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In the holonomic approach to quantum computation, information is encoded in a degenerate eigenspace of
a parametric family of Hamiltonians and manipulated by the assodtieshomic gatesThese are realized in
terms of the non-Abelian Berry connection and are obtained by driving the control parameters along adiabatic
loops. We show how it is possible for a specific model to explicitly determine the loops generating any desired
logical gate, thus producing a universal set of unitary transformations. In a multipartite system unitary trans-
formations can be implemented efficiently by sequences of local holonomic gates. Moreover, a conceptual
scheme for obtaining the required Hamiltonian family, based on frequently repeated pulses, is discussed,
together with a possible process whereby the initial state can be prepared and the final one can be measured.

PACS numbse(s): 03.67.Lx, 03.65.Fd

The field of quantum information and computati@®C)  suming, for simplicity, that the Hamiltoniart$, are isospec-
[1] brings together ideas and techniques from very differentral [H, =U(\)H(\)T]. The \’s represent the “control”
areas ranging from fundamental quantum physics to solidparameters that one has to drive in order to manipulate the
state engineering and computer science. QC synergeticalyoding states#) € C. In general, the points oM, from the
benefits from all these contributions and conversely quitghysical point of view, can be thought of as describing ex-
often offers fresh viewpoints on old subjects. Recently it hagernal fields, such as electric or magnetic fields, or couplings
been suggestel®] that even tools related to gauge theoriesbetween subsystems. LEtbe aloop in the control manifold
[3] might play a fruitful role in the arena of QC. Indeed, in M, with base pointAy, C:[0,1]—>M,C(0)=C(1)=NA\,.
Ref.[2] the possibility of realizing quantum information pro- We assume tha€ is traveled along slowly with respect to
cessing by using non-Abelian Berry holonomjd$ induced  the longest dynamical time scale involved: in this case the
by moving along suitable loops in a control spak¢ has evolution is adiabatic; i.e., no transitions among different
been analyzed. The computational capability stems from thenergy levels are induced. [I#);, € C is the initial state, at
features of the global geometry of the bundle of eigenspacethe end of this control process one gets)),y:
associated with a family of Hamiltonians parametrized by =e'®e" I',(C)| )i, . The first factor here is just an overall
points of M. The geometry is described by a nontrivial dynamical phase and in the following it will be omitted; let
gauge potentialA or connection with values in the algebra us just mention that such a decoupling of the fast dynamical
u(n) of anti-Hermitian matricesr( is the dimension of the evolution opens new possibilities for coherent and error
computational spageSince the unitary transformations real- avoiding encoding[6]. The second contribution, the ho-
izing the computations are nothing but thelonomiesasso- lonomyI'4(C) e U(n), has a purely geometric origin and its
ciated with the connectioA, this conceptual framework for appearance accounts for the nontrivialfpurvature of the
QC is referred to as holonomic quantum computationbundleof eigenspaces ove¥1. By introducing the Wilczek-
(HQO). In a sense HQC can be considered as(tdmntinu-  Zee connectioh7]
ous differential-geometric counterpart of tlidiscrete topo-
logical QC with anyons described in Ref§.,6]. A, - a|

In this paper we shall provide further analysis of this pro- A=\ () IN PN ), @
posal. After concisely reviewing the conceptual basis of a
HQC, we shall show how, in a specific relevant model, onepne findsl",(C) = P expf cA [4], whereP denotes path order-
can explicitly determine the sequence of loops necessary fqrg. The set, o (A):={I's(C)}cCU(n) is known as the ho-
generating any given quantum gate. Then we shall introducgnomy group[8]. In the case in which it coincides with the
HQC models with a natural multipartite structure and discusgynole unitary group Uf) the connectior is calledirreduc-
how this bears on the question of complexity. Finally wejpe, |n[2] it has been argued that for a large enough control
shall discuss how in principle one can implement HQC bymanifold, the irreducible case is thgeneric one; therefore
repeated pulse control of a system with a degenerate spegne can in principle implement any computation over the

trum. ) ] o code( just resorting to this very special class of quantum
Let us begin by recalling the basic ideas of HQ®.  oyolutions.
Quantum information is encoded in amfold degenerate Quantum gatesA workable HQC model that represents a

eigenspac€ of a HamiltonianH,, with eigenvalueso. The  patyral non-Abelian generalization of the original Berry
operatorH, belongs to a family7={H,}, < u,Ho=H\, In  phase, for which explicit construction of the holonomic gates
which no energy-level crossings occur)@asanges overm. is possible, is now discussed. The model is worked out with
In the following we shall satisfy this latter condition by as- some details in that it is extendable to the more general case
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when M is a coset space. The features of the construction A%B—iei(da—dasin 0,Sin 0,5irP 5

presented are twofold. On the one hand, it fully exploits the ad

loop composition structure at the basis of the holonomy

group, showing a procedure whereby loops can be decom- X >H> cosd, 11 _cosé,.

posed into two-dimensional components, which are simple to pry=a Bzy>a

deal with. On the other, this topological construction over-The A%'s and A?#’s are the & components of the

comes the difficulties connected with the path ordering preu(n)-valued connection oveCP".

scription. For generating a given quantum gate U(n) one has to
Let us consider the Hamiltoniakly=go|n+1)(n+1| determine a loojCy in M such thatl’,(C4) =g. Due to the

acting on the State_spa@egcn+1zspar{|a> 2;11 We shall non-AbeI_ian character of the connection, suc_h an inverse

take as the familyF the whole orbitO(Ho) :={tH o it problem is in general hard to solve. To tackle it we choose

cU(n+1)} of Hy under the(adjoint action of the unitary ~SPecific families of loop$C;} that generate holonomies from

group UM+1). This orbit is isomorphic to the wh|ch one can eventu_ally construct _aan_(transformatlon.

n-dimensional complex projective space: To this end we consider the two-dimensional submanifolds

in the 2n-dimensional spaceé(¢), spanned by two vari-
ables, @g,¢p) or (04,05), for specific values o8 and S.
Uln+1) = SUn+1) =CP". For these loops the line integral is given bfcA
(n)xU(1) u(n) =$c(A%d6y+AMsdNg), whereh=6 or ¢. From Eq.(2)

we see that we can always choose the parameters that define

The points ofCP" can be parametrized by the unitary matri- the position of the plane#( ,\ 5), where loopC lies, in such
ces U(z)=U(z))Ux(2y), ... Un(z,) where U,(z,) a way that the matribA% is identically zero. If one takes

—exdG,(z,)] with G.(z,)=z|a)n+1|-z,/n+1)a|,  06i=0Yi#p,B, matricesA’ andA*s commute, so that we
z,= 0,e'%«. The eigenstates of the rotated Hamiltonians aréan c_alculate the integral and exponentiate avoiding the path
ordering problem.
In this framework, it is possible to identify first four fami-
|a(0,4)):=U(6, )| ) lies of loops in such a way as to produce the basis of four
_ _ i ; matrices(the Pauli matrices and the idenlityf all possible
COS0q| ) = €XP( i p)SiN O two-by-two submatrices belonging to the algeb(2)u The

O(Hp)= U

n+i1 first choice is @4, ¢4), where the nonzero component of the
x Z exp(i ¢;)sin 0j_>H> cosé,|j) connection isAg’g: —i sirfd,. The second choice is the loop
|=a >y>a

on the submanifold {, ¢75) for E>ﬁ, with 65=m/2, giv-
ing a different connection with two nonzero eleme ,,g

=i sinzaﬁ and AZ—Z= —i. Of course the latter element will
IN+1(6,¢)):=U0,¢)|n+1) give zero when integrated along a loop. I¥_b4:ﬂ both ma-
trices are identically zero, and give rise to trivial holonomy.
. . . . With these two connections and for appropriate loops one
—le exp(i ¢;)sin 6; Ej cosb,j), can obtain all possible W) diagonal transformations. For

loop Cye(6g,¢p), T'a(C1) =exd —i|B)BI2,], 3, denoting
the area enclosed bg;, on theS? sphere with coordinates

and

n+1

where 6,,,,:=m/2 and ¢,,,1:=0. Notice that forn=1 the . _ o
standard two-level model wittAbelian) Berry phase is re- (205’%)' ForC, E_(ﬂ*"bﬁ)' Ta(C2) =exiilB)(BZ,). Re-
covered. By using Eq(1) the components of the connection calling the constrainB> g, we see that one can produce

can now be explicitly computed. The only nonzero elements-1 distinct holonomies fronC,. _
of the matrixA% (8=1,...n) are A%’; for a=1,... 8 To obtain the nondiagonal transformations one has to con-

sider a loop on the dz,63) plane, with ;=0 for all i

1, given by # B3,8. Then the only nonvanishing elements of the connec-
. tion are A”2 =i (45~ 4Psin 0= —K%i. By choosing further
A;‘;gz e'(¢a¢8sin H;B>H>; cosd,, (2)  the (84,65) plane atpz= ¢5=0 the holonomy becomes, for
4 Cse(05.0p) p,=g5-0
as well asA%if —Ag%. The anti-Hermitian matriXA%s has T'A(Cs)=exd — (| BYB|— BB 3],
nonzero elements fax= 3 and o=« given by while at ¢z=7/2 and¢z=0, for C,e (65, 6p) ¢ 4= mI2.55=00
- TaA(Co)=exd —i(|BY Bl +|BY BN,
A= et 4ising,sing; T cosd, A(Ca)=exi —i(|B)Bl+|B)(B) 4]
B=y>a where 3. is the area on the sphere with coordinates2(
_ — 65,05). Note that any loofC on the (05,\5) plane with
with Il - scos6,=1; and, for>« anda=a, by the same enclosed aréahen mapped on the appropriate
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spherg 2 will give the same holonomy, independent of its where C, e (6,,¢,) and C,e (01,¢,) o,=mi2- 1N addition
position and shape. These four holonomies are restricteghe “exclusive or’ gate XOR can be realized as
each time to a specific 22 submatrix, and generate all y, =T A(C)l5 _.. 2L aA(C2)ls.— 2, where C,
U(2) transformations. Finally it is easy to check that in this ar 2 "

(2) Y y €(03,04) g, n2p,~0 and  Cye(b1,¢3)p,--2 and

way one can indeed obtait=ex{d u;T;], where T;(j

=1,...n% is a up) generator andu; an arbitrary real (91"154)04:77_/2' _
number. Therefore any element oft)(can be obtained by ~ Complexity So far the coding subspaces analyzed for
controlling the 2 parameters labeling the points 6P". HQC do not necessarily involve quantum entanglemeht;

o ] . ] could be the state space okmgle quantum system. This is
It is instructive to consider the form that the Hamilton- g,e tg the fact that does not have a built-in tensor product
ian family F takes when restricted to the partic- gyycture; thus, in general, it cannot be naturally interpreted
ular 2 submanifolds. For the loof; (similarly for C;) s the state space of a multipartite system. This latter feature,
one finds H;=—g0/2B(204,¢5) -0 for B(6;,¢;) however, is one of the essential ingredients that make QC
=(sing;cosg; ,sind;sing;,cosd;)T, where the only non- more efficient than classical computation. Indeed, from the
zero elements are on thgth and (1+1)th row and column.  above construction for th€P" model it is easy to realize
H, generates an AbeliaBP* phase between the statg®)  that the number of elementary loops in 2 submanifolds nec-
and|n+1). On the other hand, for the pa@ (similarly for  essary for implementing single and two-qubit operations
C,) we haveH;=¢(B(64,605)B(0;,05)", where the non- scales exponentially as a function of the number,rogf
zero elements connect the stag$, |8) and|n+1). In this encoded qubits. To overcome such a difficulty one has sim-
Hamiltonian there is direct coupling among three states, givply to consider Hamiltonian family, acting omot just iso-
ing rise to a non-Abelian interaction. morphic tg the state space of a multipartite quantum system,

In order to represent a two-qubit system we have to conWwith a special structure allowing for local QC’s to be holo-
sider the control manifol@€P*. The holonomies in this case nomically performed. Then global QC’s involving nontrivial
are 4x4 matrices, and we take as a representation basis Gctions over many qubits can be efficiently realized in the
the unitary transformations the qubit baf), |01), |10), standard vya;[9]. One possmle formalization of this idea is
and|11). From the general scheme above it follows that bycontained in the fgllowmg theorem. g
appropriate control of the parameters, ) for obtaining Let Hi=®_ 1 Hj@Ha, H;=C", and Ha

various loopsC, we can generate all possible U(4) rota- —SPaf|—),|+)} & single-qubit ancillary space. We déf,
==g0’ e End(H,) [10]. Moreover, letH(\):=2;-;Vi;(\j;),

tions, i.e., any logical gate, in particular, single-qubit rota-" 3 ,
tions and two-qubit gates such as the controlled operation‘é’here thex;;’s belong to local control manifolds;; . Sup-

XOR and CROT. UXOR::|O><0|®1+|1><1|®UX’UCROT pose that\/ij()\)EEnd(Hi(X)H]‘.@Ha), andVij(O)=Ha+Hi
R . . : +H;, where HieEnd(H;) is such thatH;|a),=0,(«
=|0)(0|@ 1+|1)(1|@cy). For single qubit rotations —0]1) and that tjhe famil){JVA-(A)} aIIows], for]univer-
we consider three unitariesU,=T"A(C,)(«=1,2,3) _I’HQC e d ij t N e M) g )
with Cye (01,61 p-s.—0r Co(01,62) g —mrg 0, C sa over the degenerate eigenspaCgs=spar|a);
e (6 01) 11 ;Zoro artzaas 12 2202 lzl'gtl OU ° ®|B)j®|*):a,=0,4=C?’®C%  Then the family
- Ul,UZ (61:‘62:8' . I 21 PP TH(N)/N eIl ;M) allows for efficient universal HQC
= (U1U2)U5(U1U;) 7 equal to over then-qubit codesC *:=spaf®]_|aj)®|*)/a;=0,1}

) . =~ C2 ®n_
C0S3 3 —sinZze #*1 (Th; proof of the latter proposition proceeds as follows.
0 First one observes that the subspaé’é-p are degenerate
Upm = sin34e?>1 cos3, ' 3 eigenspaces of;;(0) corresponding to the eigenvalues:.
0 1 Hence theC *’s are 2'-dimensional eigenspaces 6f(0)

with eigenvaluestn(n—1)e/2. By assumption for any pair

) (i,j) of subsystem§l1] one can generate any unitary trans-
With loops on the 63"753)94:%:9’ (03, 64) g, 12,650 formation overcﬁ by adiabatic loopsy;; in M;; . Keeping
(63,04) 4,- 4,~0 Planes and spanning the same areas as bey| the remaining\’s at 0, one has a trivial action over the
fore, one can produce the rotatith,n, on the lower-right other  factors of C~,  while FA(yij):®k|ak>
block, and with their product obtain the phase rotation of Oy |+ Y>35, Up 5 a.a.(%j)@k@k)@ﬁ), where a,= a
qubit 1® Ug=Uyn U . In order to perform the phase rota- I R L )
tion of the other qubit, all we need is the swapping operatof®" K71, and ax= B, whenk=i,j. In particular, one can

S acting on the two qubits byS|¥)®|d)=|d)®|y). obtain a universal set of gates, e.g., )@Rand single-qubit
S is given in terms of holonomies Operations, by using a fixed amount of resources. The claim

by S=TA(CWI5 = w2l A(CY |5 = w2 where  C, then follows by well-known universality results for GC2].

4 2 The above scheme involves the use of an ancilla and requires
€(02.03)g,=n29,-0 ~aNd  Cpe (61_’ $2)0,=n12  @Nd _controllability of three-body interactions, which is extremely
(01, ¢3)9,-=2- Hence, the phase rotation of the other qubitgjfficult to achieve in practice. In this respect a simplifica-
is given byU,®1=S(1®Ug)S. The controlled rotation gate tion, involving just two-body interactions, can be obtained
CROT, is given byUcror=1"a(C1)ls,= w2l a(C2)|s,=m2, by consideringN subsystems with levels[13].
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ImplementationNow we discuss how one could in prin- represent an extra resource needed for implementing HQC
ciple implement the holonomic loops, even when the parawhenF is missing.
metric Hamiltonian familyF (or a part of i} is not available Finally let us briefly consider the problem of code-word
from the outset. We shall resort to ideas of quantum contropreparation and measurement. In order to encode the initial
theory in a way that is quite similar to the one adopted forstate into the degenerate subspéae to make the measure-
symmetrization procedurdd4] and decoherence control in ment on the final state, it would be useful to lift the degen-
open quantum systenfd5]. Suppose that an experimenter €racy. Indeed, in this way one would be able to distinguish

has at his disposal the following resourcés: a quantum
system characterized by the Hamiltonibly admitting an
n-fold degenerate eigenspa€g (ii) the way to turn on and
off a set of interactions very quicklvith respect to the time
scales associated witH,) so that a set of unitary “kicks”
K:={U,},cm can be realized. LetT=NAt and tg
=0, tj,,=t;+At(i=1,... N) be a partition of the time
interval[ 0,T]. Now let the system evolution to be as follows:

energeticallythe different coding states. This characteristic is
quite often desirable from the experimental point of view in
that one can resort to procedures involving energy transitions
with state-dependent frequencies. The idea is to lift the de-
generacy between the coding states, for example, by switch-
ing on coherently an externéjenerig perturbation. The ba-

sis state$,) of C are mapped onto a set of states,) that

are no longer energy degenerate. Preparation and/or mea-
surement is then performed and eventually degeneracy is co-

at any timet; the experimenter kicks the system with the herently restored by switching off the perturbation.

pulseULlui whereU;:=U(\;) is a unitary chosen from the

setK(Uy=Uy.1=1). Between the kicks the system evolu-

tion is unperturbedU(At)=e~'HoAt The global evolution
is then given by

N

UN,m<T>=Ti1]l Uuanuf, (4)

Summaryln this paper we have provided further analysis
of the proposal for holonomic quantum computation of Ref.
[2]. We have explicitly designed control loops whose ho-
lonomies generate universal gates focR" control param-
eter manifold. The basic idea is to associate with th@)U(
generators computable transformations obtained by loops on
two-dimensional subspaces of the control manifold. An ex-
plicit realization of two qubit gates has been given, with an
indication of which particular loops the experimenter has to

where T denotes time-ordering. By considering the limit perform. In terms of such elementary holonomic gates we

At—0N—o, with NAt=T, one getsUy(T)—T exp
—ifgdtH(t), whereH(t) ==U()\(t))H0U()\(t))Jr. In particular,
by making the functior\ (t) vary adiabatically, one can ob-

analyzed the complexity problem and we showed how to
achieve efficient implementation of quantum computing by
resorting to a HQC model involving only local interactions.

tain the desired holonomic evolution. This scheme is base§0me implementative issues have been addressed, and we

on a strong separation between time scales: éhchas to
be enacted impulsively,
time of the control parametebs has to be slow enough to
satisfy the adiabaticity requirement. More precisely,rjf
denotes the kicking timeyp the (highes} frequency associ-
ated with the dynamics generated bly, and r, the time
scale over which the function(t) varies, one must have
n=At<w <7, . Notice that the pulses), are not re-

devised a scheme based on repeated pulses for realizing the

whereas the characteristic variatioRarametric family of isospectral Hamiltonians required for

HQC. Finally, we briefly indicated how to prepare the initial
state and how to measure the final one by coherently switch-
ing on and off the energetic degeneracy of the computational
subspace.
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