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Highly efficient high-order harmonic generation by metallic carbon nanotubes
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High-order harmonic generation by metallic carbon nanotubes exposed to an intense ultrashort pulse has
been theoretically investigated in the semiclassical approximation. The mechanism of nonlinearity provided by
the motion of conduction electrons below the band of optical resonances has been considered. It has been
shown that the high density of states of conduction electrons in metallic carbon nanotubes and the specific
dispersion law inherent in hexagonal crystalline structure as well as the transverse quantization of the electron
momentum result in a uniquely high efficiency of the current conversion to high-order harmonics.
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The discovery by Iijima@1# of quasi-one-dimensiona
crystalline carbon nanotubes~CNs! has attracted much atten
tion to their mechanical and electronic properties@2#. Pecu-
liar transport and optical properties of CNs arise from
varied kinds of geometrical and chiral symmetry as well
from the nanoscale size. In particular, owing to the qua
one-dimensional topology of CNs they can manifest eit
metallic or semiconducting properties, depending on the
dius and chiral angle. One can expect especially broad
tentialities for the manifestation of such peculiarities on e
posing CNs to strong electromagnetic fields, which provid
nonlinear interaction. The role of nonlinearity in the electr
transport has been considered in Refs.@3,4#, where a nonlin-
ear mechanism of the chiral current formation that is uniq
for CNs has been revealed. The third-order nonlinear opt
susceptibility of CNs has been evaluated in Refs.@5,6#. It has
been shown that the susceptibility spectrum displays a
nounced resonance, with the line intensity significantly
ceeding the line intensities in other nonlinear materials.

The strong nonlinearity of CNs is determined by the fa
that the electron motion is governed by a strongly nonpa
bolic dispersion law. This peculiarity of nanotubes raises
question of whether these structures can be used for h
order harmonic generation~HHG!. There is currently grea
interest in the production of extreme-ultraviolet and soft
ray radiation by HHG. The majority of this work has co
centrated on generating harmonics from the interaction
intense subpicosecond laser pulses with gaseous ta
@7–9#. The coherent high-order odd harmonics are produ
in the strong-field regime due to tunneling of electrons to
continuum and their return to the atomic core under the
tion of the oscillating field. The high-order harmonic spe
trum has a very characteristic shape: it falls off for the fi
few harmonics, then exhibits a plateau where all the harm
ics have approximately the same strength, and ends up w
sharp cutoff. Much progress has been achieved using
approach, and coherent radiation with photon energies u
0.5 KeV has been produced@10,11#. A second mechanism o
the HHG is the interaction of intense laser pulses with so
targets@12,13#. In this case, the electrons oscillate at close
relativistic velocities across the solid-vacuum boundary
PRA 601050-2947/99/60~2!/777~4!/$15.00
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the sharp plasma-vacuum interface. The dramatic elect
density gradient in a distance much less than the wavele
of light forms an oscillating mirror@14,15#, giving rise to
radiation of odd and even harmonics.

In the present paper, we study an alternative to the abo
described approaches: optical high-order harmonic gen
tion by conduction electrons confined at the cylindrical s
face of a metallic CN illuminated by an intense fiel
Conduction electrons with energies below the energy of
interband transitions move in the crystalline field like fr
quasiparticles, with a modified dispersion law allowing us
apply a quasiclassical approach to describe the electron
tion. The high density of states for such electrons is char
teristic for metallic CNs. At least three reasons can be giv
why the HHG by CNs is of interest. First, the pronounc
electron nonlinearity in CNs with the two-dimensional~2D!
confined electron distribution on the surface shows some
tential for the generation of high-order harmonics and co
thus represent a useful mechanism for the generation of
herent ultrashort light pulses at very short wavelengths. S
ond, the method considered here allows the generation
radiation with very short wavelengths in a device confined
a very small, submillimeter, region. Third, the spectra of t
harmonics are expected to provide useful information on
dynamics of electron motion in CNs.

Consider an infinitely long single-shell CN oriented alo
the z axis and illuminated by an intense subpicosecond o
cal pulse with the carrier frequencyv1. Let the pulse be
incident normally to the CN’s axis and polarized along th
axis:E(x,t)5ezEz(x,t). The CN geometry is conventionall
classified by the integer-valued dual index (m,n) @2#, which
determines the direction of the plane graphite sheet whe
rolls up into a cylinder. In a theoretical treatment we restr
ourselves to the zigzag CNs whose index is (m,0) and whose
radius is given byRCN5A3mb/2p, whereb51.42 Å is the
interatomic distance in a graphite sheet. A zigzag CN exh
its metallic properties whenm53q with q as an integer. The
analysis can easily be extended to armchair CNs, which
characterized by the index (m,m) and are metallic at anym.
Assuming the high-order harmonic fields to be sufficien
weak, we neglect the role of high-order harmonics in t
R777 ©1999 The American Physical Society
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electron dynamics. We also neglect the transverse curren
the CN surface, considering the axial current to be predo
nant. In that case we can presume the propagation of h
order harmonics to be normal to the CN’s axis, i.e., along
x axis. Then, neglecting the spatial dispersion in the cha
carrier motion, we can describe this motion by the Bol
mann equation in the form as follows:

] f

]t
2

e

c

]A

]t

] f

]p
5n@F~p!2 f ~p,t !#, ~1!

with e as the electron charge andn as the relaxation fre-
quency. The initial condition is assumed to bef (p,0)
5F(p). A typical value ofn in CNs isn'1012 Hz @16#. The
Fermi equilibrium distribution functionF(p) is given by
F(p)5$11exp@E(p)/kBT#%21, wherekB is the Boltzmann
constant,T is the temperature, andE(p) is the quantum-
mechanical dispersion law for electrons in the CN. T
vector-potentialA is related to the electric field by the equ
tion E52(1/c)]A/]t. Further, we impose the restrictionn
!Dv!v1 on the pulse bandwidthDv. This allows us, on
the one hand, to make use of the slowly varying envelo
approximation and, particularly, the traveling-wave mod
for the driving field, Ez15E1cos(k1x2v1t). On the other
hand, the above inequality leads to the approximate solu
of Eq. ~1!, f (p,t)'F(p1eA/c) @17#. In view of that, the
current density in a single CN can be presented by

j z5
2e

~2p\!2E E
1stBZ

vz
(e)~p!FS p1

e

c
ADdp, ~2!

wherevz
(e)(p)5]E(p)/]pz is thez component of the electron

velocity. The abbreviation 1stBZ in Eq. ~2! stands for the
first Brillouin zone in the CN. A fundamental distinction o
the CN from the plane monatomic graphite sheet is in
transverse quantization of the charge carrier motion@18#.
Owing to this, the Brillouin zone of the graphite sheet, whi
is hexagonal, is transformed in CNs into a discrete popu
tion of straight lines inside the hexagon. In the tight-bindi
approximation, this results in the dispersion law of cond
tion electrons in zigzag CNs as follows@18#:

Es~p!56g0F114 cosS 3bpz

2\ D cosS ps

m D
14 cos2S ps

m D G1/2

~s51,2, . . . ,m!, ~3!

whereg0 is the overlapping integral~for carbong0'3 eV!,
and the plus and minus correspond to conduction and
lence bands, respectively.

Since the high-order harmonic intensity has been assu
to be small, we can identify the vector potentialA in Eq. ~2!
with that of the driving field, ezAz1. Then, expanding
Es(p)/g0 and F(p) in Eq. ~2! into Fourier series with the
Fourier coefficientsEsq , Fsq , respectively, one can obtai
the expression for the current as follows:

j z5
1
2 j 0 (

s51

m

(
q51

`

qEsqFsq sinS 3be

2\c
Az1qD , ~4!
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with j 0516eg0 /A3\mb. Note that the Fourier coefficient
are independent of the driving field, allowing us to separ
the problem of their evaluation from the modeling of th
current spectrum. In the traveling-wave model,Az1
5(c/v1)E1sin(k1x2v1t) and Eq.~4! results in

j z5 (
M50

`

j z
(2M11)sin@~2M11!~k1x2v1t !#, ~5!

where

j z
(2M11)5 j 0 (

s51

m

(
q51

`

qEsqFsqJ2M11~Lq!, ~6!

L53beE1/2\v1, and J2M11( ) are the odd-order Besse
functions.

Equation ~6! describes the HHG provided by the 2D
confined conduction electrons, which does not take into
count intraband resonant transitions inherent in the CN
tice at optical frequencies. To estimate the limitation on
fundamental frequency imposed by the condition for re
nant transitions to be negligible, a general approximate r
tion for the electron state density in a CN@19# can be applied
that establishes the low-frequency edge of the optical tra
tion band in metallic CNs:\v1,3g0b/2RCN . This condi-
tion is decisive for the applicability of the developed theo
of the HHG by 2D-confined conduction electrons in CNs.
the CN radius increases, the upper limit for the permissi
fundamental frequency is shifted to the red. Thus, CNs w
not too large radii are of the most interest. Computatio
results presented in Fig. 1 have been obtained for Ti:sapp

FIG. 1. High-order harmonic spectra of the nonlinear curr
induced in~a! metallic zigzag and~b! armchair CNs by different
driving field strengths as indicated. The normalization isj 055.2
3106 A/m ~a! and 4.63106 A/m ~b!.
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laser emission as the driving field (l150.8 mm! that satis-
fies this condition for chosen CNs. A second restriction
related to the strength of the driving field: the Stark fr
quency corresponding to this field must be smaller than
conduction zone bandwidth,E1,g0 /eb @17#. Otherwise, the
bond ofp electrons with the crystalline lattice breaks dow
resulting in a strong Stark broadening and making the
persion law~3! inapplicable. Note also that our theory ig
nores the role ofs electrons that come to play where th
high-order harmonic frequenciesvN5Nv1 (N52M11)
become comparable with the frequencies of correspond
transitions. Having resonant character, these transitions
disturb the high-order harmonic spectrum~5! in a restricted
number of narrow bands.

Figure 1~a! demonstrates typical high-order harmon
spectra of the current in the single (9,0) zigzag CN cal
lated by Eq.~6! for different values of the parameterL. For
l150.8 mm, the magnitudeL51 corresponds to the driv
ing field strengthE157.03109 V/m or the field intensityI
51.331013 W/cm2. Our analysis has shown that the a
proximation that neglects the influence of the high-order h
monic fields on the electron motion is applicable at least
L,4p. Figure 1~b! presents analogous results for the (6
armchair CN. A simple modification of the dispersion la
@18# and the replacement (L, j 0)˜(L/A3, j 0 /A3) in Eq.
~6! makes Eq.~5! applicable to this case. First, the pictur
display a high efficiency of the HHG, allowing one to co
clude that the metallic CNs are highly nonlinear systems
the IR and optical ranges. As the conduction electrons
metallic CNs offer a high density of states, the efficiency
high-order harmonic conversion falls off very slowly, e
tending with quite reasonable intensity to harmonic numb
as large as 400. Note also that for the given normaliza
coefficient the plots presented in the figure are weakly
pendent onm and this dependence manifests itself only
high orders of harmonics. The following reasoning can
plain this fact. The main contribution to the conductivity
metallic CNs at frequencies corresponding to low-order h
monics is provided by the Fermi electrons, the number
which is inversely proportional tom as long as the CN is
metallic. Consequently, the ratioj z

(N)/ j 0 remains practically
independent ofm. From Eqs.~5! and ~6!, the equation of
harmonic balance,

(
M50

`

~2M11! j z
(2M11)52Im~szz!E1 ,

can readily be obtained, whereszz is the linear dynamica
conductivity of the CN. In fact, the right-hand part of th
equation is the linear current that would be induced by
given driving field in the linear structure with the conducti
ity szz. For curves depicted in Fig. 1~a!, the ratio
u j z

(1)/Im(szz)E1u ranges from 0.15 to 0.05. This shows th
high efficiency of excitation of the current high harmonics
the driving field.

A significant peculiarity of the HHG in CNs is a smoo
decrease of the conversion efficiency up to very high h
monic orders instead of a cutoff at a certain harmonic ord
The cutoff effect is inherent in high-order harmonic spec
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of an intense laser pulse interacting both with ionized g
@7–9# and solid targets@12–15#. Recent experiments with
neon@9# localized the cutoff in the vicinity of the 49th har
monic, with a driving pulse intensity as large a
1014 W/cm2. Our calculations show the extension of th
HHG spectra in CNs far beyond this limit for a given drivin
intensity. Note also that the HHG in CNs produces only o
harmonics and turns out to be sensitive to the driving fi
polarization: only the field component parallel to the CN a
contributes to the process. This is because in CNs, diffe
from the HHG provided by electrons oscillating across
sharp plasma-vacuum interface, the irradiation of high h
monics is produced by longitudinal oscillations of electron

The fact that the HHG spectra in metallic CNs do n
exhibit the cutoff at a certain harmonic number can easily
understood by comparing with systems exhibiting the si
soidal electron dispersion law that leads toj z

(2M11)

;J2M11(CE1 /v1) , with C as a constant. Such a dispersio
law is characteristic of the BC2N nanotube@4# as well as of
lateral superlattices@20# comprising 2D arrays of quantum
dots. The simplest two-level model of the intense pulse
teraction with an ionized gas@21# also results in the above
proportionality of the current harmonics. Mathematical pro
erties of the Bessel functions explain a smooth plateau
low-order harmonics and a sharp cutoff at a certain numb
The crucial distinction between the systems mentioned ab
and CNs arises from the specific electron dispersion law
the hexagonal crystalline structure. For the sinusoidal disp
sion, only one spectral term contributes to the HHG, wh
dispersion law~3! produces an infinite number of spectr
terms in Eq.~6! falling down slowly with q. As a result of
their imposition, a sharp cutoff characteristic for everyone
blurred and transformed into a smooth decrease of the h
order harmonic conversion efficiency. It should be emp
sized that the specific character of the electron dispersio
CNs is responsible for the unexpectedly strong nonlinea
made evident by our analysis. This feature drastically diff
entiates metallic CNs from bulk metals that exhibit a we
nonlinearity because of the parabolic dispersion law.

Thus, we have considered the process of HHG provid
by nonlinear motion of 2D-confined electrons on the surfa
of metallic CNs and predict the strong nonlinearity of CN
and highly efficient HHG, which can be related to the d
namical localization of electrons in strong external field
The high-order harmonic spectra predicted to be gener
by CNs comprise the odd-order harmonics whose inten
smoothly falls off with harmonic number. In this paper w
restricted ourselves to the HHG in a single metallic CN.
large number of CNs with a certain orientational statist
constitute a macroscopic sample, which can be highly an
tropic. For instance, a collection of aligned CNs can
treated as an uniaxial dielectric continuum, with its preferr
axis parallel to the CN’s axis@22#. Its pronounced anisotropy
offers the possibility of meeting the phase-matching con
tion by varying the angle of incidence. The optimal ang
depends on the harmonic order; e.g., there exists a me
nism to tune the radiation frequency to a desired value. N
that such a mechanism is not provided by other method
HHG in both ionized gases and solid targets. Considera
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of this problem as well as the discussion of the HHG
semiconducting zigzag CNs will be given separately.
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