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Non-Abelian Berry connections for quantum computation
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In the holonomic approach to quantum computation, information is encoded in a degenerate eigenspace of
a parametric family of Hamiltonians and manipulated by the associatedholonomic gates. These are realized in
terms of the non-Abelian Berry connection and are obtained by driving the control parameters along adiabatic
loops. We show how it is possible for a specific model to explicitly determine the loops generating any desired
logical gate, thus producing a universal set of unitary transformations. In a multipartite system unitary trans-
formations can be implemented efficiently by sequences of local holonomic gates. Moreover, a conceptual
scheme for obtaining the required Hamiltonian family, based on frequently repeated pulses, is discussed,
together with a possible process whereby the initial state can be prepared and the final one can be measured.

PACS number~s!: 03.67.Lx, 03.65.Fd
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The field of quantum information and computation~QC!
@1# brings together ideas and techniques from very differ
areas ranging from fundamental quantum physics to so
state engineering and computer science. QC synergetic
benefits from all these contributions and conversely qu
often offers fresh viewpoints on old subjects. Recently it h
been suggested@2# that even tools related to gauge theor
@3# might play a fruitful role in the arena of QC. Indeed,
Ref. @2# the possibility of realizing quantum information pro
cessing by using non-Abelian Berry holonomies@4# induced
by moving along suitable loops in a control spaceM has
been analyzed. The computational capability stems from
features of the global geometry of the bundle of eigenspa
associated with a familyF of Hamiltonians parametrized b
points of M. The geometry is described by a nontrivi
gauge potentialA or connection, with values in the algebra
u(n) of anti-Hermitian matrices (n is the dimension of the
computational space!. Since the unitary transformations rea
izing the computations are nothing but theholonomiesasso-
ciated with the connectionA, this conceptual framework fo
QC is referred to as holonomic quantum computat
~HQC!. In a sense HQC can be considered as the~continu-
ous! differential-geometric counterpart of the~discrete! topo-
logical QC with anyons described in Refs.@5,6#.

In this paper we shall provide further analysis of this p
posal. After concisely reviewing the conceptual basis
HQC, we shall show how, in a specific relevant model, o
can explicitly determine the sequence of loops necessary
generating any given quantum gate. Then we shall introd
HQC models with a natural multipartite structure and disc
how this bears on the question of complexity. Finally w
shall discuss how in principle one can implement HQC
repeated pulse control of a system with a degenerate s
trum.

Let us begin by recalling the basic ideas of HQC@2#.
Quantum information is encoded in ann-fold degenerate
eigenspaceC of a HamiltonianH0, with eigenvalue«0. The
operatorH0 belongs to a familyF5$Hl%lPM ,H05Hl0

, in

which no energy-level crossings occur asl ranges overM.
In the following we shall satisfy this latter condition by a
1050-2947/99/61~1!/010305~4!/$15.00 61 0103
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suming, for simplicity, that the HamiltoniansHl are isospec-
tral @Hl5U(l)H0U(l)†#. The l ’s represent the ‘‘control’’
parameters that one has to drive in order to manipulate
coding statesuc&PC. In general, the points ofM, from the
physical point of view, can be thought of as describing e
ternal fields, such as electric or magnetic fields, or coupli
between subsystems. LetC be aloop in the control manifold
M, with base pointl0 , C:@0,1#°M,C(0)5C(1)5l0.
We assume thatC is traveled along slowly with respect t
the longest dynamical time scale involved: in this case
evolution is adiabatic; i.e., no transitions among differe
energy levels are induced. Ifuc& inPC is the initial state, at
the end of this control process one getsuc&out
5ei«0T GA(C)uc& in . The first factor here is just an overa
dynamical phase and in the following it will be omitted; l
us just mention that such a decoupling of the fast dynam
evolution opens new possibilities for coherent and er
avoiding encoding@6#. The second contribution, the ho
lonomyGA(C)P U(n), has a purely geometric origin and it
appearance accounts for the nontriviality~curvature! of the
bundleof eigenspaces overM. By introducing the Wilczek-
Zee connection@7#

A
āa

lm
ª K cā~l!U ]

]lm
Uca~l!L , ~1!

one findsGA(C)5Pexp*CA @4#, whereP denotes path order
ing. The setHOL(A)ª$GA(C)%C,U(n) is known as the ho-
lonomy group@8#. In the case in which it coincides with th
whole unitary group U(n) the connectionA is calledirreduc-
ible. In @2# it has been argued that for a large enough con
manifold, the irreducible case is thegenericone; therefore
one can in principle implement any computation over t
codeC just resorting to this very special class of quantu
evolutions.

Quantum gates. A workable HQC model that represents
natural non-Abelian generalization of the original Ber
phase, for which explicit construction of the holonomic ga
is possible, is now discussed. The model is worked out w
some details in that it is extendable to the more general c
©1999 The American Physical Society05-1
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when M is a coset space. The features of the construc
presented are twofold. On the one hand, it fully exploits
loop composition structure at the basis of the holono
group, showing a procedure whereby loops can be dec
posed into two-dimensional components, which are simpl
deal with. On the other, this topological construction ov
comes the difficulties connected with the path ordering p
scription.

Let us consider the HamiltonianH05«0un11&^n11u
acting on the state-spaceH>Cn115span$ua&%a51

n11. We shall
take as the familyF the whole orbitO(H0)ª$UH0U †/U
PU(n11)% of H0 under the~adjoint! action of the unitary
group U(n11). This orbit is isomorphic to the
n-dimensional complex projective space:

O~H0!>
U~n11!

U~n!3U~1!
>

SU~n11!

U~n!
>CPn.

The points ofCPn can be parametrized by the unitary mat
ces U(z)5U1(z1)U2(z2), . . . ,Un(zn) where Ua(za)
5exp@Ga(za)# with Ga(za)5zaua&^n11u2 z̄aun11&^au,
za5uaeifa. The eigenstates of the rotated Hamiltonians

ua~u,f!&ªU~u,f!ua&

5cosuaua&2exp~2 ifa!sinua

3 (
j .a

n11

exp~ if j !sinu j )
j .g.a

cosugu j &

and

un11~u,f!&ªU~u,f!un11&

5 (
j 51

n11

exp~ if j !sinu j )
g, j

cosugu j &,

where un11ªp/2 and fn11ª0. Notice that forn51 the
standard two-level model with~Abelian! Berry phase is re-
covered. By using Eq.~1! the components of the connectio
can now be explicitly computed. The only nonzero eleme

of the matrix Aub (b51, . . . ,n) are A
āb

ub for ā51, . . . ,b

21, given by

A
āb

ub 5ei (fā2fb)sinuā )
b.g.ā

cosug , ~2!

as well asA
āb

ub 52A
bā

ub . The anti-Hermitian matrixAfb has

nonzero elements fora5b anda>ā given by

A
āb

fb52 iei (fā2fb)sinubsinuā )
b>g.ā

cosug ,

with )b>g.bcosug51; and, forb.a anda>ā, by
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A
āa

fb5 iei (fā2fa)sinuasinuāsin2ub

3 )
b.g.a

cosug )
b.ḡ.ā

cosuḡ .

The Aub’s and Afb’s are the 2n components of the
u(n)-valued connection overCPn.

For generating a given quantum gategPU(n) one has to
determine a loopCg in M such thatGA(Cg)5g. Due to the
non-Abelian character of the connection, such an inve
problem is in general hard to solve. To tackle it we choo
specific families of loops$Ci% that generate holonomies from
which one can eventually construct any U(n) transformation.
To this end we consider the two-dimensional submanifo
in the 2n-dimensional space (u,f), spanned by two vari-
ables, (ub ,fb̄) or (ub ,ub̄), for specific values ofb and b̄.
For these loops the line integral is given byrCA
5rC(Aubdub1Alb̄dlb̄), wherel5u or f. From Eq. ~2!
we see that we can always choose the parameters that d
the position of the plane (ub ,lb̄), where loopC lies, in such
a way that the matrixAub is identically zero. If one takes
u i50,; iÞb,b̄, matricesAub andAlb̄ commute, so that we
can calculate the integral and exponentiate avoiding the p
ordering problem.

In this framework, it is possible to identify first four fami
lies of loops in such a way as to produce the basis of f
matrices~the Pauli matrices and the identity! of all possible
two-by-two submatrices belonging to the algebra u(2). The
first choice is (ub ,fb), where the nonzero component of th
connection isAbb

fb52 i sin2ub . The second choice is the loo

on the submanifold (ub ,fb̄) for b̄.b, with ub̄5p/2, giv-
ing a different connection with two nonzero elements,Abb

fb̄

5 i sin2ub and A
b̄b̄

fb̄52 i . Of course the latter element wil

give zero when integrated along a loop. Forb̄,b both ma-
trices are identically zero, and give rise to trivial holonom
With these two connections and for appropriate loops o
can obtain all possible U(n) diagonal transformations. For
loop C1P(ub ,fb), GA(C1)5exp@2iub&^buS1#, S1 denoting
the area enclosed byC1, on theS2 sphere with coordinates
(2ub ,fb). For C2P(ub ,fb̄), GA(C2)5exp@iub̄&^b̄uS2#. Re-
calling the constraintb̄.b, we see that one can producen
21 distinct holonomies fromC2.

To obtain the nondiagonal transformations one has to c
sider a loop on the (ub ,ub̄) plane, with u i50 for all i

Þb,b̄. Then the only nonvanishing elements of the conn

tion areA
bb̄

ub̄ 5ei (fb2fb̄)sinub52Ā
b̄b

ub̄ . By choosing further

the (ub ,ub̄) plane atfb5fb̄50 the holonomy becomes, fo
C3P(ub ,ub̄)fb5fb̄50,

GA~C3!5exp@2~ ub&^b̄u2ub̄&^bu!S3#,

while at fb5p/2 andfb̄50, for C4P(ub ,ub̄)fb5p/2,fb̄50,

GA~C4!5exp@2 i ~ ub&^b̄u1ub̄&^bu!S̃4#,

where S̃ is the area on the sphere with coordinates (p/2
2ub ,ub̄). Note that any loopC on the (ub ,lb̄) plane with
the same enclosed area~when mapped on the appropria
5-2
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sphere! SC will give the same holonomy, independent of i
position and shape. These four holonomies are restri
each time to a specific 232 submatrix, and generate a
U(2) transformations. Finally it is easy to check that in th
way one can indeed obtainU5exp@m jTj #, where Tj ( j
51, . . . ,n2) is a u(n) generator andm j an arbitrary real
number. Therefore any element of U(n) can be obtained by
controlling the 2n parameters labeling the points ofCPn.

It is instructive to consider the form that the Hamilto
ian family F takes when restricted to the parti
ular 2 submanifolds. For the loopC1 ~similarly for C2)
one finds H152«0/2BW (2ub ,fb)•sW for BW (u i ,f j )
5(sinu icosf j ,sinu isinf j ,cosu i)

T, where the only non-
zero elements are on thebth and (n11)th row and column.
H1 generates an AbelianCP1 phase between the statesub&
andun11&. On the other hand, for the pathC3 ~similarly for
C4) we haveH35«0BW (ub ,ub̄)BW (ub ,ub̄)T, where the non-
zero elements connect the statesub&, ub̄& andun11&. In this
Hamiltonian there is direct coupling among three states, g
ing rise to a non-Abelian interaction.

In order to represent a two-qubit system we have to c
sider the control manifoldCP4. The holonomies in this cas
are 434 matrices, and we take as a representation bas
the unitary transformations the qubit basisu00&, u01&, u10&,
and u11&. From the general scheme above it follows that
appropriate control of the parameters (u,f) for obtaining
various loopsC, we can generate all possible U(4) rot
tions, i.e., any logical gate, in particular, single-qubit ro
tions and two-qubit gates such as the controlled operat
XOR and CROT. (UXORªu0&^0u ^ 11u1&^1u ^ sx ,UCROT

ªu0&^0u ^ 11u1&^1u ^ sz). For single qubit rotations
we consider three unitariesUa5GA(Ca)(a51,2,3)
with C1P(u1 ,f1)u25f250 , C2P(u1 ,f2)u25p/2,f150 , C3

P(u1 ,u2)f15f250. For areas S25S1 let Uph1

5(U1U2)U3(U1U2)21, equal to

Uph15F cosS3 2sinS3e22iS1

0

sinS3e2iS1 cosS3

0 1
G . ~3!

With loops on the (u3 ,f3)u45f450 , (u3 ,f4)u45p/2,f350 ,

(u3 ,u4)f35f450 planes and spanning the same areas as

fore, one can produce the rotationUph2 on the lower-right
block, and with their product obtain the phase rotation of o
qubit 1^ Uq5Uph1Uph2. In order to perform the phase rota
tion of the other qubit, all we need is the swapping opera
S acting on the two qubits bySuc& ^ uf&5uf& ^ uc&.
S is given in terms of holonomies
by S5GA(C4)uS̃45p/2GA(C2)uS25p/2, where C4

P(u2 ,u3)f25p/2,f350 and C2P(u1 ,f2)u25p/2 and

(u1 ,f3)u35p/2 . Hence, the phase rotation of the other qu

is given byUq^ 15S(1^ Uq)S. The controlled rotation gate
CROT, is given byUCROT5GA(C1)uS15p/2GA(C2)uS25p/2 ,
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where C1P(u4 ,f4) and C2P(u1 ,f4)u45p/2 . In addition

the ‘‘exclusive or’’ gate XOR can be realized a
UXOR5GA(C4)uS̃45p/2GA(C2)uS25p/2 , where C4

P(u3 ,u4)f35p/2,f450 and C2P(u1 ,f3)u35p/2 and

(u1 ,f4)u45p/2 .

Complexity. So far the coding subspaces analyzed
HQC do not necessarily involve quantum entanglement;H
could be the state space of asinglequantum system. This is
due to the fact thatC does not have a built-in tensor produ
structure; thus, in general, it cannot be naturally interpre
as the state space of a multipartite system. This latter fea
however, is one of the essential ingredients that make
more efficient than classical computation. Indeed, from
above construction for theCPn model it is easy to realize
that the number of elementary loops in 2 submanifolds n
essary for implementing single and two-qubit operatio
scales exponentially as a function of the number log2n of
encoded qubits. To overcome such a difficulty one has s
ply to consider Hamiltonian family, acting on~not just iso-
morphic to! the state space of a multipartite quantum syste
with a special structure allowing for local QC’s to be hol
nomically performed. Then global QC’s involving nontrivia
actions over many qubits can be efficiently realized in
standard way@9#. One possible formalization of this idea
contained in the following theorem.

Let Hª^ j 51
n Hj ^ Ha , Hj>Cd, and Ha

5span$u2&,u1&% a single-qubit ancillary space. We setHa
ª«szPEnd(Ha) @10#. Moreover, letH(l)ª( i , jVi j (l i j ),
where thel i j ’s belong to local control manifoldsMi j . Sup-
pose thatVi j (l)PEnd(Hi ^ Hj ^ Ha), andVi j (0)5Ha1Hi
1H j , where H jPEnd(Hj ) is such that H j ua& j50,(a
50,1) and that the family$Vi j (l)%lPMi j

allows for univer-

sal HQC over the degenerate eigenspacesC i j
6
ªspan$ua& i

^ ub& j ^ u6&:a,b50,1%>C2
^ C2. Then the family

$H(l)/lP) i , jMi j % allows for efficient universal HQC
over then-qubit codesC 6

ªspan$ ^ j 51
n ua j& ^ u6&/a j50,1%

>(C2) ^ n.
The proof of the latter proposition proceeds as follow

First one observes that the subspacesC i j
6 are degenerate

eigenspaces ofVi j (0) corresponding to the eigenvalues6«.
Hence theC 6’s are 2n-dimensional eigenspaces ofH(0)
with eigenvalues6n(n21)«/2. By assumption for any pai
( i , j ) of subsystems@11# one can generate any unitary tran
formation overC i j

6 by adiabatic loopsg i j in Mi j . Keeping
all the remainingl ’s at 0, one has a trivial action over th
other factors of C 6, while GA(g i j ): ^ kuak&
^ u6&°(b ib j

Ub ib j ,a ia j
(g i j ) ^ kuãk& ^ u6&, where ãk5ak

for kÞ i , j and ãk5bk when k5 i , j . In particular, one can
obtain a universal set of gates, e.g., XORi j

6 , and single-qubit
operations, by using a fixed amount of resources. The cl
then follows by well-known universality results for QC@12#.
The above scheme involves the use of an ancilla and requ
controllability of three-body interactions, which is extreme
difficult to achieve in practice. In this respect a simplific
tion, involving just two-body interactions, can be obtain
by consideringN subsystems withd levels @13#.
5-3



-
ra

r
o

r

:
e

-

it

e

io

e

QC

rd
itial
-
n-
ish
is
in

ions
de-
itch-
-

mea-
co-

sis
ef.
o-

(
s on
ex-
an
to
we
to

by
s.
d we
g the
for
ial
itch-
nal

act
, a

RAPID COMMUNICATIONS

JIANNIS PACHOS, PAOLO ZANARDI, AND MARIO RASETTI PHYSICAL REVIEW A61 010305~R!
Implementation. Now we discuss how one could in prin
ciple implement the holonomic loops, even when the pa
metric Hamiltonian familyF ~or a part of it! is not available
from the outset. We shall resort to ideas of quantum cont
theory in a way that is quite similar to the one adopted f
symmetrization procedures@14# and decoherence control in
open quantum systems@15#. Suppose that an experimente
has at his disposal the following resources:~i! a quantum
system characterized by the HamiltonianH0 admitting an
n-fold degenerate eigenspaceC; ~ii ! the way to turn on and
off a set of interactions very quickly~with respect to the time
scales associated withH0) so that a set of unitary ‘‘kicks’’
Kª$Ul%lPM can be realized. LetT5NDt and t0
50, t i 115t i1Dt( i 51, . . . ,N) be a partition of the time
interval@0,T#. Now let the system evolution to be as follows
at any timet i the experimenter kicks the system with th
pulseUi 11

† Ui whereUiªU(l i) is a unitary chosen from the
setK(U05UN1151). Between the kicks the system evolu
tion is unperturbed,U(Dt)5e2 i H 0Dt. The global evolution
is then given by

UN,Dt~T!5T)
i 51

N

UiU~Dt !Ui
† , ~4!

where T denotes time-ordering. By considering the lim
Dt°0,N°`, with NDt5T, one getsUN,Dt(T)→T exp
2i*0

TdtH(t), whereH(t)ªU„l(t)…H0U„l(t)…†. In particular,
by making the functionl(t) vary adiabatically, one can ob-
tain the desired holonomic evolution. This scheme is bas
on a strong separation between time scales: eachUl has to
be enacted impulsively, whereas the characteristic variat
time of the control parametersl has to be slow enough to
satisfy the adiabaticity requirement. More precisely, iftk
denotes the kicking time,v the ~highest! frequency associ-
ated with the dynamics generated byH0, and tl the time
scale over which the functionl(t) varies, one must have
tk<Dt!v21!tl . Notice that the pulsesUl are not re-
quired to be a universal set of gates for QC; here th
01030
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represent an extra resource needed for implementing H
whenF is missing.

Finally let us briefly consider the problem of code-wo
preparation and measurement. In order to encode the in
state into the degenerate subspaceC or to make the measure
ment on the final state, it would be useful to lift the dege
eracy. Indeed, in this way one would be able to distingu
energeticallythe different coding states. This characteristic
quite often desirable from the experimental point of view
that one can resort to procedures involving energy transit
with state-dependent frequencies. The idea is to lift the
generacy between the coding states, for example, by sw
ing on coherently an external~generic! perturbation. The ba
sis statesuca& of C are mapped onto a set of statesuca8 & that
are no longer energy degenerate. Preparation and/or
surement is then performed and eventually degeneracy is
herently restored by switching off the perturbation.

Summary. In this paper we have provided further analy
of the proposal for holonomic quantum computation of R
@2#. We have explicitly designed control loops whose h
lonomies generate universal gates for aCPn control param-
eter manifold. The basic idea is to associate with the Un)
generators computable transformations obtained by loop
two-dimensional subspaces of the control manifold. An
plicit realization of two qubit gates has been given, with
indication of which particular loops the experimenter has
perform. In terms of such elementary holonomic gates
analyzed the complexity problem and we showed how
achieve efficient implementation of quantum computing
resorting to a HQC model involving only local interaction
Some implementative issues have been addressed, an
devised a scheme based on repeated pulses for realizin
parametric family of isospectral Hamiltonians required
HQC. Finally, we briefly indicated how to prepare the init
state and how to measure the final one by coherently sw
ing on and off the energetic degeneracy of the computatio
subspace.
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