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Unconditional teleportation of continuous-variable entanglement
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We give a protocol and criteria for demonstrating unconditional teleportation of continuous-variable en-
tanglement~i.e., entanglement swapping!. The initial entangled states are produced with squeezed light and
linear optics. We show that any nonzero entanglement~any nonzero squeezing! in both of two entanglement
sources is sufficient for entanglement swapping to occur. In fact, realization of continuous-variable entangle-
ment swapping is possible using onlytwo single-mode squeezed states.

PACS number~s!: 03.67.2a, 03.65.Bz, 42.50.Dv
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Quantum teleportation enables reliable transportation
quantum information encoded in nonorthogonal quant
states. It is only possible with entanglement. Teleportat
was originally proposed for discrete variables@1# and later
also for continuous variables@2,3#. Discrete-variable telepor
tation has been performed experimentally for single-pho
polarization states@4,5#. Continuous-variable teleportatio
has been realized for coherent states of electromagnetic
modes@6#. But coherent states, although nonorthogonal,
very close to classical states. A real challenge for quan
teleportation is the teleportation of truly nonclassical sta
like entangled states. This ‘‘entanglement swapping’’ w
first introduced in the context of single-photon polarizati
states@7#. It means to entangle two quantum systems t
have never directly interacted with each other. With sin
photons, it has already been demonstrated experimen
@8#. Practical uses of entanglement swapping have been
gested@9–12# and it has also been generalized for multip
ticle systems@9#. All these investigations have only referre
to discrete-variable systems, namely, two-level systems.
will demonstrate that entanglement swapping can also
realized in continuous-variable systems where the sourc
entanglement is two-mode squeezed light. In contrast to
scheme of Polkinghorne and Ralph@13# where polarization-
entangled states of single photons are teleported u
squeezed-state entanglement, in our scheme both enta
states are produced with squeezed light. This enablesuncon-
ditional teleportation of entanglementwithout postselection
of ‘‘successful’’ events by photon detections. Uncondition
teleportation of continuous-variable entanglement has b
independently investigated by Tan@14#. We will compare
Tan’s results with ours at the end.

Due to the finite degree of entanglement arising fro
squeezed states, the entanglement that emerges from
tanglement swapping is never as good as the entangleme
the two initial entanglement sources. However, entanglem
swapping as here proposed occurs every inverse bandw
time and is very efficient~near unit efficiency!. The fidelity
criterion for coherent-state teleportation@15# will enable us
to recognize the entanglement produced from entanglem
swapping. The maximum average fidelity achievable us
the output of entanglement swapping for teleportation in
cates the quality of the entanglement from entanglem
swapping. Applying this operational quality criterion for e
1050-2947/99/61~1!/010302~4!/$15.00 61 0103
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tanglement gives us also a protocol for the experimental v
fication of entanglement swapping.

For our entanglement swapping scheme~Fig. 1!, we need
two entangled states of the electromagnetic field: a tw
mode squeezed state of mode 1 and mode 2 and a two-m
squeezed state of mode 3 and mode 4. This can be desc
in the Heisenberg representation by

x̂15~e1r 1x̂1
(0)1e2r 2x̂2

(0)!/A2,

p̂15~e2r 1p̂1
(0)1e1r 2p̂2

(0)!/A2,

x̂25~e1r 1x̂1
(0)2e2r 2x̂2

(0)!/A2,

p̂25~e2r 1p̂1
(0)2e1r 2p̂2

(0)!/A2,
~1!

x̂35~e1s1x̂3
(0)1e2s2x̂4

(0)!/A2,

p̂35~e2s1p̂3
(0)1e1s2p̂4

(0)!/A2,

x̂45~e1s1x̂3
(0)2e2s2x̂4

(0)!/A2,

p̂45~e2s1p̂3
(0)2e1s2p̂4

(0)!/A2,

where a superscript~0! denotes initial vacuum modes. Th
operatorsx̂ and p̂ represent the electric quadrature amp
tudes~the real and imaginary parts of the mode’s annihi
tion operator!. These two-mode squeezed vacuum states
be generated either directly as the output of a nondegene

FIG. 1. Entanglement swapping using four squeezed vacu
states. Before the detections, mode 1 is entangled with mode 2
mode 3 is entangled with mode 4.
©1999 The American Physical Society02-1
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optical parametric amplifier@16# or by combining two
squeezed vacuum modes at a beam splitter~see Fig. 1!. But
note that the two independently squeezed single-mode s
combined at a beam splitter to create entanglement need
be equally squeezed. In fact, even one single-mode sque
state superimposed with vacuum yields an entangled t
mode state@17,18#, enabling quantum teleportation@19#.
Thus, we use four different squeezing parametersr 1 , r 2 , s1,
ands2.

Let us introduce ‘‘Alice,’’ ‘‘Bob,’’ and ‘‘Claire’’ to illus-
trate the whole protocol with entanglement swapping a
subsequent teleportation of a coherent state. Alice and C
shall share the entangled state of mode 1 and 2 while C
and Bob are sharing the other entangled state of mode 3
4 ~Fig. 1!. Thus, initially Alice and Bob do not share a
entangled state. Now Alice wants to teleport an unkno
coherent state to Bob and asks Claire for her assista
Claire combines mode 2 and mode 3 at a beam splitter
detects the quadraturesx̂u5( x̂22 x̂3)/A2, p̂v5( p̂2

1 p̂3)/A2. Let us write Bob’s mode 4 as

x̂45 x̂22~ x̂32 x̂4!2A2x̂u ,
~2!

p̂45 p̂21~ p̂31 p̂4!2A2p̂v ,

and Alice’s mode 1 as

x̂15 x̂31~ x̂12 x̂2!1A2x̂u ,
~3!

p̂15 p̂31~ p̂11 p̂2!2A2p̂v .

Claire’s detection yields classical resultsxu and pv . Bob’s
mode 4 in Eqs.~2! and Alice’s mode 1 in Eqs.~3! then
become

x̂45 x̂22A2e2s2x̂4
(0)2A2xu ,

p̂45 p̂21A2e2s1p̂3
(0)2A2pv ,

~4!
x̂15 x̂31A2e2r 2x̂2

(0)1A2xu ,

p̂15 p̂31A2e2r 1p̂1
(0)2A2pv .

For s15s25s→`, the quadrature operators of mode 4 b
come those of mode 2 up to a~random! classical phase-spac
displacement. In every single projection, mode 4 gets
tangled with mode 1 as mode 2 has been before. For 1
5r 25r→`, the quadrature operators of mode 1 beco
those of mode 3 up to a~random! classical phase-space di
placement. In every single projection, mode 1 gets entan
with mode 4 as mode 3 has been before. Mode 2 is perfe
teleported to mode 4 (s→`) or mode 3 is perfectly tele
ported to mode 1 (r→`) apart from local classical displace
ments. The entanglement of one of the initial two-mo
squeezed states is completely preserved for infinite squ
ing in the other two-mode squeezed state. But also for
nonzero squeezing in both initial entanglement sourc
Claire’s detection of mode 2 and 3 projects mode 1 and 4
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inseparable states@20#. However, we will see that Alice and
Bob cannot use mode 1 and 4 for subsequent quantum
portation without information about Claire’s measureme
results. At least one of them, Alice or Bob, has to rece
from Claire the information that the detection of mode 2 a
3 has been performed and its results. Finally, the entan
ment of the single projections is ‘‘unwrapped’’ via approp
ate displacements. Let us assume Bob obtains the clas
results from Claire. Now Bob can displace mode 4 asx̂4

→ x̂485 x̂41gswapA2xu , p̂4→ p̂485 p̂41gswapA2pv . The pa-
rametergswap describes a normalized gain. Bob’s mode th
becomes

x̂485
gswap

A2
e1r 1x̂1

(0)2
gswap

A2
e2r 2x̂2

(0)2
gswap21

A2
e1s1x̂3

(0)

2
gswap11

A2
e2s2x̂4

(0) ,

p̂485
gswap

A2
e2r 1p̂1

(0)2
gswap

A2
e1r 2p̂2

(0)1
gswap11

A2
e2s1p̂3

(0)

1
gswap21

A2
e1s2p̂4

(0) . ~5!

As in ‘‘usual’’ teleportation, Alice now couples the unknow
input state she wants to teleport to Bob~described byx̂in ,
p̂in) with her mode 1 at a beam splitter and measures
superpositionsx̂u85( x̂in2 x̂1)/A2, p̂v85( p̂in1 p̂1)/A2. Based
on the classical results sent to him from Alice, Bob displac
his ‘‘new’’ mode 48, x̂48→ x̂tel5 x̂481gA2xu8 , p̂48→ p̂tel5 p̂48
1gA2pv8 , with the gaing. For g51 and nonunit detecto
efficiencies, Bob’s outgoing mode then becomes

x̂tel5 x̂in1
gswap21

A2
e1r 1x̂1

(0)2
gswap11

A2
e2r 2x̂2

(0)

2
gswap21

A2
e1s1x̂3

(0)2
gswap11

A2
e2s2x̂4

(0)

1gswapAhc
2221~ x̂d

(0)1 x̂e
(0)!

1Aha
2221~ x̂f

(0)1 x̂g
(0)!,

p̂tel5 p̂in1
gswap11

A2
e2r 1p̂1

(0)2
gswap21

A2
e1r 2p̂2

(0)

1
gswap11

A2
e2s1p̂3

(0)1
gswap21

A2
e1s2p̂4

(0)

1gswapAhc
2221~ p̂k

(0)1 p̂l
(0)!1Aha

2221~ p̂m
(0)1 p̂n

(0)!.

~6!

The parametershc and ha describe detector efficiencies i
Claire’s and Alice’s detections, respectively. Note that,
2-2
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gswap51, Bob’s teleported mode from Eqs.~6! is the same as
if Alice teleports her input state to Claire with unit gain usin
the entangled state of mode 1 and 2, and Claire teleports
resulting output state to Bob with unit gain using the e
tangled state of mode 3 and 4.

The teleportation fidelity for a coherent state inputa in ,
defined asF[^a inur̂ telua in&5pQtel(a in) @15#, is

F5
1

2Asxsp

expF2~12g!2S xin
2

2sx
1

pin
2

2sp
D G , ~7!

wheresx andsp are the variances of theQ function of the
teleported mode for the corresponding quadratures. U
Eqs.~6!, the fidelity becomes forg51,

F5@11~gswap21!2~e12r 11e12s1!/4

1~gswap11!2~e22r 21e22s2!/4

1gswap
2 ~hc

2221!1ha
2221#21/2

3@11~gswap21!2~e12r 21e12s2!/4

1~gswap11!2~e22r 11e22s1!/4

1gswap
2 ~hc

2221!1ha
2221#21/2. ~8!

For unknown coherent input states, an~average! fidelity
F. 1

2 is only achievable using entanglement@15#. Thus, if
for somegswap ~for some local operation on mode 4 by Bo
based on Claire’s results! F. 1

2 , entanglement swappin
must have taken place. Otherwise Alice and Bob, who
tially did not share entanglement, were not able to beat
classical fidelity limit using mode 1 and 4. The assumpt
g51 is the optimal choice for Bob’s local operation bas
on Alice’s results.

Let us first consider four equally squeezed statesr 15r 2
5s15s25r . In this case with unit efficiency (hc5ha51),
the fidelity is optimized forgswap5tanh 2r (g51) and be-
comes Fopt5(111/cosh 2r)21. For any r .0, we obtain
Fopt.

1
2 . For hcÞ1 and haÞ1, the optimum gain isgswap

5sinh 2r/(cosh 2r1hc
2221). For the more general caser 1

5r 25r ands15s25s, we find the optimum gain

gswap5
sinh 2r 1sinh 2s

cosh 2r 1cosh 2s12hc
2222

. ~9!

Using this gain we obtain the optimum fidelity with un
efficiency

Fopt5H 11
cosh@2~r 2s!#11

cosh 2r 1cosh 2s J 21

. ~10!

This fidelity is equal to1
2 and never exceeds the classic

limit if either r 50 or s50. The reduced states of mode
and 4 after the detection of mode 2 and 3 are separab
either r 50 or s50 @20#. Both initial two-mode states nee
to be squeezed and hence entangled for entanglement s
ping to occur. Then, for any nonzero squeezingr .0 and s
.0, we obtainFopt.

1
2 , indicating that entanglement swap
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ping took place. The reduced states of mode 1 and 4 a
detecting mode 2 and 3 are inseparable for anyr .0 and s
.0 @20#.

Let us now consider the case where each of the two in
entangled states is generated with only one single-m
squeezed state. We setr 15s15r and r 25s250. With unit
efficiency, we find the optimum gaingswap5tanhr. The op-
timum fidelity then becomes

Fopt5$@112e12r /~e12r11!1~ tanhr !2~hc
2221!

1ha
2221#@112e22r /~e22r11!

1~ tanhr !2~hc
2221!1ha

2221#%21/2. ~11!

Note that this fidelity can be optimized further for nonun
efficiency, as we have only used the optimum gain for u
efficiency. With unit efficiency (hc5ha51) this fidelity ex-
ceeds the classical limitFopt.

1
2 for any nonzero squeezin

r 15s15r .0. Thus, entanglement swapping can be realiz
even with only two single-mode squeezed states, provi
that two initial entangled states are produced. Indeed,
creation of entanglement is possible using only one sing
mode squeezed state for any nonzero squeezing@17–19#.
Therefore we can generally say that any nonzero entan
ment in both of the two initial entanglement sources is s
ficient for entanglement swapping to occur. In order
achieve perfect teleportation of arbitrary coherent states w
fidelity F51, four infinitely squeezed statesr 15r 25s1
5s25r→` are necessary and Bob has to perform a d
placement withgswap51 using Claire’s results. It is impos
sible for Alice and Bob to achieve quantum teleportation
unknown coherent states withF. 1

2 for gswap50, i.e., with-
out a local operation based on the results of Claire’s de
tion. The optimum fidelity using mode 1 and 4 after e
tanglement swapping is worse than the optimum fide
using the entanglement of the initial modes 1 and 2 or 3
4. This indicates that the degree of entanglement after
tanglement swapping deteriorates compared to the initial
tangled states. In Fig. 2 is shown the comparison between
optimum fidelities of coherent-state teleportation using
tangled states produced from entanglement swapping
without swapping.

The maximum fidelity achievable using entangleme
produced with one single-mode squeezed state isF51/A2
@19#. The maximum fidelity achievable using the output
entanglement swapping with two equally squeezed sin
mode states isF51/A3. For 6-dB squeezing and detecto
with efficiencyh250.99, the optimum fidelity using the out
put of entanglement swapping with two equally squeez
single-mode states becomesF50.5201. Squeezing of 10 dB
and the same efficiency yieldsF50.5425. Here, the gain
gswap5tanhr has been chosen, that is, the optimum gain w
two equally squeezed single-mode states for unit efficien

Tan proposes continuous-variable entanglement swap
as the teleportation of the signal beam of a parametric
plifier using the entanglement between signal and idler be
of another parametric amplifier@14#. The entanglement o
the teleported signal beam with the idler beam in Tan’s p
2-3
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tocol is confirmed by combining them at a beam splitter a
detecting thex̂ quadrature at one output and thep̂ quadrature
at the other output:x̂5( x̂12 x̂4)/A2, p̂5( p̂11 p̂4)/A2. A
violation of the uncertainty relation̂ D x̂2&^D p̂2&>1/16
proves the entanglement of mode 1 and 4@14#. A similar,
sufficient inseparability criterion for continuous-variable sy
tems has been given very recently@21# that in the context of
our entanglement swapping scheme would require the vi
tion of ^( x̂12 x̂4)2&1^( p̂11 p̂4)2&>1.

It is obvious that the violation of these inequalities cor
ponds to a fidelityF. 1

2 in our subsequent coherent-sta
teleportation. However, we have directly looked at the se
rability of the projected states of mode 1 and 4 after
detection of mode 2 and 3@20#. Since these states are insep

FIG. 2. Optimum fidelity for the teleportation of an arbitra
coherent state (g51) using ~a! entanglement produced with tw
equally squeezed single-mode states,~b! the output of entanglemen
swapping with four equally squeezed single-mode states,~c! en-
tanglement produced with one single-mode squeezed state,~d! the
output of entanglement swapping with two equally squeezed sin
mode states, and~e! the state as in~d! with detector efficiencies
hc

25ha
250.95.
01030
d
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rable for any nonzero entanglement in both initial sourc
they should enable quantum teleportation, as has b
shown. We have demonstrated, that in this case, the red

stater̂14 can always be transformed by some local displa

ment to a stater̂148 that providesF. 1
2 in coherent-state tele

portation and has quadratures violating^( x̂12 x̂48)
2&1^( p̂1

1 p̂48)
2&>1. We have given the optimum gaingswap of this

displacement for any verification, either by further telepor
tion or by simple detection@22#.

In Tan’s scheme@14#, unit gain gswap has been chosen
Therefore entanglement is only confirmed if the initial sta
exceed a certain degree of squeezing~e.g., for equally
squeezed states 3 dB!. By choosing the right gain, entangle
ment can be verified for any squeezing, in principle even
the initial entangled states are built from the minimal r
source of two single-mode squeezed states.

Detecting the output and applying Tan’s~or Duanet al.’s!
inequality for verification is easy, but it requires bringing th
entangled subsystems together and measuring states th
now local. This provides only an indirect confirmation th
the entanglement is preserved through teleportation.
verification leaves the subsystems separate and directly d
onstrates the entanglement by exploiting it in a second ro
of teleportation.

In summary, we have given a protocol for continuou
variable entanglement swapping, i.e., for the unconditio
teleportation of entanglement, using squeezed light and
ear optics. Entanglement swapping occurs for any nonz
entanglement~any nonzero squeezing! in both of the two
initial entanglement sources.This can be realized even wit
only two single-mode squeezed states. Our verification
scheme would provide a compelling demonstration of unc
ditional teleportation of entanglement.

This work was funded by a ‘‘DAAD Doktorandenstipen
dium im Rahmen des gemeinsamen HSP III von Bund u
Ländern’’ and EPSRC Grant No. GR/L91344. P.v.L. than
Sze M.Tan for sending his manuscript.
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