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Pointer states via decoherence in a quantum measurement
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We consider the interaction of a quantum sys(epin-%) with a macroscopic quantum apparatharmonic
oscillato) which in turn is coupled to a bath of harmonic oscillators. Exact solutions of the Markovian master
equation show that the reduced density matrix of the system-apparatus combination decoheres to a statistical
mixture where up and down spins eventually correlate with pointer states of the apgheatasnic oscilla-
tor), with associated probabilities in accordance with quantum principles. For the zero-temperature bath these
pointer states turn out to ®herent statesf the harmonic oscillatofapparatusfor arbitrary initial statesof
the apparatus. Further, we see that the decoherence time is inversely proportional to the square of the separa-
tion between the two coherent states with which the spins correlate. For a high-temperature bath, pointer states
no longer remain coherent states but are Gaussian distribuimmeralized coherent stajesSpin up and
down states of the system now correlate witharly diagonal distributions in positioof these generalized
coherent states. The diagonalization in position increases with the temperature of the bath. The off-diagonal
elements in spin space decohere over a time scale which goes inversely as the square of the separation between
the peaks of the two position distributions that correlate with the spin states. Zurek’s earlier approximate result
for the decoherence time is consistent with our exact results. Our analysis brings out the importance of looking
at a measurementlike scenario where definite correlations are established between the system and apparatus to
determine the nature of the pointer basis of the apparatus. Further, our exact results demonstrate in an unam-
biguous way that the pointer states in this measurement model emerge independent of the initial state of the
apparatus.

PACS numbd(s): 03.65.Bz

[. INTRODUCTION correlations. This line of approach to the quantum measure-
ment problem was initiated by Z¢R] and later followed up
In a typical quantum measurement, the coupling betweeby Zurek [3] and several others. Most studies relating to
a microscopic system and a macroscopic measuring appardecoherence in the literature deal with an environment mod-
tus results in an entangled state which seems to allow theled by a collection of harmonic oscillators with which the
read out of the apparatySmeter”) to exist in a coherent system of interest interacts via a coordinate-coordinate cou-
superposition of macroscopically distinct states, a situatiopling. The dynamics of the reduced density mattafter
which is difficult to reconcile with classical intuition and tracing over the degrees of freedom of the environment
perceptions. For a measurement to be classically interprethen described by the Markovian master equation derived
able and meaningful, one expects the system-apparatus caeparately by Caldeira and Legggdi, Agarwal[6], Dekker
relations to appear as a statistical mixture. von Neunjahn [7], and otherg8] in the context of quantum Brownian mo-
postulated that an irreversible reduction process takes suchtian. Using the Markovian master equation with some ap-
guantum superpositiofentanglementinto a statistical mix-  proximations, Zurek has argued that the density matrix for a
ture in a measurement process. However, the apparent noffee particle in an initial coherent superposition of two
unitary nature of such a reduction raises several questionSaussian wave packets separateddxydecoheresi.e., the
about the validity of quantum mechanics and its connectioroff-diagonal elements of the density matrix decayer a
with the emergence of classicality. time scale which goes inversely as the square of the separa-
In recent years, decoherenf®3] has been widely dis- tion (Ax?) between the two parts of the superposit{@).
cussed and accepted as the mechanism responsible for tRer classical systems and standard macroscopic separations,
emergence of classicality in a quantum measurement and thex, this “decoherence time” is shown to be almost 19
absence, in the real world, of Schlinger-cat-like statef]. times smaller than the thermal relaxation time of the system.
Decoherence results from the irreversible coupling of the apThus macroscopic superpositions are almost instantaneously
paratus to an environment. The appearance of classical beeduced to a statistical mixtufg]. Savage and Wall§9]
havior via decoherence in a quantum measurementlike sc&ave solved the master equation for a harmonic oscillator in
nario is marked by the dynamical transition of the reducedan initial superposition of coherent states and seen the decay
density matrix of the system apparatus combination from af the off-diagonal elements of the density matrix at zero
pure entangled state to a statistical mixture with appropriatéeemperature and finite temperatures. The master equation ap-
proach has been used by Venugopaail. [10] to study a
Stern-Gerlach-type measurement model where a spias-
*Electronic address: anu@prl.ernet.in. Present address: School ti€le interacts with a quantum apparatuepresented by the
Basic and Applied Sciences, Indraprastha University, Kashmerg@osition and momentum degrees of freedom of the pajticle
Gate, Delhi-110006, India. which in turn is coupled to a bath of oscillators through its
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position. They solve this equation exactly and show that thditerature, the preferred basis has been variously described as
reduced density matrix for the system and apparatus is drivetme one in which the final-state density matrix becomes di-
to a diagonal form as a consequence of decoherence and thgonal or that set of basis states which are characterized by
spin components correlate with momentum distributionsmaximum stability or a minimum increase in linear or statis-
[10]. tical entropy, decided by a “predictability sievgd17]. In a
Recently, interest in the understanding of decoherence hameasurementlike scenario, the pointer basis should be under-
been heightened by advances on the experimental fronstood as those states of the apparatus in which correlations
Bruneet al.[11] experimentally created a mesoscopic superwith the system states are eventually establishredpective
position of quantum states involving radiation fields with of the initial states of the apparatusJsing the Markovian
classically distinct phases and observed its progressive dectyaster equation for a harmonic oscillator coupled to a heat
herence to a statistical mixture through two-atom correlatiorbath and the criterion of the “predictability sieve,” Zurek
measurements. Schrodinger-cat-like states were recently crargues that coherent states emerge as the preferred basis. In a
ated in an ion trap experimefit2] using a single beryllium recent paper, Paz and Zurgl8] investigate decoherence in
ion and a combination of static and oscillating electric fields.the limit of weak interaction with the environment and show
Though only a limited number of models have been approxithat the eigenstates of energy emerge as pointer states. Roy
mately studied so far, it is generally accepted now that th@nd Venugopalan have recently obtained the exact solutions
two main signatures of the decoherence mechanism are @& the Markovian master equation for a harmonic oscillator
follows: (a) In the classical regime decoherence takes placand a free particle in a compact factorizable form and have
over a time scale that is much smaller than the thermal reshown that the density matrix diagonalizes in the energy ba-
laxation time of the system, an@) the decoherence time sis which is number states for the oscillator and momentum
goes inversely as the square of the separation between tistates for the free particle for arbitrary initial conditidri)].
two parts of the superpositidi3]. These features have been It is intuitive that the pointer states should naturally be a
observed in the experiment of Bruret al. [11] and thus consequence of the interplay between the various compo-
confirm the theoretical predictio8]. Recently there have nents of the total Hamiltonian and one should also expect
been several proposals to exploit purely quantum-mechanicéiiem to beindependent of the initial state of the system/
features such as the linear superposition principle and quampparatus The limited number of examples studied so far do
tum entanglementgl3] to build high speed gquantum com- not bring out this feature clearly.
puters[14] and also to experimentally implement other ideas In this paper we seek to analyze a measurementlike sce-
from quantum information such as quantum cryptographynario where a spig- particle is coupled to a harmonic oscil-
[15] and quantum teleportatidd6]. Since environmental in- lator through its coordinate and the oscillator in turn is
fluence is often unavoidable, decoherence can ruin the funsoupled to a bath of oscillators via coordinate-coordinate
tioning of such systems which rely heavily on the mainte-coupling. The dynamics of the system-apparatus combina-
nance of quantum coherence. A clearer understanding of th@n is studied via the Markovian master equation for zero-
behavior of quantum coherences in dissipative environmentieemperature and high-temperature cases. Exact solutions for
is, thus, of fundamental importance. Our experience of tharbitrary initial states of the apparatus clearly show that the
classical world suggests that unlike quantum systems, whichpin components eventually correlate witbherent statesf
are allowed to exist in all possible states, classical systemthe apparatus at zero temperature. This brings out the role of
only exist in a few select states which are singled out by theoherent states as the pointer basis in an unambiguous way.
environment from a larger quantum mel8]. These special At high temperatures the pointer states are Gaussian distri-
states are the “preferred basis,” also referred to as thdutions(generalized coherent statemd up and down spins
“pointer states” in a quantum-measurement-like scenariccorrelate withnearly diagonal position distributionsf these
[3]. In spite of the progress in the theoretical and experimengeneralized coherent states. We also see the two main signa-
tal understanding of decoherence, the models studied so féures of decoherence in the measurement, i.e., the decoher-
do not answer the question concerning the nature of the prence time is much shorter than the thermal relaxation time in
ferred basis satisfactorily. For simplified models where thethe classical regime and it goes inversely as the square of the
self-Hamiltonian of the system has either been ignored oseparation between the “pointer states” with which the spin
considered codiagonal with the interaction Hamiltonian, thecomponents correlate for zero temperature as well as for the
“pointer” variable has been shown to be the one which com-high-temperature case. The model we have considered is
mutes with the interaction Hamiltoniaf8]. However, in  equivalent to the spin-boson Hamiltonian and also corre-
more general situations where all terms are included and thgponds to the physical example of a two-level atom coupled
various parts of the Hamiltonian may not commute, it is notto a single mode of a radiation field—a simple model that
obvious what decides the preferred basis. For the coordinatelescribes many interesting physical situations in quantum
coordinate coupling model, the position basis is intuitivelyoptics [21], which could be used to produce a system-
expected to emerge as the preferred basis. However, this &pparatus entangled state where decoherence can be experi-
contrary to the conclusion of Venugopalanal.[10] in their ~ mentally monitored. For example, Bruret al. [11] have
analysis of the Stern-Gerlach measurement model where thesed a Ramsey-type experiment using two-level Rydberg at-
spin components eventually correlate with distributionsoms and microwave cavities to produce superposition states
which are completely diagonal in the momentum basis anaf the electromagnetic field as well as atom-field entangled
only approximately diagonal in the position basi€]. Inthe  states which interact with a bath. Further, they have moni-
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tored the progressive decoherence of these pure states tecequation for the reduced density matrix for the system-
statistical mixture. Meekhaoét al.[20] have created thermal, apparatus combination in ths,x) representation, where the
Fock, coherent, and squeezed states of motion of a harmorenvironmental degrees of freedom have been traceflOlit
cally bound, cooled, and trapped beryllium ion where the

coupling between its motion and internal states can be de- ,
scribed by the Jaynes-Cummings-type interacfieij. This, Mz
again, involves a two-level atom radiatively coupled to the at

single mode radiation field. It is possible that similar sys-

tems, with suitable modifications, could be used to physi- d d D
cally implement the system-apparatus entangled state of the Nox ™o~ 452
model analyzed in this paper and to subsequently monitor its
decoherence mechanism. The rest of the paper is organized
as follows. In Sec. Il we introduce our model for the mea- 2ih (x
surement and the equivalent Markovian master equation and

solve it for the reduced density matrix of the system- iN(s—S')
apparatus combination. In Sec. Il we analyze our results and +T
observations and discuss the pointer basis. Finally, in Sec. IV

we summarize the main results of this paper.

N ,
a2 —y(x=x)

(x—x")?

ie(xs—x's")

2__yr2
x'9)+ 7

PSSI(X,X/,t), (2)

wheres,s’=+1 (or 7) or —1 (or |). Thus Eq.(2) repre-
sents four equations in the coordinate representation, each

[l. REDUCED DENSITY MATRIX FOR THE SYSTEM corresponding to one of the four elements in spin space
APPARATUS (11,71,17,11) of the reduced density matrix for the
system-apparatus combinatipt0]. Here y is the relaxation

Consider our model for the measurement of spin. A spin-
1 . ; rate and
5 represents the system. A harmonic oscillator represents the
apparatus which is coupled to the system via its coordinate. .

The harmonic oscillator can be considered asnacro- D=8myfhw(n+3), 3
scopig measuring apparatus in the sense that it can measure

the state of the systefispin) via its position/momentum de- where

grees of freedom, which have well-understood classical dis-

tributions. Alternately, this apparatu®armonic oscillator - 411

could also be thought of as corresponding to a single mode n=[exp(fw/kgT) —1] @)

of a radiation field wh.ose quantum state correlates with theg {he expected number of quanta in a harmonic oscillator of
state of the systenspin) and hence can affect a measure-graquencyw in equilibrium at temperaturd and kg is the
ment of the spin. The apparatus is in turn coupled via &, t;mann coefficienf6]. At T=0, D=4myw# and for a
coordinate-coordinate coupling to a collection of OSC”Iatorshigh-temperature batl) = 8myksT. Consider Eq(2) in the
which represent the environment. The environmental inﬂu'changed coordinates:
ence via this bath of oscillators brings about the decoherence

of the entangled system-apparatus pure state to a statistical

mixture. This arrangement represemtsgeneral model for R— X+x' F—x—x! ®)
guantum measuremennd the total Hamiltonian for such a 2 '

system can be written as

The spin diagonal density matripy, and the spin off-

02 1 diagonal density matrixp,4, obey the equations
H=—+ —mw?x®+\oz+ exoy
2m 2
, dpa(Rrt) | A o d . Dr?
>y P} +MJQjZ x — CiX @ gt |imaraR " Var T 452
™ 2M; 2 M2
! l 4 2 -
MwrR _ier
o ——+ 7 |pa(R,1,1), (6)
Herex andp denote the position and momentum of the har- ih h

monic oscillator (apparatus of massm and frequencyw.

Ao is the Hamiltonian of the system amds the strength of where the “+ " sign in the last term corresponds tg, and
the system-apparatus coupling. The last term represents tffe-"to p  , and

Hamiltonian for the bath of oscillatofgnvironment and the

apparatus-environment interactiax; and P; are the posi- IpodR.T,1) Lo 8 d Dr? mo?R
tion and momentum coordinates of th@ harmonic oscilla- ot |imarer Va T i

tor of the bathCy’s are the coupling strengths, aflj’s are

the frequencies of the oscillators comprising the Ha&8. 2ieR 2\

For our analysis we deal directly with the Markovian master ¥ 7 :T PodR,T,1), )
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where the upper signs in the last two terms corres_pom;q_ltq mA LT r 2¢ Z
and the lower ones tp ;. To solve these equations, it is Z,= 7 - )\—t—z 2y— X
convenient to take a partial Fourier transform in the variable + ho MA +
R:
(1M 4 A_T r _ 2e
N _
(1-e ) 7 NP
p@r0= | e pRrndR ® ;
—® x| 29— (1_efﬁt/m)\ )
mA _ '
Equations(6) and (7) then simplify to a pair of first-order (14
partial differential equations: mI2\ . r 2e a\]?
2= | TN T 2 T )
+ ho mA
dpaQrY) (AQ_, \dpa_mMo’r dpy Dr’ mra [ 1 2
at m or I3 o—;Q 4ﬁ2pd X(l_e—Zﬁt/m)\+)+ 57 _)\_IF
— w
ier 2 2
*—pd, (9) fi —o% r
I3 o _ thmn_y _ o
X|2 — (1-e ) 5 Q N
2€ h r 2€ h
ﬁpod(eryt): @_2 r apod_mwzr O"pod_D_rz i—z(Z’y_ MmN ) Q—)\—I—Z(Z —W)
ot m ar h 0Q  ane Pod ho + - fhw -
. X(1—e 2"
2€ dpog 2iN (1=e ),
r— *——pog- (10
h 9Q h and
Equations9) and(10) can be solved by the method of char- = AN
acteristics[10,19,23. Let the initial state of the system- Ni—A_’
apparatus combination be a product of any arbitrary state of (15)
the apparatugoscillatop and a general superposition state 3
for the spins system of the form Ae=——(yEVy ~ ).
mMw
#(x,5,0)=p(x)®[a|1)+b]|])], (11 Q' andr’ are defined as
where ¢(x) is any initial state of the harmonic oscillator ,_ C+Ar—C A i467,
(apparatus The time-evolved density matrix would then ap- - hw?
pear as (16)
2€
5 5 r'=I(c,—c_)t——,
p:|a.| |T><T|pTT(X1X,1t)+|b| |l><l|pu(x,x/,t)+ab*|T> Ma
X(Lpy (X", ) +a*b[L)(T]p; 1 (x,x",1). (120 where the coefficients.. are
The solution for the spin off-diagonal elements of the density [ r _ 2e i\ i
matrix (corresponding t@;, andp; ) in the partial Fourier c,=| Q- N 2w 7T M, e i

transform representation is

(17

[ r 2¢ Ao\
= [ e _ —ht/m\ _
C_ Q 7\_+hw2(2 m)\_) e .

o, €%tD €D
pod(errt):pOd(Q T !O)ex _ﬁz 2 4+ Zl

m2w* mw?h?2

It is clear from Eq(13) that the leading-order decay term for
D 2int the spin off-diagonal elements of the reduced density matrix
T 2= (13 goes ase ', which would drive the entire expression to
zero with time, independent of all other arguments. This,
essentially, is the decoherence of the pure state density ma-
where trix and happens over a time scale,
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52m2 o’ The environmental influence manifested via the Markovian
o= > (18)  master equation for the reduced density matrix has, thus,
De clearly destroyed the off-diagonal elements in spin space and

I . ) affected a measurement of the spin. Let us now examine the
We will discuss the features of this decoherence in greatefa:re of the pointer statep,; and p,,, which correlate

detail in the next section. Consider now the solution for the up and down spin states in E@3). In the Q,r repre-
spin diagonal elements of the reduced density matrix for th%entation this is given by Eq19). Consider the long time

system-apparatus: limit (t—) of Eq. (19) (y>w). It can be seen that at long
times Eq.(19) takes the form

D M2w2r2
pa(Q.r,t)=p(0,0,0)exp — oy Q%+

D .
Pd(QJ:t):P(Q",r”-O)eXF{ - M23i|z624> ' (19)

2
where @y h
. mI2\ r\? 1o 2hUm: mI'2\ _ + IGQZJ
= _— — +
3 2% Q )\+ ( € )+ 2% Mw
r\2 2 r 1 D
«|o- — _a2itimay = A =—exXp ———5—5—
Q )\_) (1-e ) " Q )\+) o 16m2w2y
r , m?w?r?| ieQ
X Q——)(l—e 27, x| 02+ + ) 24
A Q 72 Ma? 29
(20)
mI'A r B mI'A r The Fourier transform of Eq24) in the position representa-
Z4= Q- |(—em)— . ion (x,x) i
% Ny % N tion (x,x") is
X (1—eMt/m-y v AmPw?y e \?
pa(R,rt)=2mo —Dex B Rt—7
andQ"” andr” are defined as . Mo
L, CiNg—cIn _ Dr? ]
A= 16h%y
(21) 2 2
" ’ ' iMmw
r"=T(c,—c'). _ AL ey
+ 2Mme ereX D
The coefficientc’, are )
X+x' € D(x—x")2
r 5 r— - 5 . (25
CLL: Q_)\_ efﬁt/m)\i_ (22) Mw 164 Y

Equation(25) is the final form of the pointer states, which
Equations(13) and (19) are the exact solutions correspond- eventually correlate with up and down spins in the mixed
ing to the two diagonal and two off-diagonal elements indensity matrix(23).
spin space of the reduced density matrix of the system appa-
ratus in theQ,r representation. In the next section we ana-
lyze these solutions and discuss the decoherence mechanism
and the emergence of the pointer basis in this measurement For the zero-temperature Markovian bab=4mw yf.

A. Zero temperature

model. Substituting forD in Eq. (25) gives
2 2
Mo Mo € Mmor
Ill. DECOHERENCE AND PREFERRED BASIS pa(RI )= /M g~ r _
mh f M2 4h

In the preceding section we have s¢nm Eq.(13)] that (26)
the spin off-diagonal elements of the reduced density matrix
of the system apparatuecay to zeravith time irrespective  Thjs js nothing but the density matrix corresponding to a

of the initial state of the apparatus. Thus the entangle¢oherent statela), of a harmonic oscillator with zero mean
system-apparatus pure stat@2) eventually diagonalizes momentum, mean positions * e/mw?, and
over a time scale given by E¢L8) to amixed density matrix

with definite system-apparatus correlations: Mo ( . )2 &2

. (27)

|a|?=

p=al?T){T1py1(x,x" ) +[bI2[L)(L]p (XX, ). (23 2h \mo?| ~ 2me’
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Thus up and down spins correlate wittoherent states B. High temperature
which clearly establishes the coherent states as the pointer
basis or the preferred states here. Zueekl.[17] have ear-

lier derived an approximate expression for the “predictabil-

For the high-temperature thermal batB=8mykgT.
Substituting this in Eq(25) gives

ity sieve,” which is the measure of the increase in entropy, M2 M2 e |2
S=Tr(p—p?), for a harmonic oscillator coupled to a heat pa(R,r 1) = \/2 K Texp{ ~okT + 2)

bath whose dynamics is described by the Markovian master T8 B Mo
equation. IfAx andAp are the initial dispersions irandp, 2

in the limit of weak coupling and under the assumption that _ mkgTr _ (31)
the initial state remains approximately pure, they show that 2h?

5 Equation(31) is no longer a coherent state but a Gaussian
a““DAX . (28) distribution which is also referred to asgeneralized coher-
ent state Tegmark and Shapiri®24] have earlier shown that

Further, they integrate Eq28) in the weak coupling limit generalized coherent states tenc_JI to bg p_rod_uced na‘Fu_raIIy
over an oscillator period, after replacing the free Heisenber@’he” one looks at the reduced Wigner distribution of infinite

equations for the oscillator operators, and show that systems of coupled harmonic oscillatorg ate. Our results
are in tune with their predictions. For high temperatures, one

can see that the variance corresponding to the off-diagonal
) (29)  elements in the position basis,is small and decreases with

increasing temperature. Thus for a high-temperature bath,

this generalized coherent stdf&l) is nearly diagonal in the
The quantity (29) is minimum if AxAp=4/2 and Ax*  position representation. Spin-up and -down states are clearly
=h/2mw. This corresponds to the spread in position of thethen correlated with these approximately diagonal position

ground state or of a coherent state of an oscillator. On thigjistributions which are centered arourick/ mw?2:

basis, Zurelet al. claim that the coherent states are the pre-

ferred basis for a harmonic oscillatpt7]. Our analysis of Mw? Mw? e |2

the exact solutions for the full master equation here shows im~[al?|1)(1]® \V/ 27K exp{ - (X+ ) ]
. a BT 2kBT m(,!)z

a more rigorous way that coherent states emerge naturally as

the apparatus states that eventually correlate with the system [ mw? Maw? e \?

states. Moreover, this happens fbitrary initial states of +bl?[L)(l]® 2k TeXP{ - m(x_ 2) }

the apparatuswhich firmly establishes the fact that coherent B B Maw 32

states are truly the preferred states for the apparatus in this (32

measurement model. One can see that the decoherence tifd@an pe checked that spin-apparatus correlations do not ex-

2

S(t)=2D| Ax*+

m2w

(18) is ist in the diagonal elements of the momentum basis and
hencepositionis quite obviously “preferred” by the envi-

_ mw?# TR ronment. This contrasts with the Stern-Gerlach model ana-
TR T2 )T 2lal?’ (30 lyzed by Venugopalaet al.[10], in which it is the momen-

tum distributions with which the spin-apparatus correlations
where 7s=y ! is the thermal relaxation time. Whe|? ultimately ge't estab'lished. The decoherence tii® over '
>1, itis clear thatrp< 7. From Eq.(27) one can see that whlc_h the spin off-diagonal elements of the_: reduced density
this would be the case when one has conditions expected fiatrix of the system apparatus combination decay for the
the classical limit, i.e., when Planck’s constaht,is small  high-temperature bath is now given by
relative to the actions involved. It is in such a regime that > 4 2
one would expect a fast decoherence of the superposition of mA“w — ﬂ (33)
“macroscopically distinct” pointer positions to a statistical 8e’kgT R A2]
mixture. The main signatures of a quantum measurement via
the decoherence mechanism are thus clearly seen hemghere\y=%/y2mkgT is the thermal de Broglie wavelength
namely(a) in the classical regime there is a fast decoherencef the particle and\ = 2e/mw? is the separation between the
of the off-diagonal elements of the spin density matrix over gpeaks of the two pointer distributions in E®2). It is obvi-
time scalerp given by Eq.(30) which ismuch smaller than ous that whenevek >\, there is a fast decoherence of the
7r, the relaxation time of the batkh) there is aone-to-one  entangled system-apparatus pure state to a statistical mixture.
correlation between the spin states and the pointer states duch a condition would correspond to a regime expected in
the apparatuswhich arecoherent statesand (c) 7 is in-  the classical limit. Thus, once again, we can clearly see the
versely proportional to the square of the separatigd be- ~ main signatures of the decoherence mechanism here as in the
tween the two pointer states. The strength of this model izero-temperature case discussed above, namely, the off-
that the system-apparatus correlations established at lortjagonal elements in spin space decohere to zero completely
times are permanent and the emergent pointer basis is inda+ a time scale which is much smaller than® and which
pendent of the initial state of the apparatus. goes inversely as the square of the spatial separation between

o= TR

012102-6



POINTER STATES VIA DECOHERENCE IN A QUANTUM.. .. PHYSICAL REVIEW /41012102

the “pointers,” eventually leading to a mixed density matrix all times for both the zero-temperature and high-temperature
(32) with appropriate system-apparatus correlations. The dezases as is evident from Eq®6) and (32). The “perma-
coherence timé33) was earlier obtained by Zurd] from  nence” of these system-apparatus correlations, therefore,
the high-temperature Markovian master equation for a freenakes this model very interesting to investigate experimen-
particle in an initial coherent superposition of two Gaussiartally from the point of view of quantum measurement and
wave packets separated By under the approximation that decoherence.
the only dominant term i9/44%(x—x")?, in Eq. (2). We
obtain the same result for the decoherence time fexact
solutions of the full master equatiamhere no terms are ne-
glected and no approximations are made. Moreover, this be- In this paper, we have investigated a quantum measure-
havior of 7 is seen for all times, unlike previous estimatesment model comprised of a spin{system, a harmonic os-
of decoherence times in which decoherence was looked fazillator (apparatus and a bath of oscillator&nvironment
at short timegin the limit of negligible friction. Our results  Our interest has been to look at the exact solutions for the
are also consistent with the solutions obtained by Savage ardynamics of the reduced density matrix of the system and
Walls [9] for a harmonic oscillator in an initial superposition apparatus via the Markovian master equation which we have
of coherent states for the zero-temperature and highstudied for the zero-temperature and high-temperature cases.
temperature cases. For the measurement model analyzedWe show that the coupling of the apparatus to the environ-
this paper, our exact solutions show that the final mixed statenent leads to the decoherence of the pure system-apparatus
density matrix carrying system-apparatus correlations is inentangled state to a statistical mixture with definite system-
dependent of the initial state of the apparatus. From 8. apparatus correlations, thus affecting a measurement of the
and (33) it is clear that the decoherence time for a high-spin state. For both the zero-temperature and high-
temperature heat bath is much shorter than that for the zereemperature cases, our exact solutions clearly demonstrate
temperature bath7{,/ 7p~7% »/KgT) and decreases with an the two main signatures of the decoherence mechanism in a
increase in temperature of the bath. Similar features havguantum measurement, name&d) the decoherence time is
been seen by Kim and Buzek in their study of the influencemuch smaller than the thermal relaxation time, #bdthe
of a heat bath on superposition states of light in a microwavelecoherence time is inversely proportional to the square of
cavity [25]. the “separation” between the two “pointers” that correlate

It is interesting to note that the decoherence tinf@®  with the system states. Decoherence is much faster in a high-
and(33) are directly proportional to the mass and frequencytemperature bath compared to the zero-temperature bath. Our
of the apparatugoscillaton and are longer for heavier oscil- exact solutions also clearly show that the final apparatus
lators with higher frequencies. Of course, correspondinglystates with which the system states eventually correlate at
the “separation” between the two “pointers” positions, long times(the “pointer states) are coherent states for the
2e/mw?, will be smaller and hence their superpositionszero-temperature bath and nearly diagonal position distribu-
would decohere slower. Thus, the “bigger” the cat state, thetions of a generalized coherent state for the high-temperature
faster the decoherence. In the experiment of Brehal. heat bath. The strength of this model and analysis is that it
[11], an entangled state of the atom plus fi€tcheter”) is  clearly demonstrates that the emergent pointer basis in a
formed and its progressive decoherence to a statistical mixneasurement process is independent of the initial states of
ture is monitored. However, since the fields eventually relaxhe apparatus. This fact was intuitively obvious, but has not
towards vacuum, in their system the one-to-one correlatiotveen shown so far in the limited number of models studied in
between the atom and meter states is eventually lost. Thige literature. Our analysis also highlights the need to con-
experimental study of decoherence is thus confined to exsider a measurementlike scenario to address the issue of the
tremely short-time scales which are much smaller than themergent pointer basis. The model considered here is fairly
cavity relaxation time$11]. It is interesting to note that in a generic and our exact solutions make this model an interest-
physical realization of the measurement model discussed img candidate to explore experimentally in the context of
this paper, the system-apparatus correlations will persist folecoherence and quantum measurements.
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