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Reduction method for the linear quantum or classical oscillator with time-dependent frequency,
damping, and driving
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We elucidate the relationship between the linear oscillator with time-dependent frequency, damping, and
driving, and theautonomou®scillator with unit frequency and no damping or driving. Such a relationship can
be derived from a canonical transformation and a redefinition of the time. A study of the scalars of the
transformation makes it possible to write down the evolving quantum states for the nonautonomous Hamil-
tonian given the evolving states for the autonomous harmonic oscillator.
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Interest in the Hamiltonian (—22(,{) f_(t)
0(M=——, f(M=——.
B(t) Be(t)
Equations(3) are a Hamiltonian system with respect to the
new timeT and Hamiltonian

_ @
— t)p? Q%(t)g® —
H(|o,q,t)=ﬁ(2)p +B%t){%—f(t)q}, D

with time-dependent frequency)(t), damping — B(t)/
B(t), and drivingf(t), is twofold. On the one hand, it pro- p?+Q%(T)g?
vides an example of a completely soluble nonautonomous H(p,q,T)= f‘f(T)q- ®)
system, so that the adiabatic limit or the sudden limit can be
studied beyond a perturbative approach. On the other hanth the classical case, the equations of motion corresponding
this problem has practical applications in the dynamics oto Eq. (5) can be solved in terms of solutions for the har-
charged particles in a time-dependent magnetic fi@l@]  monic oscillator. The quantum evolution with Hamiltonian
and for the coherent production of phonons in solids unde(5) has been addressed in the special case of no driving
the action of a time-dependent pressure fl@H To the au-  [f(T)=0] in [1,5-10. The case with time-dependent driv-
thors’ knowledge, the earliest approach to the most generahg is covered by the general quadratic Hamiltonian form
form of Eq. (1) was suggested by Kolsryd] in an attempt  studied in Ref[11]. From Refs[5,7,8,10,1}, it is now defi-
to construct the evolution operator in the quantum case. nitely clear that a basi§n,T)}, evolving under the nonau-
_ We first proceed to a simplification, by introducing a new tonomous Schidinger equation, can be givefor any qua-
timeT, dratic Hamiltonian in terms of the eigenfunctions of the
. q q autonomousharmonic oscillator. This makes one suspect
T= | dv st 2 2 that some first-principle relationship between nonautono-
t dt daT mous and autonomous quadratic Hamiltonians should exist,
leading to a simple and more straightforward approach. This

in terms of which the damping can be eliminated from thejs the aim of the present Rapid Communication, in which we
equations of motion. The classical Hamilton equations an@jeal with the Schidinger equation

the Heisenberg equations of motion become
0¥ (q,T) 1 Q%N
| —_—

dq . - —+ ————f(T)q|¥(q,T
FT=0-P, oT 2 0 5 (T)q|¥(q,T)
3) (6)
dp_. 1 o = 2 that follows from Eq.(5). By means of what we call the
ﬁ=p_ a E[Q a-f]=f(N-0%Ma, reduction method we get a general explicit relationship be-

tween the solutions of Ed6) and the solutions of the time-
where dependent Schdinger equation for amutonomousoscilla-

tor with unit frequency and no driving. The method is based

upon a canonical transformatiorp,f) — (P,Q), followed

*Electronic address: desposti@gpxbof.df.unibo.it by a suitable redefinition of the time— 7(T), such that the
"Electronic address: ferrari@gpxbof.df.unibo.it new Hamilton and Heisenberg equations in the tinmorre-
*Electronic address: ralph.lewis@dartmouth.edu spond to a harmonic autonomous Hamiltonian with unit fre-

1050-2947/99/6(11)/0101014)/$15.00 61010101-1 ©1999 The American Physical Society



RAPID COMMUNICATIONS

C. DEGLI ESPOSTI BOSCHI, L. FERRARI, AND H. R. LEWIS PHYSICAL REVIEW 81 010101R)

guency and no damping or driving. The quantum treatmenthe earlier Milne—Young—Wheeler treatment of the quantum
of the problem is completed by considering the general quareigenvalue problerfil4—17. However, it should be borne in
tum scalars of the space-time transformation that is used imind that the quantum and classical problem being ad-

the reduction method. dressed in the present paper is that of a linear oscillator with
Define the classical or quantum canonical transformatiorarbitrarily time-dependent frequency, damping and driving,
(p,9)—(P,Q) [12] by not that of a particle in a static arbitrarily space-dependent
potential.
-« The quantum treatment can be completed by using argu-

Q= p P=p(p=a)=p(d-a), @ ments of covariance, requiring tisame fornfor the Schre

dinger equation in terms of the transformed and original vari-
where the dotted quantities are derivatives with respedt to aples. More precisely, for the Schiiager equation to be
Let the tworeal functionsp(T), «(T) satisfy the equations covariant with respect to the generalized space-time transfor-
. 5 5 . ) B mation, the wave function itself must change in a suitable
p+QATMp—p°=0, a+QYMa=HT), (8  way. For example, le¥(Q,7) satisfy the Schdinger equa-

with arbitary initial conditions. With respect @nothernew tion for the transformed Hamiltonian E¢9):

time 7, the new HamiltoniarK associated wittH [Eq. (5)] SV (Q,7) P
and with the canonical transformation equati@his i &—T’z K(P,Q)W(Q,r)= 51— (9_QZ+Q21\F(Q’T) _
P2+Q? 14
K(P.Q)= 5, © 4

The functionW(Q(q,T),7(T)), obtained from Egs(7) and
where (10) as a function ofy, T, doesnot satisfy Eq.(6) in general.
Denote the true solution of Eq.(6) by WV¥(q,T)
- deT’ ~2(77) i: ‘Z(T)i (10 =(Q(q,T),7(T)). Equations(7) and (10) represent a ca-
T P ©odt * dr’ nonical transformation. Therefore, the particle number must
be locally conserved:

The reduction tK is the reduction to theautonomousar-

monic oscillator with unit frequency and no driving. By di- dQ|¥(Q,7)|?=dq|¥(q,T)|?>= ¥(Q,7)

rect differentiation with respect 6 of Q andP as defined by

Eq. (7), and using the equations of moti¢8), we can check ~¥(Q,7) .

that the Hamilton and Heisenberg equations associated with b exi-ie(Qn]. (19

K, with respect to the new time, are equivalent to Eq$3).

The result of the differentiation is with ¢(Q,7) a real phase to be determined. Another condi-

N o, tion on ¥ (q,T) is the continuity equation for probability in
Q=p I=p(@-a)+p(p=a)]=p °P, (1) 4T space. This yields, with the aid of the second of Egs.

(19,
q—,(ﬂ)*_q—,*(ﬁﬂ
a2 992

a|w|? aQ) 1 9|w|?

Q IT| " 3 ar
AN AN
Thus, the classical or quantum problem can be addressed —_F 4 _aQZ - _aQZ U
explicitly with a unified treatment by using results for the p
Zu_tqnomous harmonic oscillator with unit frequency and NQuhere all dotted symbols are derivatives with respectto
riving. 1 - i
It is perhaps useful to mention that Newton’s equation ofﬁggg(gi/gg;f tﬁe é’e) Sozg)of[slgg(i%?.g% Egegxt?gsgggtm
motion for a one-dimensional classicélnearn oscillator terms of . by means of the second of qu_S)p It is an
with arbitrarily time-dependent frequency is mathematically DY iR : '2
the same as the Scliimger equation for a particle in an easytlmatter t? 3h0v¥éha;:]thle tte{ms qoq;al| ftg’rfan 6.‘;9 d
arbitrarily space-dependent one-dimensional static potenti§XaC y canceled out by the 1ast term In the feft-hand side due
to the continuity equation iQ, 7 space. The resulting equa-

(apart from boundary conditiong3,13]. Therefore, any . ,
treatment of that classical oscillator problerttime- tion for thereal phasee(Q, 7) is, therefore,

dependent frequency, no damping or drivirgapplicable to
the quantum eigenvalue problem in terms of the funcpion _
of Eq. (8), and the new time- in Eq. (10) is the same as in
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5 -2 q—_a):_ -2 o
P=-p ( p p Q. (12 ﬁl‘l’lz__i_

aT 2

Therefore, from Eq(10), Egs.(11) and(12) written in terms
of 7, are

Pzt
dQ__, dp_ . ==l +;(
E_ I} E_ Q' () -

|

; (16)

ot 8
Q2

o w|?
aQ

. . do
| P (pr pa 20

(17)
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According to Wigner’'s theoreril8], the transformationt’ where the functiong, « satisfy the classical equatioiig),
—W¥ must be linear, which requires tha{Q, 7) be indepen-  With arbitary initial conditions

dent of the wave function. Therefore, each side of each side ) ) 4
of Eq. (17) must vanish, with the result E={p(Tp),p(To),a(Ty),a(Ty)} e R™

. In view of practical applications of Eq21), it may be
__ PP useful to expresg as a functional op andf. One can verify

¢(Q.7) == 5 Q"~paQ+B(7), o

(18)

v (Q, ( :
HQu7)= %ﬂexr{i(%szmaQ—B(ﬂH ,

a(T)=p(T)sin T(T)][ fTT dT'f pcog7)+Ag
)

with B(7) a real function ofr alone, to be determined. The
last step of the calculation can be implemented by using
W(q,T)=(Q(q,T),r(T)) in the Schrdinger equatior(6),
with q=pQ+«, and %/9Q?=p~23%/9Q?. However, one satisfies the second E¢B), with arbitary initial conditions
does not need to calculate all the terms explicitly. In fact, thejetermined by, By, p(To), p(To). In this way, the math-
equation for B(7) must appear in the formBW¥ ematical effort for the reduction method is limited to the
=p %(9Bla7r)¥ =G(T) ¥, with G real and depending only solution of the first Eq(8). By using expressiof22) as the

on T. All terms containingQ, 4/9Q, or imaginary functions solution fora in the second equation 8), the equation for

of T alone will cancel one another. On applying this rule, thep in (8) becomes the cornerstone for finding a concrete so-
terms contributing taG can be easily identified, and the re- lution of any particular linear problem, whether it be quan-

—p(T)COS{T(T)][ fTTdT'f p sin(7)+ B

(22

sulting equation foB is tum or classical. Indeed, the reduction method leading to Eq.
(8) is independent of the classical or quantum framework.
. . . ey 4 .
. 0¥TM)aX(T) a(T) Any choice of the real |n|t|§1l valuese R d_etermmes_an
B=——F—————f(Ma(T)— ——. (19) element of the class of solutions. For numerical work, it may
2 2 be preferable in particular cases to choose the initial condi-

tions for Egs.(8) in certain ways. For example, it may be
At this stage, the first Eq18) and the first Eq(19) yield the  preferable to obtain a numerical solution ferthat is asso-
phase as a function of T. Moreover, one can use Eq8)to  cjated with the adiabatic behavior. Hence the reduction
eliminate f(T), ((T), which leads to a functional expres- method has a large amount of flexibility in approaching the

sion depending only om andp: solution of the quantum problem witgiven initial wave
- function ®(q,T,). First, one may choose a basis
¢(q,T)=¢(Q(q,T),7(T)) {¥,(Q,7);n=0,1,2...}, evolving with the reduced Schro
. . dinger equation(14). Then, Eq.(21) yields a class of pos-
__p(M 2_( - (T)—@ (T)) sible bases{¥{:n=0,1,2...;6eR*, each element of
2p(T) q @ p(T) « q which satisfies the original E@6). Second, one may further
5 .2 choose the sef of initial values according to specific re-
- EJTdT’ a__( P N (20) quirements of simplicity. The evolving solution with initial
2)7, p* “« p “« %o wave function®(q,T,) is finally given by
where ¢, is an arbitary real phase, independent of time and d(q,T)= 2 ‘I’n(f)‘ﬂf)(q,T),
coordinate. Now, the results of the quantum reduction n=0
method can be summarized as follows. (23

Let ¥(Q,7) be any solution of the “reduced” Schro
dinger equatiori14) (unit frequency and no drivingThen, a
classof solutions of Eq.(6) is obtained as

@&)= | dawiP(a. o)1 d(a,To)

As far as the choice ofV,(Q,7);n=0,1,2...} is con-

— 1 q—a(T) (TdT cerned, the simplest possibility is choosing the basis of
v )= v o eigenstates oK(P,Q):
(9,T) G\ Tem )2 9 (P.Q)
: : exd —Q%2—i(n+1/2)7]
| (M), - p(T) V. (Q,7)= Ha(Q)
/= _ ! 1/2 n ’
xexp{l 2p(T)q +| a(T) o) a(T)|q (\Jm2™n!)
1T 2 ©2 where H,(Q) are the Hermite polynomials. On setting
N _f 4T’ a__(&_ Ba) —go|t, 20  =¥nin Eq.(21), with a(T)=0, one gets the same expres-
2]+, p? P sion found in Refs[7,8] for an evolving basis in the case of
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no driving. However, we stress thahy basis evolving with  the square modulus of both sides of Egl), it is seen that
the standard HamiltoniakK (P,Q) can be used in its own the quantum probability density in the coordinate space is
right. shifted by a and rescaled by 1. Classically, this means

In conclusion, the reduction method starts with an arguthat the amplitude of the oscillator is determined by the evo-
ment connecting the Hamilton and Heisenberg equations fdution of p, while its position, relative to an inertial frame of
Eq. (1) to those for the harmonic-oscillator Hamiltonian with reference, is determined lay. The time dependence pfand
unit frequency. This is realized by the canonical transformax is reflected in the explicit dependence of {ileaseon the
tion equation(7) and by the redefinition of the time, Eqgs. coordinatd Eq.(21)]. The resultingquantumeffect is a prob-
(2),(10). The method involves two auxiliary functiopsand  ability current that is necessary to satisfy the continuity equa-
«, satisfying second-order differential equations. On takingtion [Eq. (16)].
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