasedPmax ~as it
does!, but also slowed down the algorithm~which it does
not!. To maximize the likelihood of finding the result w
must measure the quantum state aftermmax iterations, with
mmax given by the noiseless equation~2.12!.

Now we computePmax5P(mmax) and compare it with
Pcut. If Pmax is greater thanPcut, we increase the value ofs
and repeat the computation, otherwise we stop~see the Ap-
pendix for details!. In this way, we find the maximals,
labeledsmax , which is the limiting noise forPmax>Pcut.
Because of the probabilistic nature of the computations,
repeat this computation ofsmax many times~200!: the value
of smax we exhibit is the average, with a statistical error.

We have carried out the evaluation ofsmax for seven dif-
ferent phone book sizesN52n ~with n from 10 to 16! and
for five different values ofPcut ~from 0.9 to 0.5 in steps o
0.1!.

For fixedPcut, the dependence ofsmax on N is always of
the form

smax~N,Pcut!5a~Pcut!N
f, ~3.3!

wheref is a true constant, found to be

TABLE I. In the iterated quantum algorithm, for various sizesN
of a phone book, the absolute maximal allowed Gaussian w
smax of the white noise, and its statistical uncertainty~between 5%
and 10%!. Also shown is the~low! limiting probability Pcut at maxi-
mum.

N Pcut smax Dsmax

1024 0.034 2.3331023 1.031024

2048 0.024 1.4831024 4.331025

4096 0.017 9.0331024 2.631025

8192 0.012 5.6831024 1.631025

16384 0.0085 3.2831024 1.731025

32768 0.0060 2.1331024 1.731025

65536 0.0043 1.1731024 1.131025
01230
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f520.69660.027, ~3.4!

and a varies smoothly from 0.9 to 0.15 asPcut decreases
from 0.9 to 0.5~see the Appendix!.

One of our main results is that the amount of noise t
the algorithm can handle decreases roughly asN22/3 with the
size N of the list. In general, since the number of ste
needed in each iteration is of the order ofN1/2, and at each
step we add a noise of widths, we expect the maxima
allowedsmax to decrease withN faster thanN21/2. Equiva-
lently, we expectf to be smaller than2 1

2 . The actual value
found, Eq.~3.4!, satisfies this bound. We have not found
general analytic argument to pin down the actual value off.

Alternatively, keepingN fixed instead ofPcut, the relation
betweensmax andPcut can be written as

smax~N,Pcut!5g~N!2d~N!Pcut, ~3.5!

where g goes from 0.0024 to 0.00015, andd from
20.0020 to 0.00013 (log2N5n510 and 16, respectively!,
with errors of about 10%~see the Appendix for details!. This
means that the width of the maximal white noise that may
allowed increases linearly with decreasingPcut. Note that
Eqs.~3.3! and~3.5! are just convenient slices of a surface
the three-dimensional space with coordina
(N,Pcut,smax).

IV. GROVER’S ALGORITHM IS USEFUL
EVEN IF Pcut<0.5

In the derivation of the above results we exploited t
experimental fact that the number of steps needed to find
searched-for state does not change when noise is pre
Thus, another way to estimate the real maximal noise that
noisy Grover’s algorithm can handle, while still improvin
the results of the classical search algorithm, is to letPcut be
even lower than 0.5. We now explain this.

FIG. 1. Plot of logsmax as a function of logN for the iterated
quantum algorithm with minimalPcut5120.5p/(2AN) that still im-
proves the classical search algorithm. Even though to eachN cor-
responds a differentPcut , the plot still displays the universalN22/3

dependence.

th
1-3



t

rs
m
ot
v

,
tiv
e
ha

ed

-
s

th

te

go
a
w
d

ler

d to
tum
c-
t is
ith
or-

of
nt.
of

ent

hes
in
the

m
the
is

se
y as

rrec-
arch
ise.
oise

nt
-

in

is

s of

e

at

B. PABLO-NORMAN AND M. RUIZ-ALTABA PHYSICAL REVIEW A 61 012301
Sincemmax5(p/4)AN is always larger thanN/2, there is
an integerI N such thatI Nmmax<N/2, namely,

I N.
2

p
AN. ~4.1!

Therefore, we can repeat the quantum searchI N times with a
low Pcut such that 12(12Pcut)

I N>0.5. We are assured tha
we will find the searched-for state with probability1

2 in the
same number of steps as the classical algorithm. Of cou
the classical algorithm finds the result for sure, and co
pared with that finding the result only half the time is n
very satisfactory. Instead of 0.5, we could equally well ha
chosen some other~higher! probability to be satisfied with
but we take 0.5 for definiteness as the extreme, illustra
case. The point is that thePcut we need to enforce on th
noisy quantum algorithm is smaller than 0.5. Note also t
we are disregarding the log2N steps needed in each of theI N
independent iterations to prepare the initial stateC0. Includ-
ing them would of course lower a bit the maximal allow
noise.

The limiting probability at maximum with which the iter
ated quantum algorithm is as slow as the classical one i

Pcut>120.5p/(2AN). ~4.2!

The meaning of this is, again, that we can letPcut be smaller
than 0.5 for a givenN because if we runI N times the quan-
tum algorithm withmmax.pAN/4 steps, we will find the
searched-for state with a probability of at least 0.5, and
total number of steps will be less or equal toN/2 ~ignoring
the log2N steps required for constructing the initial sta
C0).

To estimate this maximal noise that the quantum al
rithm can bear before it slows down all the way to equiv
lence with the classical one, we proceed as follows. First,
choose the sizeN of the list to be searched, and keep it fixe
Then, using the bound~4.2!, we determinePcut, which is

FIG. 2. Plot ofsmax as a function of logds: the maximum al-
lowed value of noise characterized bysmax beforePmax <Pcut de-
pends on the size of the stepds by which s is increased in the
program. This plot is forN532768 andPcut50.7.
01230
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very low. Finally, Eq.~3.5! yields smax, which is now sig-
nificantly higher. For a variety ofN, our results are shown in
Table I. In Fig. 1, we plotsmax as a function ofN for the data
of Table I; the equation which fits it is

smax5~0.27560.031!N(20.6860.01); ~4.3!

note that the exponent ofN in Eq. ~4.3! is essentially the
same as the exponentf in Eq. ~3.3!, even thoughPcut de-
pends onN and is one or two orders of magnitude smal
than in Sec. III.

V. CONCLUSIONS

At the moment, quantum correction codes are restricte
the case when only a small enough subset of the quan
computer’sq bits undergo errors, and the probability of o
currence of an error is smaller than some bound, but i
believed that quantum computations will be possible w
physically realistic levels of noise even if the quantum c
rection codes employed undergo errors themselves.

With this in mind, we studied the intrinsic robustness
Grover’s quantum search algorithm in a noisy environme
We modeled the noise with a single parameter, the width
a Gaussian distribution, and allowed for two independ
noises at each step of Grover’s quantum algorithm.

We found that the quantum search algorithm still reac
the maximum likelihood of finding the searched-for state
pAN/4 steps. The strongest effect of noise is to decrease
maximum probability from virtually 1~the noiseless case! to
lower values, depending on the size of the noise,@Eqs.~3.3!
and ~3.5!#. How much noise can we add to the quantu
computer, with the criterion that a repeated application of
quantum algorithm, is still faster than the classical one
given by Eq.~4.2!. In both cases, the allowed maximal noi
decreases with the size of the phone book approximatel
N22/3.

The presence of noise and the absence of quantum co
tion codes is not completely disastrous: the quantum se
algorithm can handle by itself a reasonable amount of no
Nevertheless, for large enough databases, the allowed n
becomes tiny.
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APPENDIX

The computer program we used to derive the results
Sec. III needs an initial value ofs ~which we set to zero!,
and then computesP(m). If P(mmax).Pcut, then the algo-
rithm increasess, repeating the process until the bound
surpassed. This gives one value forsmax. We repeat the
whole story again and again and average over the value
smax found.

Let us illustrate our procedure with an example. LetPcut
50.7. For eachn from 10 to 16, the program increases th
value ofs starting from 0 in steps of ds50.0001. The av-
erage maximal values ofs thus found~in 200 runs! is then
smax, shown below with its statistical uncertainty. Note th
the error seems dominated by the step size:
1-4
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N smax

1024 0.003360.0007
2048 0.002260.0005
4096 0.001460.0004
8192 0.0009860.00028
16384 0.0007060.00020
32768 0.0004860.00019
65536 0.0001160.00017

~A1!

Taking a smaller step, ds50.00001, we carry through th
same computations and find instead

N smax

1024 0.002260.0003
2048 0.001560.0002
4096 0.0009560.00015
8192 0.0006060.00011
16384 0.0004060.00008
32768 0.0002660.00006
65536 0.0001760.00005

~A2!

Curiously, when we decrease the step both the error and
central value ofsmax decrease. This can be understood e
ily, since we take as value for maximals in each run the first
s for which the probability aftermmax iterations is too small
~smaller than 0.7 in this example!, and thus we clearly un
derestimate it in gross dependence with the step. We are
forced to repeat the computation ofsmax and Dsmax with
smaller and smaller steps, from ds51024 to ds51028. We
must now fit the dependence ofsmax on ds ~see Fig. 2! and
extrapolate to ds50.

The generic relation we found is

smax~N,ds!5z~N!1j~N!dsa, ~A3!

wherea50.3060.06 is a true constant. The values of t
N-dependentz andj are the following:

N z j

1024 0.0010460.00004 0.024060.0046
2048 0.0006560.00001 0.016360.0017
4096 0.0003860.00002 0.011460.0027
8192 0.0002360.00001 0.008660.0020
16384 0.0001560.00001 0.007960.0025
32768 0.000096531026 0.006860.0020
65536 0.000066431026 0.007660.0034

~A4!
he
r
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Taking the limit ds→0, we obtain the final value ofsmax
for eachN at thisPcut50.7:

N smax

1024 0.0010460.00004
2048 0.0006560.00001
4096 0.0003860.00002
8192 0.0002360.00001
16384 0.0001560.00001
32768 0.000096531026

65536 0.000066431026

~A5!

The above numbers are very well fit by a straight line~in log
N).

From the data of Eq.~A5!, for this value ofPcut50.7, we
finally find the relation

smax~N,Pcut50.7!5a~Pcut!N
f, ~A6!

with a50.13860.012, andf520.70460.01.
Similarly, for other values ofPcut we found

Pcut a f

0.5 0.15860.011 20.68760.007
0.6 0.14660.010 20.69160.008
0.7 0.13860.012 20.70460.010
0.8 0.08360.006 20.66960.008
0.9 0.09460.001 20.72460.015

~A7!

The value quoted in the text@Eq. ~3.4!# is an average of thes
numbers. To establish Eq.~3.5!, we found for eachPcut a
table like Eq.~A5!, and then, fixingN, we found a good
linear fit @Eq. ~3.5!#, with the following values ofg(N) and
d(N):

N g d

1024 0.002460.001 0.002060.0001
2048 0.001560.00005 0.001360.00005
4096 0.0009260.00003 0.0007760.00003
8192 0.0005760.00002 0.0004860.00002
16384 0.0003360.00002 0.0002660.00002
13768 0.0002160.00002 0.0001760.00002
65536 0.0001560.00001 0.0001360.00001

~A8!
r,
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