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Pointer states via decoherence in a quantum measurement

Anu Venugopalan*
Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India

~Received 14 June 1999; published 8 December 1999!

We consider the interaction of a quantum system~spin-12 ) with a macroscopic quantum apparatus~harmonic
oscillator! which in turn is coupled to a bath of harmonic oscillators. Exact solutions of the Markovian master
equation show that the reduced density matrix of the system-apparatus combination decoheres to a statistical
mixture where up and down spins eventually correlate with pointer states of the apparatus~harmonic oscilla-
tor!, with associated probabilities in accordance with quantum principles. For the zero-temperature bath these
pointer states turn out to becoherent statesof the harmonic oscillator~apparatus! for arbitrary initial statesof
the apparatus. Further, we see that the decoherence time is inversely proportional to the square of the separa-
tion between the two coherent states with which the spins correlate. For a high-temperature bath, pointer states
no longer remain coherent states but are Gaussian distributions~generalized coherent states!. Spin up and
down states of the system now correlate withnearly diagonal distributions in positionof these generalized
coherent states. The diagonalization in position increases with the temperature of the bath. The off-diagonal
elements in spin space decohere over a time scale which goes inversely as the square of the separation between
the peaks of the two position distributions that correlate with the spin states. Zurek’s earlier approximate result
for the decoherence time is consistent with our exact results. Our analysis brings out the importance of looking
at a measurementlike scenario where definite correlations are established between the system and apparatus to
determine the nature of the pointer basis of the apparatus. Further, our exact results demonstrate in an unam-
biguous way that the pointer states in this measurement model emerge independent of the initial state of the
apparatus.

PACS number~s!: 03.65.Bz
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I. INTRODUCTION

In a typical quantum measurement, the coupling betw
a microscopic system and a macroscopic measuring app
tus results in an entangled state which seems to allow
read out of the apparatus~‘‘meter’’ ! to exist in a coheren
superposition of macroscopically distinct states, a situa
which is difficult to reconcile with classical intuition an
perceptions. For a measurement to be classically interp
able and meaningful, one expects the system-apparatus
relations to appear as a statistical mixture. von Neumann@1#
postulated that an irreversible reduction process takes su
quantum superposition~entanglement! into a statistical mix-
ture in a measurement process. However, the apparent
unitary nature of such a reduction raises several quest
about the validity of quantum mechanics and its connec
with the emergence of classicality.

In recent years, decoherence@2,3# has been widely dis-
cussed and accepted as the mechanism responsible fo
emergence of classicality in a quantum measurement and
absence, in the real world, of Schro¨dinger-cat-like states@4#.
Decoherence results from the irreversible coupling of the
paratus to an environment. The appearance of classica
havior via decoherence in a quantum measurementlike
nario is marked by the dynamical transition of the reduc
density matrix of the system apparatus combination from
pure entangled state to a statistical mixture with appropr
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correlations. This line of approach to the quantum measu
ment problem was initiated by Zeh@2# and later followed up
by Zurek @3# and several others. Most studies relating
decoherence in the literature deal with an environment m
eled by a collection of harmonic oscillators with which th
system of interest interacts via a coordinate-coordinate c
pling. The dynamics of the reduced density matrix~after
tracing over the degrees of freedom of the environment! is
then described by the Markovian master equation deri
separately by Caldeira and Leggett@5#, Agarwal @6#, Dekker
@7#, and others@8# in the context of quantum Brownian mo
tion. Using the Markovian master equation with some a
proximations, Zurek has argued that the density matrix fo
free particle in an initial coherent superposition of tw
Gaussian wave packets separated byDx decoheres~i.e., the
off-diagonal elements of the density matrix decay! over a
time scale which goes inversely as the square of the sep
tion (Dx2) between the two parts of the superposition@3#.
For classical systems and standard macroscopic separa
Dx, this ‘‘decoherence time’’ is shown to be almost 10240

times smaller than the thermal relaxation time of the syste
Thus macroscopic superpositions are almost instantaneo
reduced to a statistical mixture@3#. Savage and Walls@9#
have solved the master equation for a harmonic oscillato
an initial superposition of coherent states and seen the d
of the off-diagonal elements of the density matrix at ze
temperature and finite temperatures. The master equation
proach has been used by Venugopalanet al. @10# to study a
Stern-Gerlach-type measurement model where a spin-1

2 par-
ticle interacts with a quantum apparatus~represented by the
position and momentum degrees of freedom of the partic!,
which in turn is coupled to a bath of oscillators through
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ANU VENUGOPALAN PHYSICAL REVIEW A 61 012102
position. They solve this equation exactly and show that
reduced density matrix for the system and apparatus is dr
to a diagonal form as a consequence of decoherence an
spin components correlate with momentum distributio
@10#.

Recently, interest in the understanding of decoherence
been heightened by advances on the experimental fr
Bruneet al. @11# experimentally created a mesoscopic sup
position of quantum states involving radiation fields w
classically distinct phases and observed its progressive d
herence to a statistical mixture through two-atom correlat
measurements. Schrodinger-cat-like states were recently
ated in an ion trap experiment@12# using a single beryllium
ion and a combination of static and oscillating electric fiel
Though only a limited number of models have been appro
mately studied so far, it is generally accepted now that
two main signatures of the decoherence mechanism ar
follows: ~a! In the classical regime decoherence takes pl
over a time scale that is much smaller than the thermal
laxation time of the system, and~b! the decoherence tim
goes inversely as the square of the separation between
two parts of the superposition@3#. These features have bee
observed in the experiment of Bruneet al. @11# and thus
confirm the theoretical predictions@3#. Recently there have
been several proposals to exploit purely quantum-mechan
features such as the linear superposition principle and q
tum entanglements@13# to build high speed quantum com
puters@14# and also to experimentally implement other ide
from quantum information such as quantum cryptograp
@15# and quantum teleportation@16#. Since environmental in-
fluence is often unavoidable, decoherence can ruin the fu
tioning of such systems which rely heavily on the main
nance of quantum coherence. A clearer understanding o
behavior of quantum coherences in dissipative environm
is, thus, of fundamental importance. Our experience of
classical world suggests that unlike quantum systems, w
are allowed to exist in all possible states, classical syst
only exist in a few select states which are singled out by
environment from a larger quantum menu@3#. These specia
states are the ‘‘preferred basis,’’ also referred to as
‘‘pointer states’’ in a quantum-measurement-like scena
@3#. In spite of the progress in the theoretical and experim
tal understanding of decoherence, the models studied s
do not answer the question concerning the nature of the
ferred basis satisfactorily. For simplified models where
self-Hamiltonian of the system has either been ignored
considered codiagonal with the interaction Hamiltonian,
‘‘pointer’’ variable has been shown to be the one which co
mutes with the interaction Hamiltonian@3#. However, in
more general situations where all terms are included and
various parts of the Hamiltonian may not commute, it is n
obvious what decides the preferred basis. For the coordin
coordinate coupling model, the position basis is intuitive
expected to emerge as the preferred basis. However, th
contrary to the conclusion of Venugopalanet al. @10# in their
analysis of the Stern-Gerlach measurement model where
spin components eventually correlate with distributio
which are completely diagonal in the momentum basis
only approximately diagonal in the position basis@10#. In the
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literature, the preferred basis has been variously describe
the one in which the final-state density matrix becomes
agonal or that set of basis states which are characterize
maximum stability or a minimum increase in linear or stat
tical entropy, decided by a ‘‘predictability sieve’’@17#. In a
measurementlike scenario, the pointer basis should be un
stood as those states of the apparatus in which correlat
with the system states are eventually establishedirrespective
of the initial states of the apparatus. Using the Markovian
master equation for a harmonic oscillator coupled to a h
bath and the criterion of the ‘‘predictability sieve,’’ Zure
argues that coherent states emerge as the preferred basis
recent paper, Paz and Zurek@18# investigate decoherence i
the limit of weak interaction with the environment and sho
that the eigenstates of energy emerge as pointer states.
and Venugopalan have recently obtained the exact solut
of the Markovian master equation for a harmonic oscilla
and a free particle in a compact factorizable form and h
shown that the density matrix diagonalizes in the energy
sis which is number states for the oscillator and moment
states for the free particle for arbitrary initial conditions@19#.
It is intuitive that the pointer states should naturally be
consequence of the interplay between the various com
nents of the total Hamiltonian and one should also exp
them to beindependent of the initial state of the syste
apparatus. The limited number of examples studied so far
not bring out this feature clearly.

In this paper we seek to analyze a measurementlike
nario where a spin-1

2 particle is coupled to a harmonic osci
lator through its coordinate and the oscillator in turn
coupled to a bath of oscillators via coordinate-coordin
coupling. The dynamics of the system-apparatus comb
tion is studied via the Markovian master equation for ze
temperature and high-temperature cases. Exact solution
arbitrary initial states of the apparatus clearly show that
spin components eventually correlate withcoherent statesof
the apparatus at zero temperature. This brings out the ro
coherent states as the pointer basis in an unambiguous
At high temperatures the pointer states are Gaussian d
butions~generalized coherent states! and up and down spins
correlate withnearly diagonal position distributionsof these
generalized coherent states. We also see the two main s
tures of decoherence in the measurement, i.e., the deco
ence time is much shorter than the thermal relaxation tim
the classical regime and it goes inversely as the square o
separation between the ‘‘pointer states’’ with which the sp
components correlate for zero temperature as well as for
high-temperature case. The model we have considere
equivalent to the spin-boson Hamiltonian and also cor
sponds to the physical example of a two-level atom coup
to a single mode of a radiation field—a simple model th
describes many interesting physical situations in quan
optics @21#, which could be used to produce a syste
apparatus entangled state where decoherence can be e
mentally monitored. For example, Bruneet al. @11# have
used a Ramsey-type experiment using two-level Rydberg
oms and microwave cavities to produce superposition st
of the electromagnetic field as well as atom-field entang
states which interact with a bath. Further, they have mo
2-2
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POINTER STATES VIA DECOHERENCE IN A QUANTUM . . . PHYSICAL REVIEW A61 012102
tored the progressive decoherence of these pure states
statistical mixture. Meekhofet al. @20# have created therma
Fock, coherent, and squeezed states of motion of a harm
cally bound, cooled, and trapped beryllium ion where
coupling between its motion and internal states can be
scribed by the Jaynes-Cummings-type interaction@21#. This,
again, involves a two-level atom radiatively coupled to t
single mode radiation field. It is possible that similar sy
tems, with suitable modifications, could be used to phy
cally implement the system-apparatus entangled state o
model analyzed in this paper and to subsequently monito
decoherence mechanism. The rest of the paper is organ
as follows. In Sec. II we introduce our model for the me
surement and the equivalent Markovian master equation
solve it for the reduced density matrix of the syste
apparatus combination. In Sec. III we analyze our results
observations and discuss the pointer basis. Finally, in Sec
we summarize the main results of this paper.

II. REDUCED DENSITY MATRIX FOR THE SYSTEM
APPARATUS

Consider our model for the measurement of spin. A sp
1
2 represents the system. A harmonic oscillator represents
apparatus which is coupled to the system via its coordin
The harmonic oscillator can be considered as a~macro-
scopic! measuring apparatus in the sense that it can mea
the state of the system~spin! via its position/momentum de
grees of freedom, which have well-understood classical
tributions. Alternately, this apparatus~harmonic oscillator!
could also be thought of as corresponding to a single m
of a radiation field whose quantum state correlates with
state of the system~spin! and hence can affect a measur
ment of the spin. The apparatus is in turn coupled via
coordinate-coordinate coupling to a collection of oscillato
which represent the environment. The environmental in
ence via this bath of oscillators brings about the decohere
of the entangled system-apparatus pure state to a statis
mixture. This arrangement representsa general model for
quantum measurementand the total Hamiltonian for such
system can be written as

H5
p2

2m
1

1

2
mv2x21lsZ1exsZ

1(
j

Pj
2

2M j
1

M jV j
2

2 S Xj2
Cjx

M jV j
2D 2

. ~1!

Herex andp denote the position and momentum of the h
monic oscillator~apparatus! of massm and frequencyv.
lsZ is the Hamiltonian of the system ande is the strength of
the system-apparatus coupling. The last term represent
Hamiltonian for the bath of oscillators~environment! and the
apparatus-environment interaction.Xj and Pj are the posi-
tion and momentum coordinates of thej th harmonic oscilla-
tor of the bath,Cj ’s are the coupling strengths, andV j ’s are
the frequencies of the oscillators comprising the bath@22#.
For our analysis we deal directly with the Markovian mas
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equation for the reduced density matrix for the syste
apparatus combination in theus,x& representation, where the
environmental degrees of freedom have been traced out@10#:

]rss8~x,x8,t !

]t
5F2

\

2im S ]2

]x2
2

]2

]x82D 2g~x2x8!

3S ]

]x
2

]

]x8
D 2

D

4\2
~x2x8!2

2
mv2

2i\
~x22x82!1

i e~xs2x8s8!

\

1
il~s2s8!

\ Grss8~x,x8,t !, ~2!

wheres,s8511 ~or ↑) or 21 ~or ↓). Thus Eq.~2! repre-
sents four equations in the coordinate representation, e
corresponding to one of the four elements in spin spa
(↑↑,↑↓,↓↑,↓↓) of the reduced density matrix for the
system-apparatus combination@10#. Hereg is the relaxation
rate and

D58mg\v~ n̄1 1
2 !, ~3!

where

n̄5@exp~\v/kBT!21#21 ~4!

is the expected number of quanta in a harmonic oscillator
frequencyv in equilibrium at temperatureT and kB is the
Boltzmann coefficient@6#. At T50, D54mgv\ and for a
high-temperature bath,D58mgkBT. Consider Eq.~2! in the
changed coordinates:

R5
x1x8

2
, r 5x2x8. ~5!

The spin diagonal density matrix,rd , and the spin off-
diagonal density matrix,rod, obey the equations

]rd~R,r ,t !

]t
52F \

im

]2

]r ]R
12g

]

]r
1

Dr 2

4\2

1
mv2rR

i\
7

i er

\ Grd~R,r ,t !, ~6!

where the ‘‘1 ’’ sign in the last term corresponds tor↑↑ and
‘‘ 2 ’’ to r↓↓ , and

]rod~R,r ,t !

]t
52F \

im

]2

]r ]R
12g

]

]r
1

Dr 2

4\2
1

mv2rR

i\

7
2i eR

\
7

2il

\ Grod~R,r ,t !, ~7!
2-3
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ANU VENUGOPALAN PHYSICAL REVIEW A 61 012102
where the upper signs in the last two terms correspond tor↑↓
and the lower ones tor↓↑ . To solve these equations, it
convenient to take a partial Fourier transform in the varia
R:

r~Q,r ,t !5E
2`

`

eiQRr~R,r ,t !dR. ~8!

Equations~6! and ~7! then simplify to a pair of first-order
partial differential equations:

]rd~Q,r ,t !

]t
5S \Q

m
22gr D ]rd

]r
2

mv2r

\

]rd

]Q
2

Dr 2

4\2
rd

6
i er

\
rd , ~9!

]rod~Q,r ,t !

]t
5S \Q

m
22gr D ]rod

]r
2

mv2r

\

]rod

]Q
2

Dr 2

4\2
rod

6
2e

\

]rod

]Q
6

2il

\
rod. ~10!

Equations~9! and~10! can be solved by the method of cha
acteristics@10,19,23#. Let the initial state of the system
apparatus combination be a product of any arbitrary stat
the apparatus~oscillator! and a general superposition sta
for the spin-12 system of the form

c~x,s,0!5f~x! ^ @au↑&1bu↓&], ~11!

where f(x) is any initial state of the harmonic oscillato
~apparatus!. The time-evolved density matrix would then a
pear as

r5uau2u↑&^↑ur↑↑~x,x8,t !1ubu2u↓&^↓ur↓↓~x,x8,t !1ab* u↑&

3^↓ur↑↓~x,x8,t !1a* bu↓&^↑ur↓↑~x,x8,t !. ~12!

The solution for the spin off-diagonal elements of the dens
matrix ~corresponding tor↑↓ andr↑↓) in the partial Fourier
transform representation is

rod~Q,r ,t !5rod~Q8,r 8,0!expH 2
e2tD

\2m2v4
7

eD

mv2\2
Z1

2
D

4\2
Z26

2ilt

\ J , ~13!

where
01210
e

of

y

Z15
ml1G

\ FQ2
r

l1
6

2e

\v2 S 2g2
\

ml1
D G

3~12e2\t/ml1!1
ml2G

\ FQ2
r

l2
7

2e

\v2

3S 2g2
\

ml2
D G ~12e2\t/ml2!,

~14!

Z25
mG2l1

2\ FQ2
r

l1
6

2e

\v2 S 2g2
\

ml1
D G 2

3~12e22\t/ml1!1
mG2l2

2\ FQ2
r

l2
7

2e

\v2

3S 2g2
\

ml2
D G 2

~12e22\t/ml2!2
G2

g FQ2
r

l1

6
2e

\v2 S 2g2
\

ml1
D GFQ2

r

l2
7

2e

\v2 S 2g2
\

ml2
D G

3~12e22gt!,

and

G5
l1l2

l12l2
,

~15!

l65
\

mv2
~g6Ag22v2!.

Q8 and r 8 are defined as

Q85
c1l12c2l2

l12l2
6

4eg

\v2
,

~16!

r 85G~c12c2!6
2e

mv2
,

where the coefficientsc6 are

c15FQ2
r

l1
7

2e

\v2 S 2g2
\

ml1
D Ge2\t/ml1,

~17!

c25FQ2
r

l2
7

2e

\v2 S 2g2
\

ml2
D Ge2\t/ml2.

It is clear from Eq.~13! that the leading-order decay term fo
the spin off-diagonal elements of the reduced density ma
goes ase2at, which would drive the entire expression t
zero with time, independent of all other arguments. Th
essentially, is the decoherence of the pure state density
trix and happens over a time scale,
2-4
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tD5
\2m2v4

De2
. ~18!

We will discuss the features of this decoherence in gre
detail in the next section. Consider now the solution for
spin diagonal elements of the reduced density matrix for
system-apparatus:

rd~Q,r ,t !5r~Q9,r 9,0!expS 2
D

4\2
Z36

i e

\
Z4D , ~19!

where

Z35
mG2l1

2\ S Q2
r

l1
D 2

~12e22\t/ml1!1
mG2l2

2\

3S Q2
r

l2
D 2

~12e22\t/ml2!2
G2

g S Q2
r

l1
D

3S Q2
r

l2
D ~12e22gt!,

~20!

Z45
mGl1

\ S Q2
r

l1
D ~12e\t/ml1!2

mGl2

\ S Q2
r

l2
D

3~12e\t/ml2!,

andQ9 and r 9 are defined as

Q95
c18 l12c28 l2

l12l2
,

~21!
r 95G~c18 2c28 !.

The coefficientsc68 are

c68 5S Q2
r

l2
De2\t/ml6. ~22!

Equations~13! and ~19! are the exact solutions correspon
ing to the two diagonal and two off-diagonal elements
spin space of the reduced density matrix of the system a
ratus in theQ,r representation. In the next section we an
lyze these solutions and discuss the decoherence mecha
and the emergence of the pointer basis in this measurem
model.

III. DECOHERENCE AND PREFERRED BASIS

In the preceding section we have seen@from Eq.~13!# that
the spin off-diagonal elements of the reduced density ma
of the system apparatusdecay to zerowith time irrespective
of the initial state of the apparatus. Thus the entang
system-apparatus pure state~12! eventually diagonalizes
over a time scale given by Eq.~18! to amixed density matrix
with definite system-apparatus correlations:

r5uau2u↑&^↑ur↑↑~x,x8,t !1ubu2u↓&^↓ur↓↓~x,x8,t !. ~23!
01210
er
e
e

a-
-
ism
nt

ix

d

The environmental influence manifested via the Markov
master equation for the reduced density matrix has, th
clearly destroyed the off-diagonal elements in spin space
affected a measurement of the spin. Let us now examine
nature of the pointer states,r↑↑ and r↓↓ , which correlate
with up and down spin states in Eq.~23!. In the Q,r repre-
sentation this is given by Eq.~19!. Consider the long time
limit ( t→`) of Eq. ~19! (g.v). It can be seen that at lon
times Eq.~19! takes the form

rd~Q,r ,t !5r~0,0,0!expH 2
D

16m2v2g
S Q21

m2v2r 2

\2 D
6

i eQ

mv2J
5

1

2p
expH 2

D

16m2v2g

3S Q21
m2v2r 2

\2 D 6
i eQ

mv2J . ~24!

The Fourier transform of Eq.~24! in the position representa
tion (x,x8) is

rd~R,r ,t !52mvA g

pD
expH 2

4m2v2g

D S R6
e

mv2D 2

2
Dr 2

16\2g
J

52mvA g

pD
expH 2

4m2v2g

D

3S x1x8

2
6

e

mv2D 2

2
D~x2x8!2

16\2g
J . ~25!

Equation~25! is the final form of the pointer states, whic
eventually correlate with up and down spins in the mix
density matrix~23!.

A. Zero temperature

For the zero-temperature Markovian bath,D54mvg\.
Substituting forD in Eq. ~25! gives

rd~R,r ,t !5Amv

p\
expH 2

mv

\ S R6
e

mv2D 2

2
mvr 2

4\ J .

~26!

This is nothing but the density matrix corresponding to
coherent state, ua&, of a harmonic oscillator with zero mea
momentum, mean positions56e/mv2, and

uau25
mv

2\ S e

mv2D 2

5
e2

2mv3\
. ~27!
2-5
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ANU VENUGOPALAN PHYSICAL REVIEW A 61 012102
Thus up and down spins correlate withcoherent states,
which clearly establishes the coherent states as the po
basis or the preferred states here. Zureket al. @17# have ear-
lier derived an approximate expression for the ‘‘predictab
ity sieve,’’ which is the measure of the increase in entro
S5Tr(r2r2), for a harmonic oscillator coupled to a he
bath whose dynamics is described by the Markovian ma
equation. IfDx andDp are the initial dispersions inx andp,
in the limit of weak coupling and under the assumption t
the initial state remains approximately pure, they show th

dS

dt
;4DDx2. ~28!

Further, they integrate Eq.~28! in the weak coupling limit
over an oscillator period, after replacing the free Heisenb
equations for the oscillator operators, and show that

S~ t !52DFDx21
Dp2

m2v2G . ~29!

The quantity ~29! is minimum if DxDp5\/2 and Dx2

5\/2mv. This corresponds to the spread in position of t
ground state or of a coherent state of an oscillator. On
basis, Zureket al. claim that the coherent states are the p
ferred basis for a harmonic oscillator@17#. Our analysis of
the exact solutions for the full master equation here show
a more rigorous way that coherent states emerge natural
the apparatus states that eventually correlate with the sy
states. Moreover, this happens forarbitrary initial states of
the apparatus, which firmly establishes the fact that cohere
states are truly the preferred states for the apparatus in
measurement model. One can see that the decoherence
~18! is

tD5tRS mv3\

e2 D 5
tR

2uau2
, ~30!

where tR5g21 is the thermal relaxation time. Whenuau2

@1, it is clear thattD!tR . From Eq.~27! one can see tha
this would be the case when one has conditions expecte
the classical limit, i.e., when Planck’s constant,\, is small
relative to the actions involved. It is in such a regime th
one would expect a fast decoherence of the superpositio
‘‘macroscopically distinct’’ pointer positions to a statistic
mixture. The main signatures of a quantum measuremen
the decoherence mechanism are thus clearly seen
namely~a! in the classical regime there is a fast decohere
of the off-diagonal elements of the spin density matrix ove
time scaletD given by Eq.~30! which is much smaller than
tR , the relaxation time of the bath,~b! there is aone-to-one
correlation between the spin states and the pointer state
the apparatuswhich arecoherent states, and ~c! tD is in-
versely proportional to the square of the separationuau2 be-
tween the two pointer states. The strength of this mode
that the system-apparatus correlations established at
times are permanent and the emergent pointer basis is i
pendent of the initial state of the apparatus.
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B. High temperature

For the high-temperature thermal bath,D58mgkBT.
Substituting this in Eq.~25! gives

rd~R,r ,t !5A mv2

2pkBT
expH 2

mv2

2kBT S R6
e

mv2D 2

2
mkBTr2

2\2 J . ~31!

Equation~31! is no longer a coherent state but a Gauss
distribution which is also referred to as ageneralized coher-
ent state. Tegmark and Shapiro@24# have earlier shown tha
generalized coherent states tend to be produced natu
when one looks at the reduced Wigner distribution of infin
systems of coupled harmonic oscillators att→`. Our results
are in tune with their predictions. For high temperatures, o
can see that the variance corresponding to the off-diago
elements in the position basis,r, is small and decreases wit
increasing temperature. Thus for a high-temperature b
this generalized coherent state~31! is nearly diagonal in the
position representation. Spin-up and -down states are cle
then correlated with these approximately diagonal posit
distributions which are centered around6e/mv2:

r;uau2u↑&^↑u ^A mv2

2pkBT
expH 2

mv2

2kBT S x1
e

mv2D 2J
1ubu2u↓&^↓u ^A mv2

2pkBT
expH 2

mv2

2kBT S x2
e

mv2D 2J .

~32!

It can be checked that spin-apparatus correlations do not
ist in the diagonal elements of the momentum basis
henceposition is quite obviously ‘‘preferred’’ by the envi-
ronment. This contrasts with the Stern-Gerlach model a
lyzed by Venugopalanet al. @10#, in which it is the momen-
tum distributions with which the spin-apparatus correlatio
ultimately get established. The decoherence time~18! over
which the spin off-diagonal elements of the reduced den
matrix of the system apparatus combination decay for
high-temperature bath is now given by

tD8 5tRS m\2v4

8e2kBT
D 5tRS ld

D2D 2

, ~33!

whereld5\/A2mkBT is the thermal de Broglie wavelengt
of the particle andD52e/mv2 is the separation between th
peaks of the two pointer distributions in Eq.~32!. It is obvi-
ous that wheneverD@ld , there is a fast decoherence of th
entangled system-apparatus pure state to a statistical mix
Such a condition would correspond to a regime expecte
the classical limit. Thus, once again, we can clearly see
main signatures of the decoherence mechanism here as i
zero-temperature case discussed above, namely, the
diagonal elements in spin space decohere to zero comple
in a time scale which is much smaller thang21 and which
goes inversely as the square of the spatial separation betw
2-6
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POINTER STATES VIA DECOHERENCE IN A QUANTUM . . . PHYSICAL REVIEW A61 012102
the ‘‘pointers,’’ eventually leading to a mixed density matr
~32! with appropriate system-apparatus correlations. The
coherence time~33! was earlier obtained by Zurek@3# from
the high-temperature Markovian master equation for a f
particle in an initial coherent superposition of two Gauss
wave packets separated byD under the approximation tha
the only dominant term isD/4\2(x2x8)2, in Eq. ~2!. We
obtain the same result for the decoherence time fromexact
solutions of the full master equationwhere no terms are ne
glected and no approximations are made. Moreover, this
havior of tD is seen for all times, unlike previous estimat
of decoherence times in which decoherence was looked
at short times~in the limit of negligible friction!. Our results
are also consistent with the solutions obtained by Savage
Walls @9# for a harmonic oscillator in an initial superpositio
of coherent states for the zero-temperature and h
temperature cases. For the measurement model analyz
this paper, our exact solutions show that the final mixed s
density matrix carrying system-apparatus correlations is
dependent of the initial state of the apparatus. From Eqs.~30!
and ~33! it is clear that the decoherence time for a hig
temperature heat bath is much shorter than that for the z
temperature bath (tD8 /tD;\v/KBT) and decreases with a
increase in temperature of the bath. Similar features h
been seen by Kim and Buzek in their study of the influen
of a heat bath on superposition states of light in a microw
cavity @25#.

It is interesting to note that the decoherence times~30!
and~33! are directly proportional to the mass and frequen
of the apparatus~oscillator! and are longer for heavier osci
lators with higher frequencies. Of course, corresponding
the ‘‘separation’’ between the two ‘‘pointers’’ positions
2e/mv2, will be smaller and hence their superpositio
would decohere slower. Thus, the ‘‘bigger’’ the cat state,
faster the decoherence. In the experiment of Bruneet al.
@11#, an entangled state of the atom plus field~‘‘meter’’ ! is
formed and its progressive decoherence to a statistical m
ture is monitored. However, since the fields eventually re
towards vacuum, in their system the one-to-one correla
between the atom and meter states is eventually lost.
experimental study of decoherence is thus confined to
tremely short-time scales which are much smaller than
cavity relaxation times@11#. It is interesting to note that in a
physical realization of the measurement model discusse
this paper, the system-apparatus correlations will persist
n

,

,
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all times for both the zero-temperature and high-tempera
cases as is evident from Eqs.~26! and ~32!. The ‘‘perma-
nence’’ of these system-apparatus correlations, theref
makes this model very interesting to investigate experim
tally from the point of view of quantum measurement a
decoherence.

IV. CONCLUSIONS

In this paper, we have investigated a quantum meas
ment model comprised of a spin-1

2 ~system!, a harmonic os-
cillator ~apparatus!, and a bath of oscillators~environment!.
Our interest has been to look at the exact solutions for
dynamics of the reduced density matrix of the system a
apparatus via the Markovian master equation which we h
studied for the zero-temperature and high-temperature ca
We show that the coupling of the apparatus to the envir
ment leads to the decoherence of the pure system-appa
entangled state to a statistical mixture with definite syste
apparatus correlations, thus affecting a measurement of
spin state. For both the zero-temperature and hi
temperature cases, our exact solutions clearly demons
the two main signatures of the decoherence mechanism
quantum measurement, namely~a! the decoherence time i
much smaller than the thermal relaxation time, and~b! the
decoherence time is inversely proportional to the square
the ‘‘separation’’ between the two ‘‘pointers’’ that correla
with the system states. Decoherence is much faster in a h
temperature bath compared to the zero-temperature bath
exact solutions also clearly show that the final appara
states with which the system states eventually correlat
long times~the ‘‘pointer states’’! are coherent states for th
zero-temperature bath and nearly diagonal position distr
tions of a generalized coherent state for the high-tempera
heat bath. The strength of this model and analysis is tha
clearly demonstrates that the emergent pointer basis
measurement process is independent of the initial state
the apparatus. This fact was intuitively obvious, but has
been shown so far in the limited number of models studied
the literature. Our analysis also highlights the need to c
sider a measurementlike scenario to address the issue o
emergent pointer basis. The model considered here is fa
generic and our exact solutions make this model an inter
ing candidate to explore experimentally in the context
decoherence and quantum measurements.
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