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Efficient algorithm for optimal control of mixed-state quantum systems
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Zhu and Rabitz@J. Chem. Phys.109, 385 ~1998!# presented a rapidly convergent iterative algorithm for
optimal control of the expectation value of a positive-definite observable in a pure-state quantum system. In
this paper we generalize this algorithm to a quantum-statistical mechanics setting and show that it is both
efficient in the mixed-state case and effective in achieving the control objective of maximizing the ensemble
average of arbitrary observables in the cases studied.

PACS number~s!: 03.65.Bz, 05.30.2d, 31.70.Hq
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I. INTRODUCTION
Much work has recently been done on control of pu

state quantum systems using the traditional wave-func
formalism @1–3#. This work is most important; howeve
many physical systems, such as systems initially in ther
equilibrium or otherwise described by an ensemble of sta
or systems where dissipative processes are significant, ca
be treated using this approach. Therefore, a developme
optimal control for mixed-state quantum systems is nec
sary. In this paper we shall focus on generalizing an effici
iterative algorithm for quantum control@1# to a quantum-
statistical mechanics setting used in previous work@4–8#.
This work is closely related to recently published, indepe
dently developed work by Yukiyoshi, Zhu, and Rabitz@9# on
quantum optimal control for systems with dissipation. Ho
ever, in our work we do not consider dissipation terms sin
those terms are represented by non-Hermitian operator
sulting in nonunitary evolution of the system. Unfortunate
the very accurate numerical implementation of the algorit
we propose depends on unitary evolution, as do the res
on kinematical bounds@4# and controllability@10#, which we
use to show that the actual global maximum is reached
this algorithm.

II. MATHEMATICAL SETUP

As in our previous work, we consider a quantum
mechanical system whose state spaceH is a separable Hil-
bert space. Any mixed state of the system can be represe
by a density operatorr̂(t) ~acting onH) with eigenvalue
decomposition

r̂~ t !5(
k

wkuCk~ t !&^Ck~ t !u, ~1!

wherewk are the eigenvalues, anduCk(t)& the corresponding
normalized eigenstates ofr̂(t), which evolve in time accord-
ing to the time-dependent Schro¨dinger equation. The eigen
values satisfy
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0<wk<1, (
k

wk51, ~2!

i.e., they can be ordered in a~possibly finite! nonincreasing
sequence

w1>w2>•••>wk>•••>0.

Unless otherwise mentioned, the word state will in the f
lowing refer to a mixed state represented by a density op
tor r̂(t).

The dynamical law for the system is given by thequan-
tum Liouville equation

]

]t
r̂~ t !52

i

\
@Ĥ,r̂~ t !#, ~3!

whereĤ is the ~total! Hamiltonian of the system andr̂(t0)
5 r̂0 defines theinitial state of the system~at time t5t0).
Observables are represented by Hermitian operatorsÂ on H
and we define their expectation value to be theensemble
average

^Â~ t !&5Tr@Âr̂~ t !#. ~4!

The set of bounded linear operatorsÂ on H forms itself a
Hilbert space, usually calledLiouville spaceand it is conve-
nient to assign to each operatorÂ ~on H) a Liouville ket
uA&& denoting its representation in Liouville space. The du
of uA&& will be denoted by the Liouville brâ^Au. The inner
product in Liouville space is defined by

^^AuB&&5Tr~Â†B̂!. ~5!

Thus, an arbitrary mixed state of the system is represen
by a Liouville ket ur(t)&& that satisfies
©1999 The American Physical Society01-1
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]

]t
ur~ t !&&52

i

\
L~ t !ur~ t !&& ~6!

with some initial conditionur(t0)&&5ur0&&. L is the Liou-
ville operatordefined by the dual correspondence

Lur~ t !&&↔@Ĥ,r̂~ t !#. ~7!

The expectation valuêÂ(t)& of the observableÂ is given by
the Liouville inner product̂ ^Aur(t)&&.

III. CONTROLLING THE DYNAMICS

If the numberM of externalcontrol functions

f~ t !5„f 1~ t !, f 2~ t !, . . . ,f M~ t !… ~8!

acting on the system is finite and the system iscontrol-linear
then the total Hamiltonian of the system can be decompo
as follows:

Ĥ5Ĥ01 (
m51

M

f m~ t !Ĥm . ~9!

In this case, the corresponding Liouville operator also
composes:

L5L01 (
m51

M

f m~ t !Lm . ~10!

The restrictions imposed on the controls depend on the
ticular system studied. However, a reasonable minimal
quirement for the control functionsf m(t) is that they should
be bounded, measurable, real-valued functions defined
time interval@ t0 ,tF# that depends on the application.

In the remainder of this paper we shall furthermore
sume that there is only one controlf (t) acting on the system
which is sufficient for many applications of laser contro
However, we would like to point out that it is possible
generalize the algorithm to the case where there are mul
controls, such as two laser fields with perpendicular po
ization driving the system.

Our goal is to maximize the expectation value~ensemble
average! of a given observable, e.g., the population of a p
ticular energy level or subspace of quantum states, the
ergy of a molecular bond, etc., at some fixed target timt
5tF subject to certain constraints.

More precisely, we define a functional@7,6,11#

W~ f ,rv ,Av!5W1~rv!2W2~ f ,rv ,Av!2W3~ f !, ~11!

whose value at a certain target timetF we would like to
maximize.W1 is the expectation value ofÂ that we wish to
maximize at the target timetF ,

W1~ f !5^A~ tF!&5^^Aurv~ tF!&&; ~12!

W2 and W3 are constraint functionals, which we define
follows:
01210
ed

-

r-
-

a

-

le
r-

-
n-

W2~ f ,rv ,Av!5E
t0

tFK K Av~ t !U ]

]t
1

i

\
L~ t !Urv~ t !L L dt,

~13!

W3~ f !5
l

2Et0

tF
f 2~ t !dt. ~14!

W2 ensures that the quantum Liouville equation is satisfi
W3 constrains the fluence, i.e., the total energy of the pu

rv(t) and Av(t) are variational trial functions that mus
satisfy the boundary conditions

rv~ t0!5r~ t0!5r0 , Av~ tF!5A. ~15!

For simplicity we shall in the following choose units suc
that \51 and define] t5]/]t.

Equations~12!–~15! are the generalization to Liouville
space of the Hilbert space formulation in@1#. The details of
the connection with this paper will be discussed in Appen
A. The solution of this control problem requires finding a
admissible controlf (t) such thatW and thus^Â(t)& will
attain its global maximum at timet5tF .

IV. ALGORITHM

We start by guessing an initial controlf (0)(t) and deter-
mining an initial urv

(0)(t)&& by solving

] turv
(0)~ t !&&52 i @L01 f (0)~ t !L1#urv

(0)~ t !&&

with initial condition urv
(0)(t0)&&5ur0&&. For n>1 and k

50,1 we define

f (n,k)~ t ![2
i

l
^^Av

(n)~ t !uL1urv
(n2k)~ t !&&, ~16!

L (n,k)~ t ![L01 f (n,k)~ t !L1 , ~17!

and solve iteratively

] tuAv
(n)~ t !&&52 iL (n,1)~ t !uAv

(n)~ t !&&, ~18!

] turv
(n)~ t !&&52 iL (n,0)~ t !urv

(n)~ t !&&, ~19!

with the boundary conditions

uAv
(n)~ tF!&&5uA&&, ur0

(n)~ t0!&&5ur0&&.

We observe thatf (n,k)(t) is real. HenceL (n,k) is Hermitian
and the time evolution of bothuAv

(n)(t)& andurv
(n)(t)& is uni-

tary, i.e.,

iAv
(n)~ t !i25iAi2 , irv

(n)~ t !i25ir0i2 ~20!

for all tP@ t0 ,tF# and anyn. Furthermore,

ir0i2
25Tr~ r̂0

†r̂0!5Tr~r0
2!<1. ~21!

This algorithm can be shown to converge quadratically a
monotonically as does the pure-state version due to Zhu
Rabitz. The details of the proof can be found in Appendix
1-2
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However, we have no guarantee thatW1( f ) indeed assume
its global maximum for thisf (t). Additional criteria, such as
kinematical bounds and knowledge about controllability
the system are necessary to decide if the control the a
rithm produced is indeed optimal in the sense of steering
system to a global maximum ofW1( f ).

V. NUMERICAL IMPLEMENTATION

The differential equations arising from this feedback
gorithm must be solved numerically. While there are ma
methods of integrating differential equations numerically,
employ a symmetric split operator method@1,12#. The main
advantage of this method is that it preserves the norm of
operators involved, which is of great importance in this pro
lem.

We divide the time interval@ t0 ,tF# in subintervals
@ t j ,t j 11# of a fixed lengthDt5t j 112t j . On each subinter-
val @ t j ,t j 11# we approximate f (n,k)(t) by the constant
f (n,k)(t j ) where

t j5t j1Dt/25t j 112Dt/2. ~22!

With this approximation the propagator can be written as

U (n,k)~ t j 11 ,t j !5exp@2 iDt~L01 f (n,k)~t j !L1!#. ~23!

For arbitrary matricesA andB we have

e2 ia(A1B)5e2 i (a/2)Ae2 iaBe2 i (a/2)B

up to second-order terms inA andB. Thus Eq.~23! agrees to
second order with

e2 i (Dt/2)L0e2 iDt f (n,k)(t j )L1e2 i (Dt/2)L0. ~24!

This symmetric splitting is numerically favorable since
allows us to reduce the matrix exponentials to a simple lin
combination of complex exponentials:

U0[exp~2 iDtL0/2!5 (
a51

N

ua&&e2 iaDt/2^^au, ~25!

U1
(n,k)~t j ![exp@2 iDt f (n,k)~t j !L1#

5 (
b51

N

ub&&e2 iDt f (n,k)(t j )b^^bu, ~26!

whereua&& and ub&& are the eigenkets ofL0 andL1, respec-
tively; a andb are the corresponding~real! eigenvalues. This
leads to

U (n,k)~t j ![ (
a,b51

N

z^^aub&& z2e2 iDt[a1b f(n,k)(t j )] ua&&^^au.

~27!

U (n,k)(t j ) agrees up to second order withU (n,k)(t j 21 ,t j ).
Since L0 and L1 do not depend onf (n,k), the eigenvalue
decomposition needs to be done only once, i.e., the o
quantities that need to be computed in each step of the it
01210
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tion are the complex exponentialse2 iDt[a1b f(n,k)(t j )] for all
possible values ofa and b. In order to computef (t j ), we
note that

f ~ t6Dt !' f ~ t !6Dt
d f

dt
~ t ! ~28!

to first order, and hence we have

f (n,0)~t j !5 f (n,0)~ t j !1
Dt

2l
^^Av

(n)~ t j !u@L0 ,L1#rv
(n)~ t j !&&,

~29!

f (n,1)~t j 21!5 f (n,1)~ t j !2
Dt

2l
^^Av

(n)~ t j !u@L0 ,L1#rv
(n21)~ t j !&&.

~30!

VI. ILLUSTRATIVE COMPUTATIONS

As an example for molecular quantum control, we co
sider a Morse oscillator model for a diatomic molecule w
N discrete energy levelsEn corresponding to independen
vibrational eigenstatesun& of the system. The unperturbe
Hamiltonian is thus

Ĥ05 (
n51

N

Enun&^nu. ~31!

The interaction Hamiltonian of the driven system can be
proximated byĤ15 f (t)V̂, where f (t) is an external laser
field that serves as control function andV̂ is the transition
operator, which we choose to be of the dipole form

V̂5 (
n51

N21

dn~ un&^n11u1un11&^nu!. ~32!

This system is completely controllable, which can easily
verified using an algorithm described in@10#. Thus, the glo-
bal minima and maxima of any observable are determined
the kinematical bounds, and these extrema are dynamic
attainable.

For the sake of illustration we chooseN54. The corre-
sponding energy levels areE150.4843, E251.4214, E3
52.3691, andE453.2434 in units of\v0, where v05
7.831014 s21 for HF.

Let us first assume that the system is initially in t
ground state, i.e.,r̂05u1&^1u and that our goal is to maxi
mize the vibrational energy of the bond, i.e.,Â5Ĥ0. In this
case, the results on kinematical bounds in@4# give

1.4214<^Â~ t !&<3.2434. ~33!

The lower bound is attained exactly if the population of lev
1 ~ground state! is 1. The upper bound is attained exactly
the population of level 4~highest state! is 1. Figures 1–3
show the results of our computations using the algorit
described above. Starting with a randomly generated fu
tion f of sufficiently small magnitude andl54, the observ-
1-3



y

el
ta

n

p-
ed,
t
cond
our
ain,

l
u-
the
the
r-

l

h

h

s-

S. G. SCHIRMER, M. D. GIRARDEAU, AND J. V. LEAHY PHYSICAL REVIEW A61 012101
able rapidly approaches its converged value within onl
few iterations. Figure 1 shows the final pulsef (t), Fig. 2 the
corresponding evolution of the populations of energy lev
1 through 4, and Fig. 3 shows the evolution of the expec
tion value of the observable. At the target timetF5200 fs,
we observe a nearly complete inversion of the populatio
with the population of level 4 being close to 97%.^Â(tF)& is
about 98% of the theoretical maximum.

Second, we assume that the system is initially in therm
equilibrium, i.e.,

r̂05 (
n51

N

wnun&^nu

with weights

wn5Cexp@2En /~E42E1!#.

This is a Boltzmann distribution withkT5E42E1;

C5~e2E1 /kT1e2E2 /kT1e2E3 /kT1e2E4 /kT!21

FIG. 1. Optimal pulse for a four-level Morse oscillator wit

r̂05u1&^1u.

FIG. 2. Evolution of the populations for a four-level Morse o

cillator with r̂05u1&^1u.
01210
a

s
-

s,
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is the normalization constant. Concretely,w150.3850, w2
50.2758,w350.1976, andw450.1416. According to@4#,

1.5059<^Â&<2.2592. ~34!

The lower bound is attained in thermal equilibrium. The u
per bound is attained exactly if the populations are invert
i.e., the most energetic state~here n54) has the highes
population, the second most energetic state has the se
highest population, etc. Figures 4–6 show the results of
computations using the algorithm described above. Ag
we started with a randomly generated functionf of suffi-
ciently small magnitude andl54. Figure 4 shows the fina
pulse f (t), Fig. 5 the corresponding evolution of the pop
lations of energy levels 1 through 4, and Fig. 6 shows
evolution of the expectation value of the observable. At
target timetF5200 fs we observe a nearly complete inve
sion of the populations witĥÂ(tF)& being 99% of the theo-
retical maximum.

FIG. 3. Evolution of the vibrational energy for a four-leve

Morse oscillator withr̂05u1&^1u.

FIG. 4. Optimal pulse for a four-level Morse oscillator wit

r̂05(n51
4 un&^nu.
1-4
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VII. CONCLUSION

In this paper we demonstrated that an efficient algorit
for optimal control of quantum systems can be applied i
quantum-statistical mechanics setting and that this algori
is also highly effective in realizing the control objective
maximizing the ensemble average of an observable.

APPENDIX A: RELATION TO WORK OF RABITZ ET AL.

Our variational functional and Euler-Lagrange equatio
are equivalent to the ones used in@1# in the pure-state limit,
i.e., if r̂v(t)5ucv(t)&^cv(t)u, whereucv(t)& is a normalized
state, then

FIG. 5. Evolution of the populations for a four-level Morse o

cillator with r̂05(n51
4 un&^nu.
01210
a
m

s

W5^cv~ tF!uAucv~ tF!&2a0E
t0

tF
f 2~ t !dt

22 ReE
t0

tF
^xv~ t !u@] t1 iĤ ~ f ,t !#ufv~ t !dt. ~A1!

Choose a ~time-dependent! complete orthonormal se
$un&:n51,2, . . .%, such that,uc1(t)&5ucv(t)& for all t. Then
we have

W15Tr„Âr̂v~ tF!…5(
n

^cn~ tF!uÂv~ tF!ucv~ tF!&

3^cv~ tF!ucn~ tF!&5^cv~ tF!uAucv~ tF!&.

Furthermore, settinguxv(t)&5Âv(t)ucv(t)& we obtain

FIG. 6. Evolution of the vibrational energy for a four-leve

Morse oscillator withr̂05(n51
4 un&^nu.
^^Av~ t !u] trv~ t !&&5Tr@Âv~ t !] tr̂v~ t !#

5(
n

^cn~ t !uÂv~ t !@] tucv~ t !&#^cv~ t !ucn~ t !&1( ^cn~ t !uÂv~ t !ucv~ t !&@] t^cv~ t !u#ucn~ t !&

5^cv~ t !uÂv~ t !] tucv~ t !&1(
n

@] t^cv~ t !u#ucn~ t !&^cn~ t !uÂv~ t !ucv~ t !&

5^cv~ t !uÂv~ t !] tucv~ t !&1@] t^cv~ t !u#Âv~ t !ucv~ t !&

5^cv~ t !uÂv~ t !] tucv~ t !&1@^cv~ t !uÂv~ t !] tucv~ t !&#* 52 Rê cv~ t !uÂv~ t !] tucv~ t !&

52 Rê xv~ t !u] tcv~ t !&

and

^^Av~ t !u iL~ f ,t !rv~ t !&&5 i Tr$Âv~ t !@Ĥ~ f ,t !,r̂v~ t !#%

5(
n

i ^cn~ t !uÂv~ t !Ĥ~ f ,t !ufv~ t !&^cv~ t !ucn~ t !&2(
n

i ^cn~ t !uÂv~ t !ufv~ t !&^cv~ t !uĤ~ f ,t !ucn~ t !&

5 i ^cv~ t !uÂv~ t !Ĥ~ f ,t !ufv~ t !&2(
n

i ^cv~ t !uĤ~ f ,t !ucn~ t !&^cn~ t !uÂv~ t !ufv~ t !&
1-5
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5^xv~ t !u iĤ ~ f ,t !ufv~ t !&2^cv~ t !u iĤ ~ f ,t !uxv~ t !&

5^xv~ t !u iĤ ~ f ,t !ufv~ t !&1@^xv~ t !u iĤ ~ f ,t !ufv~ t !&#*

52 Rê xv~ t !u iĤ ~ f ,t !ufv~ t !&.
.,
-

Hence, we have

W25E
t0

tF
^^Av~ t !u] t1 iL~ t !urv~ t !&&dt

52 ReE
t0

tF
^xv~ t !u@] t1 iĤ ~ f ,t !#ufv~ t !&dt

in the pure-state case.W3 remains essentially the same, i.e
we simply set a05l/2. The equivalence of the Euler
Lagrange equations follows.

APPENDIX B: PROOF OF CONVERGENCE PROPERTIES

After the nth iteration step, the objective functional is

W(n)5W1
(n)2W3

(n)5^^Aurv
(n)~ tF!&&2

l

2Et0

tF
@ f (n,0)~ t !#2dt,

~B1!

sinceW2
(n)5W2( f (n,0),rv

(n) ,Av
(n))50 according to Eqs.~13!

and ~19!.
Lemma. W(n) is uniformly bounded.
Proof. Cauchy-Schwarz’s inequality and Eqs.~20! and

~21! give

z^^Aurv
(n)~ t !&& z2<iAi2

2 irv
(n)~ t !i2

2<iAi2
2 ,

as well as

u f ~ t !u25u2
i

l
^^Av

(n)~ t !uL1rv
(n)~ t !&&u2

<
1

l2
iAv

(n)~ t !i2
2 iL1rv

(n)~ t !i2
2

<
1

l2
iAv

(n)~ t !i2
2 iL1i irv

(n)~ t !i2
2

<
1

l2
iAv

(n)~ t !i2
2 iL1i ,

whereiL1i is the usual operator norm. Thus,

uW(n)u<uW1
(1)u1uW3

(n)u<iAi21
tF2t0

2l
iAv

(n)~ t !i2
2 iL1i

for all n, which establishes the claim.
Lemma.If U(t,t0) satisfies
01210
] tU~ t,t0!52 iL~ t !U~ t,t0!,

then

ur~ t !&&5U~ t,t0!E
t0

t

U†~ t8,t0!uf~ t8!&&dt8

is a solution of

] tur~ t !&&52 iL~ t !ur~ t !&&1uf~ t !&&.

Proof. Using the product rule and

] tE
t0

t

U†~ t8,t0!uf~ t8!&&dt85U†~ t,t0!uf~ t !&&

to differentiateur(t)&& gives

] tur~ t !&&5@2 iL~ t !U~ t,t0!#E
t0

t

U†~ t8,t0!uf~ t8!&&dt8

1U~ t,t0!U†~ t,t0!uf~ t !&&

52 iL~ t !ur~ t !&&1uf~ t !&&.

Theorem 1.Convergence.The sequence$W(n)% converges
monotonically and quadratically in the control, i.e.,

05 lim
n→`

W(n11)2W(n)

5 lim
n→`

l

2Et0

tF
@d f (n11)~ t !#21@d f (n11,n)~ t !#2 dt. ~B2!

Proof. Setting

udrv
(n)~ t !&&5urv

(n11)~ t !&&2urv
(n)~ t !&&, ~B3!

dW(n11,n)5W(n11)2W(n)

5^^Audrv
(n)~ tF!&&2

l

2Et0

tF
@ f (n11,0)~ t !#2

2@ f (n,0)#2dt. ~B4!

During the iteration

] turv
(n)~ t !&&52 i @L01 f (n,0)~ t !L1#urv

(n)~ t !&&. ~B5!

Hence, setting

d f (n11,n)5 f (n11,1)~ t !2 f (n,0)~ t !, ~B6!
1-6



a

e

EFFICIENT ALGORITHM FOR OPTIMAL CONTROL OF . . . PHYSICAL REVIEW A 61 012101
d f (n)5 f (n,0)~ t !2 f (n,1)~ t !, ~B7!

and noting that

L 1f (n11,1)udrv
(n)~ t !&&

1L 1ud f (n11)rv
(n11)~ t !1d f (n11,n)rv

(n)~ t !&&

5L 1f (n11,1)urv
(n11)~ t !&&2L 1f (n11,1)urv

(n)~ t !&&

1L 1f (n11,0)urv
(n11)~ t !&&2L1f (n11,1)urv

(n11)~ t !&&

1L 1f (n11,1)urv
(n)~ t !&&2L1f (n,0)urv

(n)~ t !&&

5L 1f (n11,0)urv
(n11)~ t !&&2L 1f (n,0)urv

(n)~ t !&&,

we obtain

] tudrv
(n)~ t !&&52 iL (n11,1)udrv

(n)~ t !&&

2 iL1u~d f (n11)rv
(n11)1d f (n11,n)rv

(n)!~ t !&&.

~B8!

Setting

U~ t,t0 , f (n11,1)!5exp1F2 i E
t0

t

L (n11,1)~t!dtG , ~B9!

where exp1 denotes the time-ordered exponential, the form
solution of Eq.~B8! is ~according to the previous lemma!
given by

udrv
(n)~ t !&&52 iU ~ t,t0 , f (n11,1)!

3E
t0

t

U†~ t8,t0 , f (n11,1)!L1u~d f (n11)rv
(n11)

1d f (n11,n)rv
(n)!~ t8!&&dt8. ~B10!

Observing that

uAv
(n)~ t !&&5U~ t,t0 , f (n11,1)!U†~ tF ,t0 , f (n11,1)!uA&&,

and thus

^^Av
(n)~ t !u5^^AuU~ tF ,t0 , f (n11,1)!U†~ t,t0 , f (n11,1)!,

we arrive at

^^Audrv
(n)~ tF!&&52 i E

t0

tF
^^AuU~ tF ,t0 , f (n11,1)!

3U†~ t,t0 , f (n11,1)!L1

3u~d f (n11)rv
(n11)1d f (n11,n)rv

(n)!~ t !&&dt

52 i E
t0

tF
^^Av

(n11)~ t !uL1u~d f (n11)rv
(n11)

1d f (n11,n)rv
(n)!~ t !&&dt

5E
t0

tF
2 id f (n11)~ t !
01210
l

3^^Av
(n11)~ t !uL1rv

(n11)~ t !&&dt

1E
t0

tF
2 id f (n11,n)~ t !

3^^Av
(n11)~ t !uL1rv

(n)~ t !&&dt

5lE
t0

tF
d f (n11)~ t ! f (n11,0)~ t !

1d f (n11,n)~ t ! f (n11,1)~ t !dt

5lE
t0

tF
@ f (n11,0)~ t !#22 f (n11,1)~ t ! f (n11,0)~ t !

1@ f (n11,1)~ t !#22 f (n,0)~ t ! f (n11,1)~ t !dt,

~B11!

dW(n11,n)5
l

2Et0

tF
@ f (n11,0)~ t !#212 f (n11,1)~ t ! f (n11,0)~ t !

12@ f (n11,1)~ t !#222 f (n,0)~ t ! f (n11,1)~ t !

1@ f (n,0)~ t !#2 dt

5
l

2Et0

tF
@d f (n11)~ t !#21@d f (n11,n)~ t !#2dt,

~B12!

and thus the total variation fromn50 to nF is

dW(nF,0)5W(nF)2W(0)5 (
n50

nF21

dW(n11,n)

5 (
n50

nF21
l

2Et0

tF
@d f (n11)~ t !#21@d f (n11,n)~ t !#2 dt.

~B13!

SinceW(n) is uniformly bounded,W(nF)2W(0) is also uni-
formly bounded for all nF and thus the sequenc
$dW(nF,0):nFPN0% is uniformly bounded:

l

2Et0

tF
@d f (n11)~ t !#21@d f (n11,n)~ t !#2dt.0

for any n implies furthermore thatdW(nF,0) is an increasing
sequence. Hence,

lim
nF→`

dW(nF,0)

exists and is finite. Consequently,

lim
n→`

l

2Et0

tF
@d f (n11)~ t !#21@d f (n11,n)~ t !#2 dt50.
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