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Scaling limit of weakly bound triatomic states
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The usefulness of a scale-independent approach to identify Efimov states in three-body systems is shown by
comparing such an approach with a realistic calculation in the case of three helium atoms. We show that the
scaling limit is realized in practice in this case, and suggest its application to study other similar systems,
including the case where two kinds of atoms are mixed. We also consider the observed large scattering length
of the 8Rb dimer to estimate the critical value of the ground-state energy of the corresponding trimer
(=1.5 mK), in order to allow for one Efimov state above the ground sf&tE050-294{0@9)50407-1

PACS numbsgps): 34.10+x, 05.30.Jp, 21.45.v, 36.40—-c

Loosely bound two- and three-body systems are charadsody systemsx-a-B. The a-B8 and a-a systems may or
terized by the fact that their sizes are much larger than thenay not be bound; thus the atom-atom scattering length at-
characteristic range of the two-body interaction. The bestains a range of values. In principle, this can be realized in
illustration for such a system is the experimentally foundexperiments where, by means of light or induced magnetic
“He-*He dimer with a size of about 50 fl1,2]. Qualita- fields, the excited atoms have the two-atom interaction
tively, the *He-*He interaction has roughly a depth of 11 K changed11].
with a scattering lengtha(ye) around 100 A. In such a case,  Two helium atoms have a very shallow and short-ranged
approaching the limit where the two-boson energy is zerointeraction potential, with the binding energy very close to
the three-boson system presents an increasing number géro [1,2]; thus many aspects of the relevant three-body
loosely bound three-body states, known as Efimov s{@es  physics are analogous to those that have been studied in
They have Iarge spati_al extension an_d do not depen_d on th&,clear physics at very low energif&12—14,9. The large
detfills_ of the mterz_ictlon. Although dlffr_actlon expenmen_ts scattering length compared to the range of the potential jus-
[2] indicated the existence of a helium trimer, the connectionfies the search for Efimov states in a helium-trimer system.
with the Efimov effect IS not clear. The Eflmov states 0CCUrgeera| theoretical studies have already considered the pos-
e oo s b some ey of Efov states i the hefum trnde 15-21 A

y P QfArst sight, one notices that the ground state is extremely sen-

systems, such as Bose condensation and superfluidity. A ! . ;
weakly bound triatomic state becomes important from thes't've to the potential-well region and also that the Efimov

perspective of an ultracold gas, as it provides a repulsivétat(.es are sensitive .to certain fefa.t ures of Fhe longe-range po-
three-body pseudopotential, independent of the sign of thifntial- In the following, we definitely clarify that such ap-
two-atom scattering length, which could stabilize the con-Parent independent sensitivities, of the ground and Efimov
densate even in the case of negative scattering lddgh ~ Staté energies, disappear once the dimer binding energy is
Also, the three-body recombination of ultracold atoms to akept fixed. The conclusion is that other detaksowing the
weakly bounds level in the Efimov limit goes to infinity6]. ~ dimer and trimer ground-state energigsesented in the re-

In the limit of zero-range interaction, with the two-boson alistic interactions that have been used are quite irrelevant to
scattering length fixed, the three-boson ground state cokhe existence of Efimov states. These features are represented
lapses and an infinite number of strongly bound states agn a universal scaling function, relating the trimer ground
pears(Thomas effecf7]). The Efimov and Thomas states are state, the dimer, and the Efimov state binding energies,
related by a scale transformation and are governed by thehich contains most of the relevant physics of realistic mod-
ratio between the scattering length and the range of the forcels.

[8,9]. As is also well known, even when the two-body inter- The main purpose of the present work is to derive the
action is not strong enough to bind the two-body system, iscaling function, which is obtained in the scaling lin]

can bind the corresponding three-body system. This impliesrhen the range of the interaction goes to zero. The existence
that a change in sign of the two-body scattering length doesf the scaling limit is a consequence of the renormalizability
not rule out the existence of Efimov states. Recently, thef quantum mechanics with zero-range interactif®22].
relation was also discussed between an effect that occui&e will show that in practice such a limit is approached by
when two identical scatterers are close togeftkeiown as the excited state of the helium trimer, obtained in realistic
proximity resonancgsand the Thomas and Efimov effects calculationd19-21], clarifying the theoretical interpretation
[10]. of those excited states as Efimov states. We believe that the

Considering the possibility of atomic bulk matter, with scaling limit, once its wide application in low-energy three-
two different species of atomsr(andB), we study the three- particle physics(from nuclear to molecular systeinss
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proved, must be very useful in analyzing any other similartConsequentlyB§'"*/B{Y is a function ofB,;/BSY for

systemgsuch as the rubidium systef3,24], for examplg.  r,=0. This illustrates that it is reasonable to expect a uni-
The scaling limit of weakly bound triatomic systems is versal scaling function connectingB{**%/B{Y and

found from the renormalization procedure of the zero—rangegaﬂ/BgN) for N— oo, while the ratioBaB/B(gN) is kept fixed.

(RZR) three-body model, where the physical inputs are two-gych a scaling function is calculated in the RZR model, and

body and three-body ground-state enerd@®. The three- \ye found that it converges fast with.

body ground state energy, if not available from experiments, Now, we return to our general case of three particles,

can be determined using a realistic two-body interaction,_,-g to obtain the universal scaling function. We first
Even when a realistic calculation has already been used foistinguish the bound-€) or virtual (—) states by

the ground-state, one should still think about the advantages

of using the RZR model to obtain other low-energy three- 1

body observables, considering the extensive numerical task Key=EVByy= —=———, (4
involved in a realistic calculatiofsee the appendix of Ref. 2R ayBay

[19)).

where y=a,8 and u,,, is the corresponding reduced mass

With th I i i litative in-
fth the only purpose being to gain some qualitative in of the (ay) system. The scaling function, defined by

sight into the scaling limit, let us discuss how the scaling
function is justified in the context of the two-body model for

(N+1)
a three-body system of Ref13], where it is considered as B3 =F( Kaa  Kap (5)
two heavy particleglabel o and massvl ), separated by, B{Y \/Bgm \/Bg )

and a light ongllabel B). Subtracting the two-body binding
energyB,.z, the effective interaction between the two heavywhere A=M /M, gives the ratio of the energies of two
particles, generated by the solution of the equation for lightconsecutive statesN(andN+ 1) in the limit of N— oo,

heavy particle systems, is given by Next, we present a single integral equation, which corre-
sponds to the reduction of the coupled Faddeev integral

1| 2 e Rawg e 2Ra equationq 9] for the zero-range limit of a two-body interac-
V(R)=— > a_ﬁ R + | (1)  tion. To solve the integral equation, we used a regularization

parameterA in the momentum integration, which represents
the inverse of the interaction ranf@9]. Later on,A —x is
where v is a mass factor and,s is the heavy-light— considered, while the ratios between each of the two-body
scattering lengtha,z is related tdB,4 by the effective range  energiesB,,,, and the three-body ground-state energy are
expansiorko= (1/a,) + (1/2)r ok§, wherevB,;=k3 andro  kept fixed. This limit is achieved by makinj—o with

is the effective range. Fd,;=0, the potentialV/(R) exhib-  fixed A. The swave projected equation is given by

its the Efimov effect, provided that the heavy-light mass ratio

is big enough to make the adiabatic approximation valid. In _ o) A a(N)

this limit, we relate the three-body binding energy of the Xap(A) = Tap(q; B3 )fo dkl AGg(a,k;B3™)

(N+1)-th Efimov state B{'"Y) to the three-body binding
energy of theNth state. By using a scalRR’' = \/B(3N)R and
V'(R")=V(R)/B{Y, we have the following dimensionless
swave Schrdinger equationf{=1M ,=1):

B B(N+l)
b=\ g g | @ -
B3 B3 where, fory=a,B with 7,=M,/(2u,,),

A
+2f dpG,(p,q;B§Y)
0

X 70 P BED) G o(p,k; BY) [x0p(k),  (6)

d2
- —+V'(R)
dR'2

2 2

The differential equatiori2) needs one boundary condition G (q,k;E)EmE_qur 1A+ KA (7~ 777)’ %)
in the range of the two-body potentiatr,. The effective 7 E+ak+7,(a—k)?*+9*(ns—n,)
potential forR"—0, if not regularized, collapses the three-
body system. The boundary condition for the wave function 3y’2
atrg is a function of8§Y, B, s, andry: &(BYY,B,s.r0). In Ta (0 E)=——
dimensionless units, this function is written as
£'(1B,5/BYY,\BMr,). The boundary condition is the We solve Eqs(6)—(8) in units, such that\ =1. The corre-
same for the Efimov states in the limit of zero range, whichsponding dimensionless quantities a@‘)EBgN)/AZ, Kay
implies =K,,/A. The two-body observables can be written in terms

of the three-body binding enerd®4" , by replacingA, such

e A2 L -t
any, 9

®

ay

o % \/—(W? that Kayl.@: Kay/_\/B(SN)- The Thomas effect occurs _for
lim & 1'B(N)’ B3 ro A —o with the energies of the two-body systems kept fixed,
fo=0 3 whereas the Efimov states arise whep,—0 with A kept

gNH) B fixed.
= lim §’( ) ,(—O‘,\ﬁ, \/BB(er()) ) (3) In the strict Efimov limit the scaling function is a function
ro—0 | B3’ B3 of only A and B{** /B =F(0;0;A). The ratio between
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FIG. 3. Critical upper limits for the existence of one Efimov
FIG. 1. The ratio between the binding energies of consecutivestate above thalth state, as a function o .
states in the Efimov limitB,,=B,z=0), for the a-a-3 system,

as a function oM. results from realistic interactioniglashed ling approach the

two closed Efimov states becomes practically constant wit§¢@ling limit. The resuits obtained from RéflL9)], repre-
N, as we illustrate in Fig. 1 foN=0 andN=1. For equal S€nted in Fig. 2 by empty squares (vave and crossed
masses. as shown. the ratio is close to 1/500. circles (s+d waves, covered a wide range of scattering

Let us discuss the scaling function for three helium atoms!€N9ths, as the strength of the realistic two-body interaction
As B=a and A=1, Eq. (5) can be simplified to Was varied. So, they are appropriate for comparison with our

e results. We confirm that all other recent realistic calculations

B(SN.H)/BgN):.F(KZ/ B(3N)). (.2 replaces - the - doublea for the helium trimer, given in Refd.18,20,2], are com-
indices. In Fig. 2, the solid line presents our result for the y R

. ) . pletely consistent with the scaling limit, and we show a few
scaling function, which shows/(BMN*D—B,)/B{Y @ @  f them in Fig. 2.

function ofKZ/\/BgN)El/[aZ\/BgN)]. As seen in Fig. 2, the The universality of the scaling function is a characteristic
of the Efimov regime, which does not depend on the detailed
nature of the short-range two-body interaction. As the two-
body binding energy is increased, a small deviation between
the scaling limit and realistic models can be observed. By
— including the effective range effect, one could improve the
scaling function without requiring further details about the
two-body interaction.

We have extended the analysis of the scaling function for
a# B in two examples. The critical condition for the appear-
- ance of one Efimov state, in Eq5), is defined by

F(0;Kus/VBJW;A)=B,,/BSY, when K,,=0, and by

F(KM/\/B(SN);O;A)=BM/B(3N), when K,z=0. For any

. value ofB,,, /B{" or B, ;/B{¥ smaller than the correspond-
ing critical value, there exists at least one Efimov state above
1, the ground state. As we can observe in Fig. 3, the most
o - favorable situation, between these two, for the experimental
observation of Efimov states is given when the splitting be-
tween the states becomes larger, which happensBfgr
<B,p. These results extend the calculations given in Ref.
[9] to cases wherd<1.

FIG. 2. Comparison of the scaling linolid line) with realistic Applying the results for the scaling function, obtained in

. 87 . . .
calculations for théHe trimer. Results from Ref19] for N=0 for ~ Fi9- 2 to ®'Rb atoms, we can estimate the minimum energy
an interaction in thes wave (empty boxesand in thes+d waves  fOr the ground state, which allows for the existence of one

(crossed circles and forN=1 (crosses Other calculations foN  €xcited Efimov state. We use only the scattering length of the
=0: Ref.[18] (stars, Ref.[20] (crossed boxes The dashed line ° Rb-*'Rb system,ag,=50 A [24], with the assumption
guides the eyes through realistic model results. Recent results frofiat it is much greater than the range of the potential, in order
Ref.[21] are consistent with this plot. to estimate thaBzva=h2/M Rb/asz~0.22 mK. From the
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scaling plot presented in Fig. 2, the condition for the exis-energy of the®Rb trimer, which allows one excited Efimov
tence of one Efimov state above the ground state is given bytate, opening the possibility of studying other atomic sys-
0< VB, gp/B{R,=<0-38, since the rubidium dimer is bound. tems. The critical conditions for the appearance of one Efi-
This implies 'thath’,%bz 1.5 mK, for the existence of the mov state in the scaling limit were studied for several masses
excited state. From this example, we show that the estimatef systems with two like atoms plus a third one, for a wide
for the Efimov-state energy demands knowledge of th@ange of atom-atom scattering lengths.
ground-state energy, which could in principle be obtained
experimentally; therefore, we just present the lower bound. _Ourthanks to Professor_R. Donangelo_, Professor P._L. Fer-
In the same way, one can obtain the lower bound for thd€ira, and Professor C.L. Lima for a previous helpful discus-
ground-state binding energy, which permits one Efimov statéion. We also thank Professor Y. Nogami, Professor R.A.
for any other system of three identical particles. Rego, and Professor D. Sprung for their comments and a
In summary, we have shown that tHele-trimer ground  critical reading of tbe manuscrip{. This work was partially
and excited states approach the scaling limit obtained from &upported by Fundao de Amparo &Pesquisa do Estado de
calculation with the renormalized zero-range model. As arSa Paulo and Conselho Nacional de Desenvolvimento Ci-
example, we estimate the lower bound of the ground-statenffico e Tecnolgico.
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