PHYSICAL REVIEW A, VOLUME 61, 012101
Efficient algorithm for optimal control of mixed-state quantum systems
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Zhu and RabitZJ. Chem. Phys109, 385 (1998] presented a rapidly convergent iterative algorithm for
optimal control of the expectation value of a positive-definite observable in a pure-state quantum system. In
this paper we generalize this algorithm to a quantum-statistical mechanics setting and show that it is both
efficient in the mixed-state case and effective in achieving the control objective of maximizing the ensemble
average of arbitrary observables in the cases studied.

PACS numbgs): 03.65.Bz, 05.30-d, 31.70.Hq

I. INTRODUCTION

Much work has recently been done on control of pure- O=w=1, > w=1, 2
state quantum systems using the traditional wave-function .
formalism [1-3]. This work is most important; however, . . . - . .
many physical systems, such as systems initially in thermat®: they can be ordered in(possibly finitg nonincreasing
equilibrium or otherwise described by an ensemble of sta’te?,equence
or systems where dissipative processes are significant, cannot
be treated using this approach. Therefore, a development of
optimal control for mixed-state quantum systems is neces- ) ) o
sary. In this paper we shall focus on generalizing an efficien/nless otherwise mentioned, the word state will in the fol-
iterative algorithm for quantum contrgll] to a quantum- IowLng refer to a mixed state represented by a density opera-
statistical mechanics setting used in previous wptkg].  tor p(t).
This work is closely related to recently published, indepen- The dynamical law for the system is given by thean-
dently developed work by Yukiyoshi, Zhu, and Ralji#z on  tum Liouville equation
guantum optimal control for systems with dissipation. How-
ever, in our work we do not consider dissipation terms since d [N
those terms are represented by non-Hermitian operators re- Ep(t): - ﬁ[H'P(t)]' ©)
sulting in nonunitary evolution of the system. Unfortunately,

the very accurate numerical implementation of the algorithm herell is the (total) Hamiltoni fth t St
we propose depends on unitary evolution, as do the resultd 1€ren 1S e(tota) Hamiltonian of the system ang(t,)

on kinematical boundg#] and controllabilityf 10], which we = po defines theinitial state of the system(at time t=to).

use to show that the actual global maximum is reached by{bservables are represented by Hermitian oper#tara H

this algorithm. and we define their expectation value to be #resemble
average

IIl. MATHEMATICAL SETUP

As in our previous work, we consider a quantum- (A)=TrAp(D)]. )
mechanical system whose state spacés a separable Hil- R
bert space. Any mixed state of the system can be represented The set of bounded linear operatdrson 7 forms itself a
by a density operatof)(t) (acting onH) with eigenvalue Hilbert space, usually callekjlom{llle spaceand it is conve-
decomposition nient to assign to each operatdr(on ) a Liouville ket
|A)) denoting its representation in Liouville space. The dual
- of |A)) will be denoted by the Liouville br&(A|. The inner
P(t):; Wi Wi OXW (D], oy product in Liouville space is defined by

wherew, are the eigenvalues, afidr(t)) the corresponding (A B)>=Tr(ATI§). (5)
normalized eigenstates ﬁ(t), which evolve in time accord-

ing to the time-dependent Sclilinger equation. The eigen- Thus, an arbitrary mixed state of the system is represented
values satisfy by a Liouville ket|p(t))) that satisfies
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d i
Zi1P(O) == 2LOp(V)) (6) Wz(f,/ov,Av)=Jt << v(t) —E (1) pv(t)>>
(13
with some initial condition|p(to)))=|po)). £ is the Liou-
ville operatordefined by the dual correspondence N (te
W3(f):§ft f2(t)dt. (14)
0

Llp(t)) =[H.p(t)]. (7)
_ ~ . W, ensures that the quantum Liouville equation is satisfied.
The expectation valugA(t)) of the observablé is given by W, constrains the fluence, i.e., the total energy of the pulse.

the Liouville inner product(A|p(t))). py(t) and A, (t) are variational trial functions that must
satisfy the boundary conditions
IIl. CONTROLLING THE DYNAMICS
pv(to)=p(to)=po, Aultp)=A. (19
If the numberM of externalcontrol functions
For simplicity we shall in the following choose units such
f(t)=(f1(1),fo(t), ... ,fm(D) (8) thathi=1 and defines,= d/t.

_ o . _ Equations(12)—(15) are the generalization to Liouville
acting on the system is finite and the systerndstrol-linear  space of the Hilbert space formulation[ity. The details of
then the total Hamiltonian of the system can be decomposeghe connection with this paper will be discussed in Appendix

as follows: A. The solution of this control problem requires finding an
M admissible controlf(t) such thatW and thus(A(t)) will
A=F,+ Z f (O, (9) attain its global maximum at time=t.
IV. ALGORITHM

In this case, the corresponding Liouville operator also de-
composes: We start by guessing an initial contr&f®)(t) and deter-

" mining an initial|p{”)(t))) by solving

£=Lot 2 fr(0) L. (10 P A(0)) = =iLLo+ FODL][pP(D))

with initial condition [p{®(to)))=1po)). For n=1 and k
The restrictions imposed on the controls depend on the par- 0.1 we define

ticular system studied. However, a reasonable minimal re-
quirement for the control functionfs,(t) is that they should

be bounded, measurable, real-valued functions defined on a fOR ()=~ - <<'°~(n)(t)|£1|P(n D)), (16)
time interval[ty,t] that depends on the application.
In the remainder of this paper we shall furthermore as- LOR)= Lo+ FOR) £, (17)

sume that there is only one contif@lt) acting on the system,
which is sufficient for many applications of laser control. and solve iteratively
However, we would like to point out that it is possible to

generalize the algorithm to the case where there are multiple AP (1)) = =i ™D(t)| A1), (18
controls, such as two laser fields with perpendicular polar- _ o
ization driving the system. | pM (1)) ==iL™O0)[p{(1))), (19

Our goal is to maximize the expectation vali@gsemble ) .

averagg of a given observable, e.g., the population of a parWith the boundary conditions

ticular energy level or subspace of quantum states, the en- (n) _ (n) _

ergy of a molecular bond, etc., at some fixed target time A =AD. - 1p6" (o)) =po))-

=1 subject to certain constraints. We observe that(™¥(t) is real. Hencel (¥ is Hermitian
More precisely, we define a function@,6,11] and the time evolution of botfA{"(t)) and|p{™(t)) is uni-

W(f,py,Ay)=Wi(p,) —Wy(f,p,,A,)—Ws(f), (1) tary, i.e.,

(n) - (n) -
whose value at a certain target tinhe we would like to 1A ®l=1Al2: llos"(Oll2=llpol2 20
maximize.W; is the expectation value df that we wish to  for all te[t,,tr] and anyn. Furthermore,
maximize at the target timg:, o
lpoll3=Tr(pgpo)=Tr(p§)<1. (21)
Wi () =(A(te)) = ((Alpy(te))); (12) _ _ _
This algorithm can be shown to converge quadratically and

W, and W5 are constraint functionals, which we define asmonotonically as does the pure-state version due to Zhu and
follows: Rabitz. The details of the proof can be found in Appendix B.
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However, we have no guarantee thif(f) indeed assumes tion are the complex exponentiats 12+ ™)1 for g
|tS glObal maximum for thle(t) Additional Criteria, SUCh-aS possib|e values of andb. In order to Computd(ﬂ.), we
kinematical bounds and knowledge about controllability ofnote that

the system are necessary to decide if the control the algo-

rithm produced is indeed optimal in the sense of steering the df
system to a global maximum &/, (f). ftxAy)~f() At 5 (1) (28)
V. NUMERICAL IMPLEMENTATION to first order, and hence we have

The differential equations arising from this feedback al- At
gorithm must be solved numerically. While there are many f™%(r)=f"0(t;) + §<<A\(,n)(tj)|[ﬁo,ﬁl]Pf,n)(tj)»,
methods of integrating differential equations numerically, we (29)
employ a symmetric split operator methgd12]. The main
advantage of this method is that it preserves the norm of the At
operators involved, which is of great importance in this prob-f™Y(7;_1)=f"3(t;) - §<<A\(,n)(tj)|[ﬁo151]P§n71)(tj)>>-
lem. o - (30)
We divide the time interval[ty,tg] in subintervals
[tj,tj1] of a fixed lengthAt=t;,,—t;. On each subinter-
val [t;,t;+1] we approximatef(™¥(t) by the constant

f("K(7;) where As an example for molecular quantum control, we con-
sider a Morse oscillator model for a diatomic molecule with
T =t AU2=t., — A2, 22 N discrete energy level&, corresponding to independent
vibrational eigenstateg) of the system. The unperturbed
Hamiltonian is thus

VI. ILLUSTRATIVE COMPUTATIONS

With this approximation the propagator can be written as
UMR(t g ) =exd —iAt(Lo+ M9 (7) Ly)]. (23)

N
For arbitrary matriced\ andB we have Ho:nz::l Enln)(n|. (31)

—ia(A+B) — a—i(al2)An—iaB—i(al2)B _ i o _
€ € € € The interaction Hamiltonian of the driven system can be ap-
up to second-order terms MandB. Thus Eq(23) agrees to  Proximated byH,=f(t)V, wheref(t) is an external laser
second order with field that serves as control function akdis the transition
operator, which we choose to be of the dipole form

s o ( 'k) - o
o I(AU2)Log—iatt (M (7)) £y —i(AU2) Lo (24) -
This symmetric splitting is numerically favorable since it V= nzl dn([n)(n+1[+[n+1)(n|). (32)
allows us to reduce the matrix exponentials to a simple linear
combination of complex exponentials: This system is completely controllable, which can easily be
N verified using an algorithm described [ib0]. Thus, the glo-
= i - —iaAt/2 bal minima and maxima of any observable are determined by
Uo=exp(—iAtLo/2) azl laye {al. 29 the kinematical bounds, and these extrema are dynamically
attainable.
UM () =exd —iAtF MO (7)) £4] For the sake of illustration we choo$é=4. The corre-

\ sponding energy levels are;=0.4843, E,=1.4214, E;
EEUNTICHS T =2.3691, andE,;=3.2434 in units offiwy, where wy=
2 1b)e SRl (28 7810 for HE. ’ ’

Let us first assume that the system is initially in the
where|a)) and|b)) are the eigenkets of, and £y, respec- ground state, i.epo=|1)(1| and that our goal is to maxi-
tively; a andb are the correspondingeal) eigenvalues. This mjze the vibrational energy of the bond, i.8.=H,. In this
leads to case, the results on kinematical bound$4hgive

N ~
U(n,k)(Tj)E 2 |<<a|b>>|2e—im[a+bf("vk>(rj)]|a>><<a|_ 1.4214<(A(t))=<3.2434. (33
a,b=1

(279 The lower bound is attained exactly if the population of level
1 (ground statgis 1. The upper bound is attained exactly if
U™k(7) agrees up to second order with™¥(t;_;,t;).  the population of level 4highest stateis 1. Figures 1-3
Since £, and £; do not depend orf(™¥| the eigenvalue show the results of our computations using the algorithm
decomposition needs to be done only once, i.e., the onlgescribed above. Starting with a randomly generated func-
guantities that need to be computed in each step of the iterdéion f of sufficiently small magnitude and=4, the observ-
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FIG. 1. Optimal pulse for a four-level Morse oscillator with

;’o:|1><1‘-

able rapidly approaches its converged value within only a
few iterations. Figure 1 shows the final pulgg), Fig. 2 the
corresponding evolution of the populations of energy levels
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FIG. 3. Evolution of the vibrational energy for a four-level
Morse oscillator withpo=|1)(1].

Is the normalization constant. Concretely, =0.3850, w,
=0.2758,w3=0.1976, andv,=0.1416. According td4],

1 through 4, and Fig. 3 shows the evolution of the expecta- A
tion value of the observable. At the target tirige=200 fs, 1.5059<(A)=<2.2592. (34
we observe a nearly complete inversion of the populations,

with the population of level 4 being close to 97¢A(tr)) i The lower bound is attained in thermal equilibrium. The up-

about 98% of the theoretical maximum.

er bound is attained exactly if the populations are inverted,

Second, we assume that the system is initially in thermaj e the most energetic statbere n=4) has the highest

equilibrium, i.e.,
N
Po= E Wn|n><n|
n=1
with weights
w,=Cexd —E,/(E4s—Eq)].
This is a Boltzmann distribution witkT=E,—E;;

C=(e E1/kT4 g E2/kT 4 g Es/kT | g=E4/KT)~1

Populations

o o
[} oo

Populations
o
S

0.21
0
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population, the second most energetic state has the second
highest population, etc. Figures 4—6 show the results of our
computations using the algorithm described above. Again,
we started with a randomly generated functibof suffi-
ciently small magnitude and=4. Figure 4 shows the final
pulsef(t), Fig. 5 the corresponding evolution of the popu-
lations of energy levels 1 through 4, and Fig. 6 shows the
evolution of the expectation value of the observable. At the
target timetr=200 fs we observe a nearly complete inver-
sion of the populations WithA(t,:)) being 99% of the theo-
retical maximum.
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FIG. 2. Evolution of the populations for a four-level Morse os-  FIG. 4. Optimal pulse for a four-level Morse oscillator with

cillator with po=|1)(1].

/30=E‘n‘=1ln><n|-
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FIG. 5. Evolution of the populations for a four-level Morse os-

- FIG. 6. Evolution of the vibrational energy for a four-level
cillator with po==#_,|n)(n|.

Morse oscillator withpo=31_,|n)(n|.

VIl. CONCLUSION W= (1) | Al iy (1) — g f Rt
to

In this paper we demonstrated that an efficient algorithm

for optimal control of quantum systems can be applied in a _ tr A

quantum-statistical mechanics setting and that this algorithm 2Re " (Lo +iH(f, D] (D)dt. (AL

is also highly effective in realizing the control objective of ]

maximizing the ensemble average of an observable. Choose a (time-dependent complete orthonormal = set
{In):n=1,2, ...}, such that|,(t)) =], (t)) for all t. Then
we have

APPENDIX A: RELATION TO WORK OF RABITZ ET AL.

o _ , Wy =Tr(Ap,(te)= 2 (Yn(te) Ay (te) [ 4 (te)
Our variational functional and Euler-Lagrange equations n

are equivalent to the ones used i in the pure-state limit, t o)) = t Al (o).
i.e., if py(t) = (), (1)], where| i, (1)) is a normalized Xt F)>A (lte)|Alute))
state, then Furthermore, settingy,(t))=A,(t)|#,(t)) we obtain

(A ap (D)) =TITA, (D) dpy(1)]

=; (In(OIADOL] (D) I (D[P0 + 2 (U DIALD [t (D) Lty (D[] ¢l 1))

=<¢v(t>|Av<t>at|¢v<t>>+; Lo 4 (0|11 (O X (D] AL (D), (1)

= (i (DAL 3] (D) + [ I, (DTAL (D] g (1))

= (i (DAL 3] (D) + [P (DAL (1) ], (D) T* =2 Re s, ()| A, (1) 3] 1, (1))
= 2 RdXV(t)| 0t¢v(t)>

and

(AL Dpy(t)) =1 THADIH(E,1),p, (D]}

=§ i<wn<t>|ﬁ\v<t>ﬂ<f,t>|¢V<t)><wv(t>|wn<t>>—§ I{(n(DIAL(D] Dy (D)W, (DA, D] (D))

=i<wv<t>|Av<t>H<f,t>|¢V<t>>—§ i (DH D)) (DA (D) dy (1)
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= (D[ (F,0)] (1) = (g (DIH (F,0)] x (D)
= (O [IH D]y () + [ (D] (F,0)] by (1)) ]*

=2 Re{x, (D]iH (f,0)| by (1)).

Hence, we have

tr
W= [ (ALl £ )t

te A
=2 Re[ " OILa+HALD gy 1)t

in the pure-state casi/; remains essentially the same, i.e.,
N/2. The equivalence of the Euler-

we simply setag=
Lagrange equations follows.

APPENDIX B: PROOF OF CONVERGENCE PROPERTIES

After the nth iteration step, the objective functional is

WO WD W = (A 1))~ 5 f “Teoat,
to
(B1)

since WYV =W, ("9, oMW AWy =0 according to Eqs(13)
and (19).

Lemma. W is uniformly bounded

Proof. Cauchy-Schwarz’s inequality and EgR0) and
(21) give

(Al ONE=IALZ IS ®lZ<]Al3,

as well as
HOLSIER <<A‘”>(t>|£1p<“)(t>>>|2

1
—ZIIA‘“)(t)Ilz Gl

1

=lA PO 1L o5 1
1
—2||A(")(t)|| I1£4l],

where| £,]| is the usual operator norm. Thus,

W< [ WD)+ [ WP <[ A + -

PO 1L

for all n, which establishes the claim.
Lemmallf U(t,ty) satisfies

AU (t,tg)=—iL(t)U(t,tp),

then

t
p(®)=U(tto) ft U to) | (t )t
0

is a solution of

alp())=—iL(t)|p(t)))+|A(1))).

Proof. Using the product rule and

t
(%ﬁ UT(t" to) o(t)dt’ =UT (L, to)[¢(1)))
0

to differentiate|p(t))) gives

t
t?t|P(t)>>=[—iﬁ(t)U(t,to)]ft UT(t" to)|¢(t")))dt’
0

+U(t,t)UT(t,t)| o(D)))
=—iL(t)|p(t)))+]p(1))).

Theorem 1.Convergencghe sequencéW(M} converges
monotonically and quadratically in the control, i.e.,

= lim W+ D — ()

n—oo

N[t (N+1)/4112 (N+10) /4172
=I|m§ t [ of (t)]e+[ of M(t)]edt. (B2)
n—oe 0

Proof. Setting
|30 (1)) =10 D)) =1 (1)),

5W(n+ 1n) =W(n+ 1)_

(B3)

W

N (tF
_ (n) _ (n+1,0) 2
=((Al5p{"(te))) ~ 5 ft o)

—[f("O2dt. (B4)
During the iteration
A p (D)) ==i[ Lo+ T L1][p (1)), (BS)
Hence, setting
5f(n+ 1n)_— f(n+ 1,1)(t) _ f(n,O)(t), (BG)
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SFM =0y — f(11)(t), (B7)
and noting that
L1 5p V(1))
+ L] oF D) + 5F D))
= LF T O(0)) = £4F HpV(0))
LTI (0)) £, VD))
L1 (1)) = £aF TP (1))
=L, fO (M V(1)) — £,F 0o (1)),
we obtain
a8V (1)))= =iV 5p{(1)))
—iLy| (ST VM4 SFHID ) (1)),
(B8)
Setting

U(t,tg, F" 1) =exp, (B9)

t
—iJ £ (rydr],
to

where exp denotes the time-ordered exponential, the formal
solution of Eq.(B8) is (according to the previous lemma

given by
|5P\(/n)(t)>> =—iU(t,tg, f(M*1D)

t
X J; UT(t/,to,f(n+l,1))£1|(6f(n+1)p$’n+l)
0

+8f (LM M) (17)))dt” (B10)

Observing that

AP (0))=U(t,to, f D) UT(te 1o, 1) |A)),
and thus

(AP = (AUt o, O Ut 1o, 042D,

we arrive at

tF
((Al8p{(te))) = =i ft (AJU(tg o, FOLD)
0

XUT(t,to, f" D) £y
X |(5f(n+l)p\(ln+l)+ 6f(n+l,n)p$,n))(t)>>dt

t
=i f T(APT ()| 4] (81 DD
to
+ SF M) (1)) dt

te
=f —isf+ ()
t

0

PHYSICAL REVIEW A 61012101
X(AMD)| L1p0 D(1)))d

e
+J —iof(M I (t)
t

0

XUAM D) £,pM(1)))dt

=\ ftF5f(n+l)(t)f(n+ 1,0)(t)
t

0

+of I (4) f LDt dt

=\ tF[.f(n-*—l,O)(t)]Z_ f(n+l,l)(t)f(n+l,0)(t)
to

+[FM (1) 12— £ (O (t) F (1T L) 1) dit,
(B11)

5W(n+1,n):%J't':[f(n+l,0)(t)]2+2f(n+1,1)(t)f(n+l,0)(t)
to
+ 2 F(+ L)1) 12— 2§ (0 F(M+1.D) )
+[F"O(t) ]2 dt
N [t
= Efto [SfM 1) 2+ [ of (M0 (1) ]2,
(B12)

and thus the total variation from=0 to ng is
ng—1

SWMEO = W(me) W)= > sy(n+1n)
n=0

ng—1

N[t
= 3 5| e R+ [af 012 dt.
n=0 to
(B13)

SinceW™ is uniformly bounded W) —W(© is also uni-
formly bounded for all np and thus the sequence
{SWFO:n_ e Ng} is uniformly bounded:

N[t
Ef F[5f<"+1)(t)]2+[5f<“+1~">(t)]2dt>o
to

for any n implies furthermore thasW("r? is an increasing
sequence. Hence,

lim sW("F0)

Ng—®

exists and is finite. Consequently,

N [t
lim Ef F[gf(n+ 1)(t)]2+[5f(n+1,n)(t)]2 dt=0.
n—oo to
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