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Highly efficient high-order harmonic generation by metallic carbon nanotubes
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High-order harmonic generation by metallic carbon nanotubes exposed to an intense ultrashort pulse has
been theoretically investigated in the semiclassical approximation. The mechanism of nonlinearity provided by
the motion of conduction electrons below the band of optical resonances has been considered. It has been
shown that the high density of states of conduction electrons in metallic carbon nanotubes and the specific
dispersion law inherent in hexagonal crystalline structure as well as the transverse quantization of the electron
momentum result in a uniquely high efficiency of the current conversion to high-order harmonics.
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The discovery by lijima[1l] of quasi-one-dimensional the sharp plasma-vacuum interface. The dramatic electron-
crystalline carbon nanotub€ENs) has attracted much atten- density gradient in a distance much less than the wavelength
tion to their mechanical and electronic propertigs Pecu- of light forms an oscillating mirrof14,15, giving rise to
liar transport and optical properties of CNs arise from theradiation of odd and even harmonics.
varied kinds of geometrical and chiral symmetry as well as In the present paper, we study an alternative to the above-
from the nanoscale size. In particular, owing to the quasidescribed approaches: optical high-order harmonic genera-
one-dimensional topology of CNs they can manifest eitheiion by conduction electrons confined at the cylindrical sur-
metallic or semiconducting properties, depending on the raface of a metallic CN illuminated by an intense field.
dius and chiral angle. One can expect especially broad pd=onduction electrons with energies below the energy of the
tentialities for the manifestation of such peculiarities on ex-interband transitions move in the crystalline field like free
posing CNs to strong electromagnetic fields, which provide &uasiparticles, with a modified dispersion law allowing us to
nonlinear interaction. The role of nonlinearity in the electron@pply @ quasiclassical approach to describe the electron mo-
transport has been considered in Rg8s4], where a nonlin-  tion. The high density of states for such electrons is charac-
ear mechanism of the chiral current formation that is uniquderistic for metallic CNs. At least three reasons can be given
for CNs has been revealed. The third-order nonlinear opticahy the HHG by CNs is of interest. First, the pronounced
susceptibility of CNs has been evaluated in REF5). It has  €lectron nonlinearity in CNs with the two-dimensioriaD)
been shown that the susceptibility spectrum displays a proconfined electron distribution on the surface shows some po-
nounced resonance, with the line intensity significantly extential for the generation of high-order harmonics and could
ceeding the line intensities in other nonlinear materials.  thus represent a useful mechanism for the generation of co-

The strong nonlinearity of CNs is determined by the factherent ultrashort light pulses at very short wavelengths. Sec-
that the electron motion is governed by a strongly nonpara®nd, the method considered here allows the generation of
bolic dispersion law. This peculiarity of nanotubes raises théadiation with very short wavelengths in a device confined to
question of whether these structures can be used for higt very small, submillimeter, region. Third, the spectra of the
order harmonic generatiofHHG). There is currently great harmonics are expected to provide useful information on the
interest in the production of extreme-ultraviolet and soft-x-dynamics of electron motion in CNs.
ray radiation by HHG. The majority of this work has con- ~ Consider an infinitely long single-shell CN oriented along
centrated on generating harmonics from the interaction othez axis and illuminated by an intense subpicosecond opti-
intense subpicosecond laser pulses with gaseous targegl pulse with the carrier frequenay;. Let the pulse be
[7-9]. The coherent high-order odd harmonics are producedncident normally to the CN'’s axis and polarized along this
in the strong-field regime due to tunneling of electrons to theaXis: E(x,t) = &,E,(x,t). The CN geometry is conventionally
continuum and their return to the atomic core under the acclassified by the integer-valued dual indew, () [2], which
tion of the oscillating field. The high-order harmonic spec-determines the direction of the plane graphite sheet when it
trum has a very characteristic shape: it falls off for the firstrolls up into a cylinder. In a theoretical treatment we restrict
few harmonics, then exhibits a plateau where all the harmoneurselves to the zigzag CNs whose indexiis@) and whose
ics have approximately the same strength, and ends up withradius is given byRcy= J3mb/27, whereb=1.42 A is the
sharp cutoff. Much progress has been achieved using thisteratomic distance in a graphite sheet. A zigzag CN exhib-
approach, and coherent radiation with photon energies up tils metallic properties whem=3q with g as an integer. The
0.5 KeV has been producé¢ii0,11]. A second mechanism of analysis can easily be extended to armchair CNs, which are
the HHG is the interaction of intense laser pulses with solidcharacterized by the indexn;m) and are metallic at any.
targetd12,13. In this case, the electrons oscillate at close toAssuming the high-order harmonic fields to be sufficiently
relativistic velocities across the solid-vacuum boundary oweak, we neglect the role of high-order harmonics in the
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electron dynamics. We also neglect the transverse current on
the CN surface, considering the axial current to be predomi-
nant. In that case we can presume the propagation of high-
order harmonics to be normal to the CN’s axis, i.e., along the
x axis. Then, neglecting the spatial dispersion in the charge
carrier motion, we can describe this motion by the Boltz- -
mann equation in the form as follows: T
10761 e T

10~2 1 Zigzag CN (9,0) (a)
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_____ =1[F(p)—f(p,h)], oy

with e as the electron charge andas the relaxation fre-
qguency. The initial condition is assumed to Hb¢p,0)
=F(p). A typical value ofv in CNs isy~10'? Hz [16]. The 102 Armchair CN (6,6) b)
Fermi equilibrium distribution functior=(p) is given by Bebp 0]
F(p)={1+exd&(p)/ksT]} 1, wherekg is the Boltzmann
constant,T is the temperature, anél(p) is the guantum-
mechanical dispersion law for electrons in the CN. The
vector-potentia/A is related to the electric field by the equa-
tion E=—(1/c)dAldt. Further, we impose the restrictian
<Aw<w; on the pulse bandwidth w. This allows us, on
the one hand, to make use of the slowly varying envelope . T, T
approximation and, particularly, the traveling-wave model 0 100 200 300 400

for the driving field, E,;=E cosk;x—w4t). On the other N

hand, the above inequality leads to the approximate solution g 1. High-order harmonic spectra of the nonlinear current
of Eq. (1), f(p,t)~F(p+eAlc) [17]. In view of that, the  induced in(a) metallic zigzag andb) armchair CNs by different
current density in a single CN can be presented by driving field strengths as indicated. The normalizatiorj js 5.2

x10° A/Im (a) and 4.6<10° A/m (b).
el
* (2mh)2) Jiswz *

wherevge)(p) = 9&(p)/ dp, is thez component of the electron
velocity. The abbreviation 9tBZ in Eq. (2) stands for the
first Brillouin zone in the CN. A fundamental distinction of
the CN from the plane monatomic graphite sheet is in the -

transverse quantization of the charge carrier mofib8]. . C2M+1) _

Owing to this, the Brillouin zone of the graphite sheet, which J2= Mzzo Iz SIN(2M 1) (kyx = @41, ®)
is hexagonal, is transformed in CNs into a discrete popula-

tion of straight lines inside the hexagon. In the tight-bindingwhere

approximation, this results in the dispersion law of conduc-

2hun
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e
p+EA dp, @ with jo=16ey,//3%mb. Note that the Fourier coefficients
are independent of the driving field, allowing us to separate
the problem of their evaluation from the modeling of the
current spectrum. In the traveling-wave moded,;

=(c/wq) E;sink;x—w4t) and Eq.(4) results in

tion electrons in zigzag CNs as folloW8]: m.o >
[P V=jo 2 D deFsqdamsa(Ad),  (6)
, s s=1q=1
E(p)=E vy 1+4 cos{ 57 )co{ﬁ>
A=3beE/2hw, and Jo\ . 1() are the odd-order Bessel
s\ 112 functions.
+4 cod F” (s=1,2,...m), 3 Equation (6) describes the HHG provided by the 2D-

confined conduction electrons, which does not take into ac-
count intraband resonant transitions inherent in the CN lat-
tice at optical frequencies. To estimate the limitation on the
afundamental frequency imposed by the condition for reso-
Q]ant transitions to be negligible, a general approximate rela-
Sion for the electron state density in a ¢\9] can be applied
that establishes the low-frequency edge of the optical transi-
tion band in metallic CNsf w;<37yyb/2Rcy. This condi-
tion is decisive for the applicability of the developed theory
of the HHG by 2D-confined conduction electrons in CNs. As
the CN radius increases, the upper limit for the permissible
mo o 3be fundamental frequency is shifted to the red. Thus, CNs with
=1 i 2~ not too large radii are of the most interest. Computational
J2=2o 521 ;1 seFsq Sm( 2h AZlq)’ @ results presented in Fig. 1 have been obtained for Ti:sapphire

where vy, is the overlapping integrdfor carbony,~3 eV),
and the plus and minus correspond to conduction and v
lence bands, respectively.

Since the high-order harmonic intensity has been assum
to be small, we can identify the vector potentfain Eq. (2)
with that of the driving field, e,A,;. Then, expanding
Es(p)/vo and F(p) in EqQ. (2) into Fourier series with the
Fourier coefficientssq, Fgq, respectively, one can obtain
the expression for the current as follows:
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laser emission as the driving field {=0.8 um) that satis- of an intense laser pulse interacting both with ionized gas
fies this condition for chosen CNs. A second restriction iS[7—9] and solid target§12—15. Recent experiments with
related to the strength of the driving field: the Stark fre-neon[9] localized the cutoff in the vicinity of the 49th har-
quency corresponding to this field must be smaller than thénonic, with a driving pulse intensity as large as
conduction zone bandwidtk,; < y,/eb[17]. Otherwise, the 104 W/cn?. Our calculations show the extension of the
bond of 7 electrons with the crystalline lattice breaks down, HHG spectra in CNs far beyond this limit for a given driving
resulting in a strong Stark broadening and making the dismtensity. Note also that the HHG in CNs produces only odd
persion law(3) inapplicable. Note also that our theory ig- harmonics and turns out to be sensitive to the driving field
nores the role ofr electrons that come to play where the yo\arization: only the field component parallel to the CN axis
high-order harmonic frequenciesy=Nw; (N=2M+1)  cqnriputes to the process. This is because in CNs, different
become compalrable with the frequencies of correspondmﬂom the HHG provided by electrons oscillating across a
aéharp plasma-vacuum interface, the irradiation of high har-
aumber of narrow bands monics is produced by longitudinal oscillations of electrons.
' The fact that the HHG spectra in metallic CNs do not

Figure Xa) demonstrates typical high-order harmonic . . . .
spectra of the current in the single (9,0) zigzag CN calcy EXhibit the cutoff at a certain harmonic number can easily be

lated by Eq.(6) for different values of the parametdr. For un.derstood by comparing with systems exh|b|t|n.gzbh+el)smu-
\;=0.8 um, the magnitude\ =1 corresponds to the driv- SOidal electron dispersion law that leads ‘lé_ _

ing field strengthE;=7.0x 16° V/m or the field intensityt ~ ~Jam+1(CE1/w;), with Cas a constant. Such a dispersion
=1.3x 10" W/cn?. Our analysis has shown that the ap-law is characteristic of the BfSI nanotubg 4] as well as of
proximation that neglects the influence of the high-order harlateral superlattice$20] comprising 2D arrays of quantum
monic fields on the electron motion is applicable at least foidots. The simplest two-level model of the intense pulse in-
A <47, Figure 1b) presents analogous results for the (6,6)teraction with an ionized ga1] also results in the above
armchair CN. A simple modification of the dispersion law proportionality of the current harmonics. Mathematical prop-
[18] and the replacement\( jo)—(A/v3, jo/v/3) in Eq. erties of the Bessel functions explain a smooth plateau for
(6) makes Eq/(5) applicable to this case. First, the pictures low-order harmonics and a sharp cutoff at a certain number.
display a high efficiency of the HHG, allowing one to con- The crucial distinction between the systems mentioned above
clude that the metallic CNs are highly nonlinear systems irand CNs arises from the specific electron dispersion law of
the IR and optical ranges. As the conduction electrons inhe hexagonal crystalline structure. For the sinusoidal disper-
metallic CNs offer a high density of states, the efficiency ofsion, only one spectral term contributes to the HHG, while
high-order harmonic conversion falls off very slowly, ex- dispersion law(3) produces an infinite number of spectral
tending with quite reasonable intensity to harmonic numberserms in Eq.(6) falling down slowly withg. As a result of

as large as 400. Note also that for the given normalizatioRnejr imposition, a sharp cutoff characteristic for everyone is
coefficient the plots presented in the figure are weakly dep|yrred and transformed into a smooth decrease of the high-
pendent omm and this dependence manifests itself only atyrger harmonic conversion efficiency. It should be empha-
high orders of harmonics. The following reasoning can exw;, e that the specific character of the electron dispersion in

plain t.h|s fact. The malnlcontrlbutlon to.the conductivity of CNs is responsible for the unexpectedly strong nonlinearity
metallic CNs at frequencies corresponding to low-order har-

S . . ade evident by our analysis. This feature drastically differ-
monics is provided by the Fermi electrons, the number of . . o
L . . entiates metallic CNs from bulk metals that exhibit a weak
which is inversely proportional ton as long as the CN is

. (N , . nonlinearity because of the parabolic dispersion law.
metallic. Consequently, the ratig ’/j, remains practically . .
. i Thus, we have considered the process of HHG provided
independent ofm. From Egs.(5) and (6), the equation of ! ) !
harmonic balance by nonlinear motion of 2D-confined electrons on the surface

of metallic CNs and predict the strong nonlinearity of CNs
and highly efficient HHG, which can be related to the dy-
- (aM+1) namical localization of electrons in strong external fields.
ME:() (2M+1)j; =—Im(o;,)E;, The high-order harmonic spectra predicted to be generated
by CNs comprise the odd-order harmonics whose intensity
smoothly falls off with harmonic number. In this paper we
can readily be obtained, where,, is the linear dynamical restricted ourselves to the HHG in a single metallic CN. A
conductivity of the CN. In fact, the right-hand part of this large number of CNs with a certain orientational statistics
equation is the linear current that would be induced by theconstitute a macroscopic sample, which can be highly aniso-
given driving field in the linear structure with the conductiv- tropic. For instance, a collection of aligned CNs can be
ity o,,. For curves depicted in Fig. (4, the ratio treated as an uniaxial dielectric continuum, with its preferred
|j§l)/|m(aZZ)El| ranges from 0.15 to 0.05. This shows the axis parallel to the CN’s axif22]. Its pronounced anisotropy
high efficiency of excitation of the current high harmonics by offers the possibility of meeting the phase-matching condi-
the driving field. tion by varying the angle of incidence. The optimal angle
A significant peculiarity of the HHG in CNs is a smooth depends on the harmonic order; e.g., there exists a mecha-
decrease of the conversion efficiency up to very high harnism to tune the radiation frequency to a desired value. Note
monic orders instead of a cutoff at a certain harmonic orderthat such a mechanism is not provided by other methods of
The cutoff effect is inherent in high-order harmonic spectraHHG in both ionized gases and solid targets. Consideration

disturb the high-order harmonic spectryB) in a restricted



RAPID COMMUNICATIONS

R780 G. YA. SLEPYAN et al. PRA 60

of this problem as well as the discussion of the HHG inProject No. WEI-001-98. G.Ya.S. and S.A.M. are grateful to
semiconducting zigzag CNs will be given separately. the Max-Born Institute for hospitality. The authors are grate-

The research was partially supported through INTAS, unful'to Dr. O. Yevtushenko, Dr. A. Khrutchinski, and Dr. |.

der Project Nos. 96-0467 and 97-2018, and BMBF undeKYan for helpful discussions.

[1] S. lijima, Nature(London 354, 56 (1991). [11] Ch. Spielmaret al,, Science278, 661 (1997).
[2] R. Saito, G. Dresselhaus, and M. S. Dresselhd&lssical [12] D. von der Lindeet al,, Phys. Rev. A52, R25(1995.

Properties of Carbon Nanotubéknperial College Press, Lon- [13] P. A. Norreyset al, Phys. Rev. Lett76, 1832(1996.

don, 1998. [14] S. V. Bulanov, N. M. Naumova, and F. Pegoraro, Phys. Plas-
[3] O. M. Yevtushenko, G. Ya. Slepyan, S. A. Maksimenko, A. masl, 745(1994.

Lakhtakia, and D. A. Romanov, Phys. Rev. Let9, 1102 [15] P. Gibbon, Phys. Rev. Let?6, 50 (1996.

(1997. [16] R. A. Jishi, M. S. Dresselhaus, and G. Dresselhaus, Phys. Rev.
[4] G. Ya. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. M. Yev- B 48, 11 385(1993.

tushenko, and A. V. Gusakov, Phys. Rev5R 9485(1998. [17] F. G. Bass and A. A. BulgakoKinetic and Electrodynamic
[5] J. Dong, J. Jiang, J. Yu, Z. D. Wang, and D. Y. Xing, Phys. Phenomena in Classical and Quantum Semiconductor Super-

Rev. B52, 9066(1995. lattices (Nova Science Publishers, New York, 1997

[6] X. Wan, J. Dong, and D. Y. Xing, Phys. Rev. 88, 6756 [18] R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus,
(1998. Phys. Rev. B46, 1804(1992.

[7] A. L'Huillier and P. Balku, Phys. Rev. Let%0, 774(1993; J. [19] J. W. Mintmire and C. T. White, Phys. Rev. Le&1, 2506
Macklin, J. Kmetec, and C. Gordoibid. 70, 776 (1993. (1998.

[8] M. Lewenstein, Ph. Balcou, M. Yu. Ivanov, A. L’Huiller, and [20] E. P. Dodin, A. A. Zharov, and A. A. Ignatov, J. Exp. Theor.
P.B. Corkum, Phys. Rev. A9, 2117(1994). Phys.87, 1226(1998.

[9] Y. Tamaki, J. Itatani, Y. Nagata, M. Obara, and K. Mi- [21] A. E. Kaplan and P. L. Shkolnikov, Phys. Rev. 49, 1275
dorikawa, Phys. Rev. LetB82, 2506(1999. (1994).

[10] Z. Chang, A. Rundquist, H. Wang, M. M. Murnane, and H. C. [22] A. Lakhtakia, G. Ya. Slepyan, S. A. Maksimenko, O. M. Yev-
Kapteyn, Phys. Rev. Let?9, 2967(1997. tushenko, and A. V. Gusakov, Carb86, 1833(1998.



