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Reduction method for the linear quantum or classical oscillator with time-dependent frequency,
damping, and driving
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We elucidate the relationship between the linear oscillator with time-dependent frequency, damping, and
driving, and theautonomousoscillator with unit frequency and no damping or driving. Such a relationship can
be derived from a canonical transformation and a redefinition of the time. A study of the scalars of the
transformation makes it possible to write down the evolving quantum states for the nonautonomous Hamil-
tonian given the evolving states for the autonomous harmonic oscillator.
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Interest in the Hamiltonian

H̄~p,q,t !5
b~ t !p2

2
1b21~ t !F V̄2~ t !q2

2
2 f̄ ~ t !qG , ~1!

with time-dependent frequencyV̄(t), damping 2ḃ(t)/
b(t), and driving f̄ (t), is twofold. On the one hand, it pro
vides an example of a completely soluble nonautonom
system, so that the adiabatic limit or the sudden limit can
studied beyond a perturbative approach. On the other h
this problem has practical applications in the dynamics
charged particles in a time-dependent magnetic field@1,2#
and for the coherent production of phonons in solids un
the action of a time-dependent pressure field@3#. To the au-
thors’ knowledge, the earliest approach to the most gen
form of Eq. ~1! was suggested by Kolsrud@4# in an attempt
to construct the evolution operator in the quantum case.

We first proceed to a simplification, by introducing a ne
time T,

T5E
t0

t

dt8b~ t8!,
d

dt
5b

d

dT
, ~2!

in terms of which the damping can be eliminated from t
equations of motion. The classical Hamilton equations a
the Heisenberg equations of motion become

dq

dT
[q̇5p,

~3!
dp

dT
[ ṗ52

1

b2
@V̄2q2 f̄ #5 f ~T!2V2~T!q,

where

*Electronic address: desposti@gpxbof.df.unibo.it
†Electronic address: ferrari@gpxbof.df.unibo.it
‡Electronic address: ralph.lewis@dartmouth.edu
1050-2947/99/61~1!/010101~4!/$15.00 61 0101
s
e
d,
f

r

al

d

V2~T![
V̄2~ t !

b2~ t !
, f ~T![

f̄ ~ t !

b2~ t !
. ~4!

Equations~3! are a Hamiltonian system with respect to t
new timeT and Hamiltonian

H~p,q,T!5
p21V2~T!q2

2
2 f ~T!q. ~5!

In the classical case, the equations of motion correspond
to Eq. ~5! can be solved in terms of solutions for the ha
monic oscillator. The quantum evolution with Hamiltonia
~5! has been addressed in the special case of no dri
@ f (T)50# in @1,5–10#. The case with time-dependent driv
ing is covered by the general quadratic Hamiltonian fo
studied in Ref.@11#. From Refs.@5,7,8,10,11#, it is now defi-
nitely clear that a basis$un,T&%, evolving under the nonau
tonomous Schro¨dinger equation, can be given~for any qua-
dratic Hamiltonian! in terms of the eigenfunctions of th
autonomousharmonic oscillator. This makes one suspe
that some first-principle relationship between nonauto
mous and autonomous quadratic Hamiltonians should e
leading to a simple and more straightforward approach. T
is the aim of the present Rapid Communication, in which
deal with the Schro¨dinger equation

i
]C̄~q,T!

]T
5F2

1

2

]2

]q2
1

V2~T!q2

2
2 f ~T!qGC̄~q,T!

~6!

that follows from Eq.~5!. By means of what we call the
reduction method we get a general explicit relationship
tween the solutions of Eq.~6! and the solutions of the time
dependent Schro¨dinger equation for anautonomousoscilla-
tor with unit frequency and no driving. The method is bas
upon a canonical transformation (p,q)→(P,Q), followed
by a suitable redefinition of the timeT→t(T), such that the
new Hamilton and Heisenberg equations in the timet corre-
spond to a harmonic autonomous Hamiltonian with unit f
©1999 The American Physical Society01-1
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quency and no damping or driving. The quantum treatm
of the problem is completed by considering the general qu
tum scalars of the space-time transformation that is use
the reduction method.

Define the classical or quantum canonical transforma
(p,q)→(P,Q) @12# by

Q5
q2a

r
, P5r~p2ȧ !2 ṙ~q2a! , ~7!

where the dotted quantities are derivatives with respect tT.
Let the tworeal functionsr(T), a(T) satisfy the equations

r̈1V2~T!r2r2350 , ä1V2~T!a5 f ~T! , ~8!

with arbitary initial conditions. With respect toanothernew
time t, the new HamiltonianK associated withH @Eq. ~5!#
and with the canonical transformation equation~7! is

K~P,Q!5
P21Q2

2
, ~9!

where

t5E
T0

T

dT8r22~T8! ,
d

dT
5r22~T!

d

dt
. ~10!

The reduction toK is the reduction to theautonomoushar-
monic oscillator with unit frequency and no driving. By d
rect differentiation with respect toT of Q andP as defined by
Eq. ~7!, and using the equations of motion~3!, we can check
that the Hamilton and Heisenberg equations associated
K, with respect to the new timet, are equivalent to Eqs.~3!.
The result of the differentiation is

Q̇5r22@2 ṙ~q2a!1r~p2ȧ !#5r22P, ~11!

Ṗ52r22S q2a

r D52r22Q . ~12!

Therefore, from Eq.~10!, Eqs.~11! and~12! written in terms
of t, are

dQ

dt
5P ,

dP

dt
52Q . ~13!

Thus, the classical or quantum problem can be addre
explicitly with a unified treatment by using results for th
autonomous harmonic oscillator with unit frequency and
driving.

It is perhaps useful to mention that Newton’s equation
motion for a one-dimensional classical~linear! oscillator
with arbitrarily time-dependent frequency is mathematica
the same as the Schro¨dinger equation for a particle in a
arbitrarily space-dependent one-dimensional static pote
~apart from boundary conditions! @3,13#. Therefore, any
treatment of that classical oscillator problem~time-
dependent frequency, no damping or driving! is applicable to
the quantum eigenvalue problem in terms of the functionr
of Eq. ~8!, and the new timet in Eq. ~10! is the same as in
01010
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the earlier Milne–Young–Wheeler treatment of the quant
eigenvalue problem@14–17#. However, it should be borne in
mind that the quantum and classical problem being
dressed in the present paper is that of a linear oscillator w
arbitrarily time-dependent frequency, damping and drivin
not that of a particle in a static arbitrarily space-depend
potential.

The quantum treatment can be completed by using a
ments of covariance, requiring thesame formfor the Schro¨-
dinger equation in terms of the transformed and original va
ables. More precisely, for the Schro¨dinger equation to be
covariant with respect to the generalized space-time trans
mation, the wave function itself must change in a suita
way. For example, letC(Q,t) satisfy the Schro¨dinger equa-
tion for the transformed Hamiltonian Eq.~9!:

i
]C~Q,t!

]t
5K~P,Q!C~Q,t!5

1

2 F2
]2

]Q2
1Q2GC~Q,t! .

~14!

The functionC„Q(q,T),t(T)…, obtained from Eqs.~7! and
~10! as a function ofq, T, doesnot satisfy Eq.~6! in general.
Denote the true solution of Eq.~6! by C̄(q,T)
[c„Q(q,T),t(T)…. Equations~7! and ~10! represent a ca-
nonical transformation. Therefore, the particle number m
be locally conserved:

dQuC~Q,t!u25dquC̄~q,T!u2⇒c~Q,t!

5
C~Q,t!

Ar
exp@2 iw~Q,t!# , ~15!

with w(Q,t) a real phase to be determined. Another con
tion on C̄(q,T) is the continuity equation for probability in
q,T space. This yields, with the aid of the second of E
~15!,

]uC̄u2

]T
52

i

2 F C̄S ]2C̄

]q2 D *
2C̄* S ]2C̄

]q2 D G
⇒2

ṙ

r
uCu21

1

r S ]uCu2

]Q

]Q

]T D1
1

r3

]uCu2

]t

52
i

2r2 FcS ]2c

]Q2D *
2S ]2c

]Q2D c* G , ~16!

where all dotted symbols are derivatives with respect toT,
and ]Q/]T52r21( ṙQ1ȧ) @see Eq.~7!#. Even the right-
hand side of the second of Eqs.~16! can be expressed in
terms ofC, by means of the second of Eqs.~15!. It is an
easy matter to show that the terms containing]2C/]Q2 are
exactly canceled out by the last term in the left-hand side
to the continuity equation inQ,t space. The resulting equa
tion for the real phasew(Q,t) is, therefore,

2S rṙ1
]2w

]Q2D uCu25S rṙQ1rȧ1
]w

]QD ]uCu2

]Q
. ~17!
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According to Wigner’s theorem@18#, the transformationC
→C̄ must be linear, which requires thatw(Q,t) be indepen-
dent of the wave function. Therefore, each side of each
of Eq. ~17! must vanish, with the result

w~Q,t!52
rṙ

2
Q22rȧQ1B~t!,

~18!

c~Q,t!5
C~Q,t!

Ar
expF i S rṙ

2
Q21rȧQ2B~t! D G ,

with B(t) a real function oft alone, to be determined. Th
last step of the calculation can be implemented by us
C̄(q,T)5c„Q(q,T),t(T)… in the Schro¨dinger equation~6!,
with q5rQ1a, and ]2/]Q25r22]2/]Q2. However, one
does not need to calculate all the terms explicitly. In fact,
equation for B(t) must appear in the formḂC̄

5r22(]B/]t)C̄5G(T)C̄, with G real and depending only
on T. All terms containingQ, ]/]Q, or imaginary functions
of T alone will cancel one another. On applying this rule, t
terms contributing toG can be easily identified, and the re
sulting equation forB is

Ḃ5
V2~T!a2~T!

2
2 f ~T!a~T!2

ȧ~T!

2
. ~19!

At this stage, the first Eq.~18! and the first Eq.~19! yield the
phase as a function ofq, T. Moreover, one can use Eqs.~8! to
eliminate f (T), V(T), which leads to a functional expres
sion depending only ona andr:

w̄~q,T![w„Q~q,T!,t~T!…

52
ṙ~T!

2r~T!
q22S ȧ~T!2

ṙ~T!

r~T!
a~T! D q

2
1

2ET0

T

dT8Fa2

r4
2S ȧ2

ṙ

r
a D 2G1w0 , ~20!

wherew0 is an arbitary real phase, independent of time a
coordinate. Now, the results of the quantum reduct
method can be summarized as follows.

Let C(Q,t) be any solution of the ‘‘reduced’’ Schro¨-
dinger equation~14! ~unit frequency and no driving!. Then, a
classof solutions of Eq.~6! is obtained as

C̄ (j)~q,T!5
1

Ar~T!
CS q2a~T!

r~T!
,E

T0

T dT8

r2 D
3expH i F ṙ~T!

2r~T!
q21S ȧ~T!2

ṙ~T!

r~T!
a~T! D q

1
1

2ET0

T

dT8Fa2

r4
2S ȧ2

ṙ

r
a D 2G2w0G J , ~21!
01010
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where the functionsr, a satisfy the classical equations~8!,
with arbitary initial conditions

j[$r~T0!,ṙ~T0!,a~T0!,ȧ~T0!%PR4.

In view of practical applications of Eq.~21!, it may be
useful to expressa as a functional ofr andf. One can verify
that

a~T!5r~T!sin@t~T!#F E
T0

T

dT8 f r cos~t!1A0G
2r~T!cos@t~T!#F E

T0

T

dT8 f r sin~t!1B0G
~22!

satisfies the second Eq.~8!, with arbitary initial conditions
determined byA0 , B0 , r(T0), ṙ(T0). In this way, the math-
ematical effort for the reduction method is limited to th
solution of the first Eq.~8!. By using expression~22! as the
solution fora in the second equation of~8!, the equation for
r in ~8! becomes the cornerstone for finding a concrete
lution of any particular linear problem, whether it be qua
tum or classical. Indeed, the reduction method leading to
~8! is independent of the classical or quantum framewo
Any choice of the real initial valuesjPR4 determines an
element of the class of solutions. For numerical work, it m
be preferable in particular cases to choose the initial con
tions for Eqs.~8! in certain ways. For example, it may b
preferable to obtain a numerical solution forr that is asso-
ciated with the adiabatic behavior. Hence the reduct
method has a large amount of flexibility in approaching t
solution of the quantum problem withgiven initial wave
function F(q,T0). First, one may choose a bas
$Cn(Q,t);n50,1,2, . . .%, evolving with the reduced Schro¨-
dinger equation~14!. Then, Eq.~21! yields a class of pos-
sible bases$C̄n

(j);n50,1,2, . . . ;jPR4%, each element of
which satisfies the original Eq.~6!. Second, one may furthe
choose the setj of initial values according to specific re
quirements of simplicity. The evolving solution with initia
wave functionF(q,T0) is finally given by

F~q,T!5 (
n50

`

Fn~j!C̄n
(j)~q,T!,

~23!

Fn~j!5E
2`

`

dq@C̄n
(j)~q,T0!#* F~q,T0!.

As far as the choice of$Cn(Q,t);n50,1,2, . . .% is con-
cerned, the simplest possibility is choosing the basis
eigenstates ofK(P,Q):

Cn~Q,t!5
exp@2Q2/22 i ~n11/2!t#

~Ap2nn! !1/2
Hn~Q!,

where Hn(Q) are the Hermite polynomials. On settingC
5Cn in Eq. ~21!, with a(T)50, one gets the same expre
sion found in Refs.@7,8# for an evolving basis in the case o
1-3
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no driving. However, we stress thatany basis evolving with
the standard HamiltonianK(P,Q) can be used in its own
right.

In conclusion, the reduction method starts with an ar
ment connecting the Hamilton and Heisenberg equations
Eq. ~1! to those for the harmonic-oscillator Hamiltonian wi
unit frequency. This is realized by the canonical transform
tion equation~7! and by the redefinition of the time, Eq
~2!,~10!. The method involves two auxiliary functionsr and
a, satisfying second-order differential equations. On tak
-

. A

01010
-
or

-

g

the square modulus of both sides of Eq.~21!, it is seen that
the quantum probability density in the coordinate space
shifted by a and rescaled byr21. Classically, this means
that the amplitude of the oscillator is determined by the e
lution of r, while its position, relative to an inertial frame o
reference, is determined bya. The time dependence ofr and
a is reflected in the explicit dependence of thephaseon the
coordinate@Eq. ~21!#. The resultingquantumeffect is a prob-
ability current that is necessary to satisfy the continuity eq
tion @Eq. ~16!#.
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