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Quantum search without entanglement
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Entanglement of quantum variables is usually thought to be a prerequisite for obtaining quantum speedups
of information processing tasks such as searching databases. This paper presents methods for quantum search
that give a speedup over classical methods, but that do not require entanglement. These methods rely instead
on interference to provide a speedup. Search without entanglement comes at a cost: although they outperform
analogous classical devices, the quantum devices that perform the search are not universal quantum computers
and require exponentially greater overhead than a quantum computer that operates using entanglement. Quan-
tum search without entanglement is compared to classical search using waves.

PACS number~s!: 03.67.Lx
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Quantum computers exploit quantum coherence to p
form computations in ways that classical computers can
@1–5#. Despite the considerable difficulties involved co
structing quantum computers@6,7# simple quantum logic de
vices have been built and prototype quantum computat
have been performed@8–16#. Quantum computation is
known to be able to solve some problems more rapidly t
is possible classically@17–24#. Some problems, such as fa
toring and quantum simulation, can apparently be solved
ponentially faster on a quantum computer than on a conv
tional digital computer@19–21#. Other problems, such a
database search@22–24#, can be solved polynomially faste
on a quantum computer. The goal of this paper is to cla
what aspects of quantum mechanics are responsible for t
speedups. In particular, it is often claimed that quant
speedups arise out of the quantum phenomenon know
entanglement@25#. This paper shows that this claim, whi
accurate by and large, is incomplete: although digital qu
tum computers that operate on quantum bits or qubits t
cally exhibit entanglement in the course of computatio
when operating on only a few qubits, they can obtain
speedup over the best classical device without becoming
tangled. In addition, it is possible to obtain quantum spe
ups using special-purpose devices that do not exhibit
tanglement. Grover’s algorithm for database search,
example, searches a database withn slots using onlyO(An)
queries, while the best classical algorithm requiresO(n)
queries. Although Grover’s algorithm as originally form
lated induces entanglement in the qubits of a quantum c
puter performing the algorithm, Farhi and Gutmann’s wo
@24# on continuous analogs of Grover’s algorithm do n
require entanglement; this paper builds on the work of Fa
and Gutmann to show that it is possible to construct quan
search devices that also giveAn speedup over classical de
vices, but that do not require entanglement. These dev
rely not on entanglement to obtain their quantum speed
but on interference. Such devices are not general purp
quantum computers: to perform quantum searches with
entanglement, they incur an exponentially greater overh
in their incidental operations than a universal quantum co
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puter that operates using entanglement. They nonethe
provide a speedup over classical devices. Finally, the pa
shows how it is possible to construct classical search dev
using waves that provide aAn speedup over the best class
cal search device that uses particles.

Entanglement is a peculiarly quantum phenomenon tha
responsible for a variety of counterintuitive effects such
apparent quantum nonlocality, quantum teleportation,
@26,27#. A pure stateuc& for a quantum system composed
two or more subsystems is said to be entangled if it can
be written in tensor product form:uc&Þuc1& ^ uc2& ^ ... .
Note that entanglement is not a property of the stateuc& on
its own, but rather of the state and the way in which t
system is divided up into subsystems. The claim that a qu
tum computation requires entanglement relies on a divis
of the quantum computer into quantum bits or qubits.

In Grover’s algorithm for database search, a single it
located in one ofn slots in a database is located with on
O(An) queries of the database@22#. This clearly gives a
speedup over classical database search, in whichn21 que-
ries are required in the worst case andn/2 queries are re-
quired on average. Grover’s algorithm is normally taken
involve entanglement. In Grover’s original version of th
algorithm, he tookn52r and performed the specified oper
tions using quantum logic onr qubits. Forr .2 these opera-
tions entail putting the qubits in an entangled state at so
point in the operation. However, as will now be shown, th
entanglement is not an essential for obtaining a speedup
a classical device, but rather a by-product of the mapping
the steps above onto qubits. The following implementat
allows one to perform quantum search in a way that does
require entanglement, but that nonetheless does better
the best classical device.

Consider a box withn slots through which a coin can b
dropped. In all but one of the slots, when the coin goes
heads it comes out heads: the slot does not flip the coin
the remaining slot, when a coin goes in heads, it comes
tails: the slot flips the coin. The problem is to find which sl
flips the coin. One way to find out is to take the box ap
and look to see which slot has a twist: but let us suppose
one is only allowed to put coins in and see if they come
flipped or not. In this case, one has to putn/2 coins through
on average andn21 in the worst case to locate the slot th
©1999 The American Physical Society01-1
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flips the coin. If there is a meter on the box that charge
dollar for each coin that goes through, searching a box w
100 slots costs $50, on average. This problem is clear
version of the database search problem. It differs from Gr
er’s original formulation only in that Grover assumed t
slots in his database to be labeled by binary numb
whereas in the ‘‘box’’ version no particular labeling need
specified.

Now look at a quantum-mechanical version of this pro
lem. Use a quantum particle such as a neutron as a qua
‘‘coin:’’ the box is constructed so that when a neutron w
polarization↑ goes through all but one of the slots it emerg
with polarization↑. But when it goes through the remainin
slot, it is flipped and emerges with polarization↓. Equiva-
lently, when it goes through that slot with a polarization→
5(1/&)(↑2↓), the neutron acquires a phase of21. For
example, the slot that does the flipping could contain a m
netic field along the→ axis that flips the spin about that axi
Let ul& be the state in which the neutron is in the mode t
goes through thel th slot. Letu be the label of the slot tha
flips the neutron~u for ‘‘unknown’’ !. Using neutrons with
polarization→, the effect of the box is to take the incomin
stateu l &→(122d lu)u l &[Ou l &. O5e2 ipuu&^uu is the unitary
operator that gives the effect of the box on the neutron.

Now pose the question: ‘‘How many times must one pu
neutron or quantum coin through the quantum box to fig
out which slot flips the neutron?’’ The answer isO(An)
times as the following procedure shows. We haven transla-
tional modes of the neutron, one going through each of thn
slots in the box. LetB be the unitary operator representin
the action of a beam splitter that takes a neutron from
mode and divides it equally among all the modes: suc
beam splitter can be constructed fromO(n) two-mode beam
splitters. LetB† be the unitary operator corresponding to t
‘‘inverse’’ beam splitter that undoes the action of the fir
Finally, let I52e2 ipu1&^1u be the unitary operator that co
responds to an inverter that gives every mode except for
first a phase of21. The inverter could also be constructe
from a magnetic field.

The procedure for finding the unknown slot is as follow
Take a neutron in mode 1 and put it in sequence through
beam splitter, then the box, then the inverse beam spli
then the inverter. The net effect is to apply the opera
IB†OB to the initial stateu1&. By comparison with Grover’s
original algorithm, it is easily seen thatB gives an action
analogous to a Hadamard transformation on the orig
state,O gives the same action as Grover’s ‘‘quantum pha
oracle’’ that gives the effect of querying the database,B†

gives an action analogous to an inverse Hadamard tran
mation, andI gives the same action as the operation Gro
calls ‘‘inversion about average.’’ Now take the neutron a
put it through the beam splitter, box, inverse beam split
and inverter again, and again,O(An) times. By the same
calculation as in Grover’s original algorithm, the neutron
now with high probability emerging from theuth slot, and
detection of its position will revealu. The location of the slot
that flips the quantum coin has been determined by puttin
neutron through the box onlyAn times. If the box has a
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meter that charges a dollar each time a neutron goes thro
searching a box with 100 slots costs only $10. The best c
sical strategy using coins, by comparison, costs on ave
$50: the quantum version does better. There is no entan
ment as there is only one neutron, and nothing for it to
entangled with.

The key to seeing that entanglement is not required
quantum search is to note that there is nothing in Grove
description of his search algorithm that requires then-state
system to be composed of qubits. Then states could just as
well be discrete states of a single quantum variable. In s
a ‘‘unary’’ representation there is no entanglement as ther
only one quantum variable. There is nothing to be entang
with. There is nothing in either the classical or the quant
search problem that requires that the problem be formula
in a ‘‘binary’’ representation in which the slots in the dat
base are labeled by binary numbers. Indeed, the unary
resentation of the search problem is more ‘‘natural’’ in th
the slots are labeled by natural numbers without requir
that a particular base~2 or 10, e.g.! be specified. Even if one
demands that a base be specified, then as long as the b
greater thann, no entanglement is required. In fact, the po
that entanglement is not required in few-qubit quantum al
rithms has been noted before@28#, but with the misleading
conclusion that the algorithms are not quantum-mechan
because entanglement is not present. Clearly, the unary
resentation still gives aAn speedup over the classical sear
problem in the sense that in the quantum version the qu
tum ‘‘coin’’ need only be passed through the boxAn times.

The use of a unary representation does not come with
cost, however. The conventional binary version of Grove
algorithm usesO(log2 n) qubits and requiresO(log2 n) op-
erations to perform each inversion about average and to
termine the final result. The unary version of Grover’s alg
rithm, in contrast, although it requires onlyO(1) operation
to perform the inversion about average~all that is required is
a single phase delay on the first mode! requiresO(n) two-
mode beam splitters to manipulate the neutron andO(n)
detectors to read out the result. Although both devices giv
An speedup over the analogous classical device in the s
that they have to consult the ‘‘database’’ fewer times, t
unary version requires exponentially more resources than
qubit version to perform the incidental operations. Li
unary optical simulators of quantum logic@29# such devices
are emphatically not universal quantum computers. T
number of resources required to simulate anN qubit quantum
computation using such a unary representation goes asN.
Accordingly, unary devices cannot provide an exponen
speedup over classical devices: the best they can do is re
the number of times that they consult the database
‘‘oracle.’’ To map the operation of Shor’s algorithm to
unary device, for example, would require exponential
sources.

Before turning to classical search using waves, a furt
discussion of entanglement is in order. As noted above,
tanglement is not a property of the state of a system on
own, but rather of the state and the way in which one divid
the system up into subsystems. By changing the way
divides up the system, it is always possible to represen
1-2
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unentangled state as an entangled state andvice versa. For
example, if one describes the single neutron interferome
database search method in a ‘‘second quantized’’ picture
which the stateu0&1¯u1& l¯u0&n represents a state in whic
the neutron is in thel th mode, then the initial state
(1/An)(u1&1¯u0&n1¯1u0&1¯u1&n) exhibits entanglemen
between then modes. We now present two further una
versions of quantum in which such a second quantized
ture is less applicable.

First, then states could be different energy levels of
single atom. In this case, the action ofB above could be
accomplished by a shaped, broadband pulse that takes
atom from the stateu1& to an equal superposition of the fir
n energy levels; the box could effect the phase inversionO
of the unknown stateuu& by driving a 2p pulse betweenuu&
and the ground stateu0& ~recall that we are not allowed t
look inside the box and determineu by detecting this pulse!;
the action ofB† could be accomplished by a shaped, broa
band pulse that invertsB; and the inversion about averageI
could be accomplished by driving a 2p pulse betweenu1&
and u0& as forO followed by a broadband 2p pulse between
all the states and the ground state. AfterO(An) iterations of
the operationsIB†OB, the system is in the stateuu& and a
measurement of its energy will reveal the position in t
database. This measurement could be performed, for
ample, by interchanging each stateux& with the ground state
in turn, and by driving a cycling transition that induces flu
rescence if and only if the system is in the ground sta
Although such a measurement requires up ton steps, it does
not require any further passages through the box.

A second example of database search without entan
ment is given by the Farhi-Gutmann continuous version
Grover’s algorithm@24#. Here, the system could be a sp
with n states, and the database is given by a box that app
a Hamiltonianuu&^uu. You are allowed to prepare the spin
any desired state, and to add your own preferred Hamilton
to the unknown Hamiltonian applied by the box. Farhi a
Gutmann show that if you start the spin in anarbitrary state
uc& and add to the database Hamiltonian the Hamilton
uc&^cu, then after a period of time proportional toAn the spin
has rotated to the stateuu& with high probability.

One might ask whether by discarding the qubit repres
tation one might be able to improve on theAn speedup that
Grover’s algorithm gives over the classical bound. Grove
algorithm is known to be optimal for qubits@30# and the
proof of its optimality does not intrinsically rely on the qub
representation. Accordingly, the unary representations g
here cannot provide any further speedup.

Once it is clear that a representation in terms of qubit
not required for quantum search, many implementations
possible. In fact, as will now be seen, aclassicalimplemen-
tation phrased in terms of waves can still give aAn speedup
over the classical search problem phrased in terms of c
or particles. The set of search methods has now come
circle: it was by considering interference via classical wa
emitted by an array of antennae that Grover arrived at
quantum algorithm in the first place@31#.
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Return now to the neutron interferometer picture of qua
tum search described above. What in this picture is quant
mechanical? There are in fact only two points in which t
quantum nature of the neutron appears. The first is in
billing procedure: the box charges on a per quantum ba
The second is the final click of the detector at the slot fro
which the neutron emerges. These are the only points
which the neutron is required to behave like a particle. At
other points in the search process, it is the wave aspect o
neutron that comes into play: it is the interference betwe
the waves in the interferometer that lies behind theAn
speedup.

This dominance of the wave aspect of quantum mecha
suggests the following purely classical wave method
search. Instead of quantum matter waves, use classical w
such as light or sound. At bottom, of course, such waves
composed of photons and phonons. But it is possible to
formulate the search problem in such a way that the part
aspect of the waves is unimportant. Let the unknown slo
the box flip the polarization of the waves, and suppose n
that the box charges on the basis of the integrated intensit
the waves that pass through it rather than on a per par
basis. We are provided with detectors with a finite signal-
noise ratio. How now does the cost of determining the u
known slot scale with the number of slotsn?

One way to search the box is simply to shine wav
through all the slots at once and to determine which slot fl
the polarization of the transmitted wave. Because of the
nite signal-to-noise ratio of the detectors, the cost of t
method is proportional ton. A second method is to recycl
the waves through an interferometer constructed in ex
analog to the neutron interferometer described above to
positive interference at the output of the unknown slot. J
as in the quantum case, the cost of this method is prop
tional to An. So a purely classical wave search device c
also find the unknown slot with an integrated intensity p
portional toAn. Of course, if one tries to minimize costs b
decreasing the intensity of the recycled waves and increa
the sensitivity of the detectors, one’s data will eventua
arrive in the form of individual ‘‘clicks’’: the quantum nature
of the wave will reassert itself.

The interferometric versions of database search descr
above can be thought of as complementary to the w
known phenomenon of an interaction-free measurem
@32–34#. In the most dramatic version of such an experime
one wishes to use optical methods to detect the presence
bomb that explodes if it absorbs a photon. By comparis
one can phrase quantum database search as a proble
finding and exploding a similar light-sensitive bomb in o
of n slots while only firing photons at it 1/An times. Both
bomb detection and bomb demolition are easier with qu
tum resources. It is important to note, however, that just a
the neutron interferometer search method above, what m
bomb detection and bomb demolition quantum mechanica
not the factors ofAn, but rather the fact that the bomb ex
plodes when it absorbs a single quantum of light. A ‘‘clas
cal’’ bomb that explodes when it has been subjected t
1-3
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given integrated intensity of classical light can be detecte
a nondemolition fashion using only a classical interfero
eter.

To summarize:
~i! A classical digital computer that searches a datab

with n slots requiresO(log2 n) resources and has to look
the databaseO(n) times.

~ii ! A quantum digital computer that searches a datab
with n slots requiresO(log2 n) resources and has to look
the databaseO(An) times.

~iii ! A classical device that determines which ofn slots in
a box flips a discrete object, such as a coin, requiresO(n)
resources and has to pass the coin throughO(n) times.

~iv! A quantum device that determines which ofn slots in
a box flips a discrete object, such as a particle, requiresO(n)
resources and has to pass the particle throughO(An) times.

~v! A classical wave device that determines which ofn
slots in a box flips the polarization of a wave requiresO(n)
.

o

ol
n
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resources and has to send the wave throughO(An) times.
Special purpose quantum search devices can giv

speedup over classical search devices without using
tanglement. A quantum device that probes a system by s
ing discrete objects such as particles through it can acq
information about unknown features of the system more r
idly than analogous classical devices that probe a system
sending discrete objects through it. TheAn speedup obtained
by the quantum devices arises out of the wave nature of
particles sent through. Classical devices that rely on wa
and interference can also give aAn speedup over classica
devices that probe a system using particles alone.

The author would like to thank H. J. Kimble for pointin
out the essential distinction between quantum search u
particles and classical search using waves. T. Weinacht
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