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Noise in Grover’s quantum search algorithm
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Grover’s quantum algorithm improves any classical search algorithm. We show how random Gaussian noise
at each step of the algorithm can be modeled easily because of the exact recursion formulas available for
computing the quantum amplitude in Grover’s algorithm. We study the algorithm’s intrinsic robustess when no
guantum correction codes are used, and evaluate how much noise the algorithm can bear with, in terms of the
size of the phone book and a desired probability of finding the correct result. The algorithm loses efficiency
when noise is added, but does not slow down. We also study the maximal noise under which the iterated
guantum algorithm is just as slow as the classical algorithm. In all cases, the width of the allowed noise scales
with the size of the phone book & 2.

PACS numbd(s): 03.67.Lx

[. INTRODUCTION Assume, for concreteness, that the item we are looking for
is represented by the stat¢|---|), i.e. by n spin-down
There exist problems where the algorithm that solvegarticles. The algorithm works via the repeated action of the
them scales exponentially as the size of the input is inunitary steps below, starting from an initial state which we
creased, for example computing all possible chess gametgke to be the full coherent superposition of all states in the
factoring a very large number, etc. This dependence on thgystem, namely,
size makes them physically unsolvable for large enough in-

puts. Quantum algorithms have been invented to bypass this 1
problem, like Shor'd1], that turns tractable the problem of 11
factoring numbers, and Grovefg], that improves the clas- ‘Po:\/—ﬁ . 2.1
sical search for an item in a phone book. In fact, the classical '
search algorithm does not scale exponentially. Rather, it is 1

linear in the size of the phone book; Grover’s quantum algo- ) .

rithm improves it to a square-root dependence. Recently, aRf course, one could start equally well with some other ini-

experimental application of a quantum algorithm was imple-ial state[5]. The two unitary steps to be repeated are the

mented[7], and agreement between theory and experimenfollowing

was found. First, invert the phase of the looked—for state trough the
Nevertheless, the strength of a quantum algorithm is alsénitary transformation

its weakness: a quantum computer performs simultaneous -1

operations over large superpositions of states, which are very

sensitive to decoherence. Fortunately, quantum correction _ 0

codes have been develog&d4] with which a quantum com- Ui=

puter can recover from errors in the presence of moderate

decoherence. But these quantum correction codes are them-

selves subject to decoherence, and it is not fully understoo

how decoherence affects the correction itself. In this work

we study the intrinsic robustness of Grover’s algorithm,

when quantum correction codes are not implemented.

(2.2

o O B O

0 1
gecond, invert, with respect to the average, the phase of the
looked-for state trough the unitary diffusion matrix

2
(Uz)ij=N_5ij- 2.9
II. GROVER’'S QUANTUM SEARCH ALGORITHM

These two steps are equivalent to the action of the following

Any classical algorithm for finding an item in a randomly single unitary transformation:

ordered phone boolwhether deterministic or probabilisjic
requiresN/2 steps on the average, because the only way to
perform the search is to analyze each item one by one until -1+ > 1 T 1
the searched—for item is found. Recently, Grover invented a
quantum algorithnj2] that runs likeO(y/N). Let us review
it briefly. U=U,U;=— 2

In a phone book witiN=2" entries, each item can be N . 1 . 1
represented by a binary label of lengttor, equivalently, by ' '
a pure state oh spin+4 particles. The algorithm is based on 1 1 1 N
constructing a coherent superposition of all these states, and 2
repeatedly applying certain unitary transformations to it. (2.9
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When the unitary transformatiod has been appliedh
times to the initial statel,, the new quantum state will be

Anm

B
Vp=Umpo={ " (2.5
B

The action ofU on the initial statel yields only two dis-
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IIl. MODELING NOISE IN GROVER'S ALGORITHM

As stated in Sec. |, quantum correction codes have been
developed and it is supposed that in the presence of low but
physically realistic levels of noise they are usef@d,4].
These codes can be implemented only if a small enough
subset of the quantum computegits undergo errors, and
when the probability of occurrence of an error in the com-
putation is lower than a certain bound. On the other hand, the
real effect of the noise introduced by these correction codes

the recursion relation in just two dimensions. The restrictionthey are quantum computations too. Hopefully, such errors

of U to this two—dimensional subspace will be denotedhy
Explicitly, the amplitude®A, andB,, are given by the recur-
sion formula

1 2 2 2
Am+1 N N Am Am
Bm+1 -2 1 2 Bm Bm
N TN
1
VN
=gmtl , (2.6)
1
N

The two-dimensional matriXs has eigenvalues™'¢, with
cose=1—(1/N), whereby

1
Ap=—=(cosme++N—1sinmg), (2.7
N
B ! ! (2.9
=—| cosmg— ———sinme | . .
" N TN

From Eq.(2.7), the probability of finding the state we are
looking for if we measureV, is thus

1
P(m)= |Am|2=N(005m<P+ JN—1sinmg)?. (2.9

With the change of variables=26, P(m) can be written as
[6]

P(m)=sir’[6(2m+1)], (2.10
Clearly, P(m) is periodic, with maxima at
#(2m+1)=ns, n integer, (2.11
The first maximum for largéN is approximately at
N
Mmax= —7— (2.12

4

and P.,=P(Mpa)=1. The number of steps required to

find the state with almost certainty scales li, as shown
in Eq. (2.12.

are small and tractable. But what happens if they are not? Or,
even worse, what happens if maqgyits undergo errors? Is

it still possible to make sense of the computation under this
hypothetical noisy situation when quantum correction codes
do not suffice or cannot be implemented? If it does, how
much noise the algorithm can bear with on its own? We now
turn to the answer to these questions.

In the particular case of Grover's algorithm, there is a
simple way to model noise, because of the explicit recursion
formula (2.6) for the amplitudes of the searched-for state.
Suppose that in each step of the algorithm, a white or Gauss-
ian noise modifies the state of the whole phone book accord-

ing to
[onrl=td
B/ N
where S is defined in Eq.(2.6), and botha,, and b,,, are
noise, determined randomly by the standard deviaton
(common to both, for simplicityof their Gaussian distribu-

tion. Of course, the new statk,,. ; is appropriately normal-
ized (that's what the denominatdY is for). Explicitly,

o
b
where x; and x, are computer-generated random variables
uniformly distributed over the interv@D,1]. The two Gauss-

ian variablesa,, and b,, are mutually independent, and
change, randomly, from one iteration of Eg.1) to the next.

Note that whernr=0, a,, andb,, are always zero, and thus
there is no noise.

A crucial caveatis in order here: note that we introduce
only two different errors, one for the searched-for state and
one for all the other pure states. This approximation is physi-
cally unrealistic, but worthy of study. The full noisy situation
would call for allowingN different random variables to be
added independently to each of thEcomponents of the
state vector, instead of restricting ourselves to noise in the
two-dimensional subspace whesdinstead ofU) acts.

Now we want to find the maximal allowed noise, quanti-
fied by o, in terms of both(a) the sizeN of the phone book
and (b) a given probabilityP, for finding the searched-for
state after a suitable number of iterations. If we Bgf,
=Phax then of courser can only be zero. As we allow for
a decreased certainty of finding the result, and thus decrease
P.ut, the algorithm can bear with an increasing amount of

Am
+
Bm

an

b, | | (3.9

(3.2

\/—Zalogxl<

Sin 27X,
COS 21X,/ '
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TABLE I. In the iterated quantum algorithm, for various si2¢s 24
of a phone book, the absolute maximal allowed Gaussian width -
omax Of the white noise, and its statistical uncertaitigtween 5% 2.6
and 10%. Also shown is thelow) limiting probability P,; at maxi- _2.8_'
mum. |
-3.0
N Peut O max Ao max 324
1024 0.034 233103 1.0x10°* © a4l
2048 0.024 1.4810 4 4.3x10°° o
4096 0.017 9.0810* 2.6x10°° 3.6
8192 0.012 5.6810 * 1.6x10°° 384
16384 0.0085 3.2810°* 1.7x1075 .
32768 0.0060 2181074 1.7x10°° 407
65536 0.0043 1.1210°4 1.1x10°° 4.2 —
25 3.0 35 4.0 45 5.0

N
noise. In the absurd limit of being happy with,,~0, which

means we will not find the result, then any amount of noise is FIG. 1. Plot of logo . as a function of lodyl for the iterated
allowed. Of course, for any giveR,>0, a large enough quantum algorithm with minimaP,=1-0.5"*"N that still im-
noise will destroy the algorithm. In Sec. IV we establish theproves the classical search algorithm. Even though to &&chr-
dependence of this maximal allowed noisg,,, in terms of responds a differerfe.,, the plot still displays the universal 23
N and P. dependence.

Computations and results ¢=—0.696+0.027, (3.9

To find when the algorithm breaks down as we increasgyng o varies smoothly from 0.9 to 0.15 &3, decreases
the noise, we treat the noise as a perturbation on the exagbpm 0.9 to 0.5(see the Appendix
algorithm (recovered whenr=0). Beforehand, we fix the  One of our main results is that the amount of noise that
phone book’s sizeN and the desired probability of finding the algorithm can handle decreases roughlya€? with the
the resultP . size N of the list. In general, since the number of steps

First, we take a very small initial value of and evolve  needed in each iteration is of the orderM¥? and at each
the initial state¥, in Eq. (2.1) according to the noisy itera- step we add a noise of width, we expect the maximal
tion given in Eq.(3.1). After m iterations, the probability gjlowed 0 max 10 decrease wittN faster tharN~ Y2 Equiva-
P(m) of finding the result is stil|Ay| where now the am- |ently, we expeci to be smaller thar- . The actual value
plitude Ay, includesm additions of noise. It turns out that, on foynd, Eq.(3.4), satisfies this bound. We have not found a
the averageP(m) still reaches its maximum aftemp,, general analytic argument to pin down the actual valug.of
steps. This is a pleasant surprise. At first thought, one coul Alternatively, keepingN fixed instead oP.,,, the relation

have imagined that noise not only decreas®g (as it petweeno,,, and P, can be written as
doeg, but also slowed down the algorithhich it does

not). To maximize the likelihood of finding the result we O mad N,Peu) = 7(N) — S(N) Py, (3.5
must measure the quantum state aftgr,, iterations, with
Mmax given by the noiseless equati¢®.12). where y goes from 0.0024 to 0.00015, and from

Now we computeP .= P(Mya) and compare it with —0.0020 to 0.00013 (lod\=n=10 and 16, respectively
and repeat the computation, otherwise we gtme the Ap- means that the width of the maximal white noise that may be
pendix for details In this way, we find the maximar,  allowed increases linearly with decreasiRg,;. Note that
labeled onay , Which is the limiting noise forP, =P,  E£9S-(3.3 and(3.9 are just convenient slices of a surface in
Because of the probabilistic nature of the computations, wéhe  three-dimensional ~ space  with  coordinates
repeat this computation af,,, many times(200): the value (N, Peyt, O max) -
of onax We exhibit is the average, with a statistical error.

We have carried out the evaluation @f,,, for seven dif- IV. GROVER'S ALGORITHM IS USEFUL

ferent phone book sized=2" (with n from 10 to 16 and EVEN IF P<0.5
gorlflve different values oPg, (from 0.9 to 0.5 in steps of In the derivation of the above results we exploited the

' I): fixed P the d q of Nis al ¢ experimental fact that the number of steps needed to find the
h for IX€AdFcur, (NE AEPENTENCE Bmax ONINIS AIWAYS O gearched-for state does not change when noise is present.
the form Thus, another way to estimate the real maximal noise that the

Tl N, Pau) = a( Poud N, (3.3 noisy Grover's algorith_m can handle, while ;till improving
the results of the classical search algorithm, is toPigt be

where ¢ is a true constant, found to be even lower than 0.5. We now explain this.
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0.0007 B very low. Finally, Eq.(3.9) yields o ax, Which is now sig-
1 nificantly higher. For a variety dfl, our results are shown in
0.0006 Table I. In Fig. 1, we plotr,.cas a function oN for the data
. of Table I; the equation which fits it is
Poe . T max=(0.275% 0.03] N(~ 068001 43
0.0004 note that the exponent dfl in Eq. (4.3) is essentially the
© 1 same as the exponegt in Eq. (3.3), even thoughP, de-
0.0003 - s pends onN and is one or two orders of magnitude smaller
] than in Sec. IIl.
0.0002 - V. CONCLUSIONS
0_0001_- At the moment, quantum correction codes are restricted to
the case when only a small enough subset of the quantum
) v ) v ) N ) N L) y . oA
-8 -7 -6 -5 -4 computer’sq bits undergo errors, and the probability of oc-
step currence of an error is smaller than some bound, but it is

believed that quantum computations will be possible with

FIG. 2. Plot of o as a function of lodo: the maximum al-  physically realistic levels of noise even if the quantum cor-
lowed value of noise characterized by,,, beforeP,,, <P.:de-  rection codes employed undergo errors themselves.

pends on the size of the stelr by which o is increased in the With this in mind, we studied the intrinsic robustness of

program. This plot is foN=32768 andP,=0.7. Grover's quantum search algorithm in a noisy environment.

We modeled the noise with a single parameter, the width of

Sincemmax=(77/4)\/ﬁ is always larger thal/2, there is @ Gaussian distribution, and allowed for two independent

an integerl y such thatl ymp.,=<N/2, namely, noises at each step of Grover's quantum algorithm.
We found that the quantum search algorithm still reaches
2 the maximum likelihood of finding the searched-for state in
In= ;\/N- (4.1) mN/4 steps. The strongest effect of noise is to decrease the

maximum probability from virtually Xthe noiseless casé
Therefore, we can repeat the quantum sedgctimes with a  lower values, depending on the size of the noji&egs. (3.3
low P, such that +(1—Pg,)'N=0.5. We are assured that and (3.5]. How much noise can we add to the quantum
we will find the searched-for state with probabilifyin the ~ computer, with the criterion that a repeated application of the

same number of steps as the classical algorithm. Of coursgU@ntum algorithm, is still faster than the classical one is
the classical algorithm finds the result for sure, and com9Ven by Eq.(4.2). In both cases, the allowed maximal noise

pared with that finding the result only half the time is not %‘i‘;ﬁ?ases with the size of the phone book approximately as

very satisfactory. Instead of 0.5, we could equally well have The presence of noise and the absence of quantum correc-
chosen some othdhighen probability to be satisfied with, .. pres . ) 4
tion codes is not completely disastrous: the quantum search

but we take 0.5 for definiteness as the extreme, 'lIUStrat'V%lgorithm can handle by itself a reasonable amount of noise.

case. The point is that the.,, we need to enforce on the oy ertheless, for large enough databases, the allowed noise
noisy quantum algorithm is smaller than 0.5. Note also tha}o-omes tiny.

we are disregarding the Ighy steps needed in each of the

independent iterations to prepare the initial stie Includ- ACKNOWLEDGMENTS
ing them would of course lower a bit the maximal allowed , ,
noise. This work was supported in part by CONACYT Grant

Nos. 25504-E and DGAPA-UNAM IN103997. B.P.N. en-

The limiting probability at maximum with which the iter- joys financial support from CONACYT.

ated quantum algorithm is as slow as the classical one is

P =1 057N, 4.2) APPENDIX

] o ) The computer program we used to derive the results in
The meaning of this is, again, that we canfgt, be smaller  gec. |1I needs an initial value af (which we set to zeng
than 0.5 for a giverN because if we ruty times the quan-  and then computeB(m). If P(Mmax) > Py then the algo-
tum algorithm with m,,=\N/4 steps, we will find the rithm increasesr, repeating the process until the bound is
searched-for state with a probability of at least 0.5, and thgurpassed. This gives one value f@,.,. We repeat the
total number of steps will be less or equalNé2 (ignoring  whole story again and again and average over the values of
the logN steps required for constructing the initial state o5, found.
Ty). Let us illustrate our procedure with an example. Bgt;

To estimate this maximal noise that the quantum algo=0.7. For eactn from 10 to 16, the program increases the
rithm can bear before it slows down all the way to equiva-value of ¢ starting from O in steps of@=0.0001. The av-
lence with the classical one, we proceed as follows. First, werage maximal values af thus found(in 200 rung is then
choose the sizbl of the list to be searched, and keep it fixed. o,,,, sShown below with its statistical uncertainty. Note that
Then, using the boun®4.2), we determineP.,, which is the error seems dominated by the step size:
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N O max Taking the limit d&r—0, we obtain the final value of
1024 0.0033 0.0007 for eacr;\IN at thisP,~=0.7: ;
2048 0.0022-0.0005 max
4096 0.0014-0.0004 1024 0.00104+0.00004
8192 0.00098:0.00028 2048 0.00065 0.00001
16384 0.0007€ 0.00020 4096 0.00038 0.00002
32768 0.00042& 0.00019 8192 0.00023 0.00001
65536 0.000110.00017 16384 0.0001% 0.00001
(A1) 32768 0.00008 5x 10"
Taking a smaller step,a=0.00001, we carry through the 65536 0.00006 4x 107°
same computations and find instead (A5)
N T max
1024 0.0022 0.0003 'I’\'Ik;e above numbers are very well fit by a straight liimelog
2048 0.00130.0002 From the data of Eq(A5), for this value ofP.,=0.7, we
4096 0.000950.00015 finally find the relation
8192 0.0006@0.00011
16384 0.0004& 0.00008 Tmad N,Peu=0.7)= a(Pg ) N?, (AB)
32768 0.00026 0.00006 )
65536 0.0001F 0.00005 Wlth_a.=0.138t 0.012, and$=—0.704+0.01.
Similarly, for other values oP, we found
(A2)
Curiously, when we decrease the step both the error and tth)eCut @ ¢
central value ofo o, decrease. This can be understood easg 5 0.158-0.011 —0.687+0.007
ily, since we take as value for maximalin each run the first g g 0.146-0.010 —0.691+0.008
o for which the probability aftem,,,, iterations is too small 0.138-0.012 — 0.704+0.010
(smaller than 0.7 in this exampleand thus we clearly un- ' ' ' '
derestimate it in gross dependence with the step. We are thL(Ps8 0.083-0.006 —0.669-0.008
forced to repeat the computation of, ., and Ao, With 0.094:0.001 —0.724:0.015
smaller and smaller steps, frororeék 10 # to do=10"8. We (A7)

must now fit the dependence af,, 0n do (see Fig. 2 and
extrapolate to a=0.
The generic relation we found is

The value quoted in the tekEg. (3.4)] is an average of these
numbers. To establish E¢3.5), we found for eachP., a
table like Eq.(A5), and then, fixingN, we found a good

TmaN,do) = {(N) +&(N)do, (A3) linear fit[Eq. (3.5)], with the following values ofy(N) and
O(N):
where «=0.30+0.06 is a true constant. The values of the (N)
N-dependent and ¢ are the following: N 5
N { ¢ l
1024 0.00104:0.00004 0.0240.0046 ;8421‘81 gggii 8883 05 %%%212 8888(1)5
2048 0.00065% 0.00001 0.01630.0017 : : ' '
4096 0.00038 0.00002 0.01140.0027 4096 0.000920.00003 0.0007%0.00003
8192 0.00023 0.00001 0.00860.0020 8192 0.0005% 0.00002 0.00048 0.00002
16384 0.0001% 0.00001 0.007920.0025 16384 0.000330.00002 0.00026 0.00002
32768 0.0000&5x10°° 0.0068-0.0020 13768 0.0002% 0.00002 0.0001% 0.00002
65536 0.00006:4x 10 8 0.0076-0.0034 65536 0.0001% 0.00001 0.00013 0.00001
(A4) (A8)
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