
RAPID COMMUNICATIONS

PHYSICAL REVIEW A AUGUST 1999VOLUME 60, NUMBER 2
Atom loss from Bose-Einstein condensates due to Feshbach resonance
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In recent experiments on Na Bose-Einstein condensates@S. Inouyeet al., Nature392, 151~1998!; J. Stenger
et al., Phys. Rev. Lett.82, 2422 ~1999!#, large loss rates were observed when a time-varying magnetic field
was used to tune a molecular Feshbach resonance state near the state of atom pairs that belong to the
condensate many-body wave function. A mechanism is offered here to account for the observed losses. It is
based on the deactivation of the resonant molecular state by interaction with a third condensate atom, with a
deactivation rate coefficient of magnitude;10210 cm3/s. @S1050-2947~99!50508-8#

PACS number~s!: 03.75.Fi, 32.80.Pj, 32.60.1i, 34.50.Ez
n
a

he
a
n

ne
nt
ity

i-
fa
e

lo

cc

co
-

la
v
v

-
en
by

—
m

iv
W

ree
en-

-
be
ms

im-
;
p-
ro

and
-

ns,
ths.
r

ical
f

ns

o-
Experiments have been carried out recently@1,2# ~see also
the review@3#!, in order to control the interatomic interactio
underlying the properties of a Bose-Einstein condens
~BEC!. One way to achieve this@1,2# is by tuning a magnetic
field B into the vicinity of a Feshbach resonance, with t
resulting modification of the atom-atom scattering length
predicted@4,5#. The experiments carried out with Na in a
optical trap measured two distinct features:~a! the change in
scattering length and large collisional atom losses obtai
with a slow sweep ofB that stopped short of the resona
field B0, and ~b! a near-catastrophic loss of atom dens
obtained with a fast sweep ofB through theB0 region. Two
groups of investigators@6,7# have recently proposed a un
molecular mechanism relating the latter feature to a
sweep-induced transfer of atoms out of the condensat
become hot atoms in the trap.

We present here another possible mechanism of atom
that can account for the slow-sweep results, and that m
also play a role in the fast-sweep case. The temporary o
pation of the vibrationally excited molecular statem, coupled
by the resonance to atom pairs in the condensate, is
verted to a stable molecular dimerd by a deactivating inelas
tic collision with a third atom from the condensate:

Na1Na
Na2~m!, ~1!

Na2~m!1Nã Na2~d!1Na1DE, ~2!

whereDE is the excess kinetic energy released in the ine
tic process. The deactivation states can be lower-lying ro
brational levels in the same spin state as the resonant le
or levels belonging to another spin state. While step~1! is
completely reversible, step~2! is irreversible, since the en
ergy release provides the products with sufficient kinetic
ergy to escape the trap. This latter step is characterized
deactivation rate coefficient 2g ~in units of cm3/s). The two
steps described above may be followed by a third one
secondary collisions of the products with condensate ato

Except for the magnitude ofg, which we extract by fitting
the experimental data, all expressions below can be der
analytically, using previously determined parameters.
PRA 601050-2947/99/60~2!/765~4!/$15.00
te

s

d

st
to

ss
ay
u-

n-

s-
i-
el,

-
a

s.

ed
e

begin by using a variational method to derive a set of th
coupled Gross-Pitaevskii equations for the atomic cond
sate statewa(r ,t), the resonant molecular statewm(r ,t), and
a representative deactivation stated. Because the deactiva
tion stated never accrues a significant population, it can
eliminated from the two remaining equations, leaving ter
dependent ong,

i\ẇa5S 1

2m
p̂21Va~r !1maB~ t !1Uauwau2Dwa

1Uamuwmu2wa12g* wa* wm2 i\guwmu2wa , ~3!

i\ẇm5S 1

4m
p̂21Vm~r !1mmB~ t !1Umuwmu2Dwm

1Uamuwau2wm1gwa
22 i\guwau2wm . ~4!

These equations are similar to those recently derived by T
mermanset al. @3,8#. Here m is the mass of the Na atom
Va(r ) andVm(r ) are the atomic and molecular optical tra
ping potentials (Vm includes the resonance detuning for ze
magnetic field!; r is the position in the trap;B(t) is the
applied homogeneous magnetic field;ma and mm are the
atomic and molecular magnetic moments, respectively;
Ua , Um , andUam are, respectively, zero-momentum atom
atom, molecule-molecule, and atom-molecule interactio
proportional to the corresponding elastic scattering leng
Although Um and Uam are not known, the results of ou
analysis are practically insensitive to their values.

The constantg in Eqs. ~3! and ~4! responsible for the
atom-Feshbach coupling is closely related to the empir
parameterD used in Refs.@1,2# to describe the strength o
the resonance as a function of the fieldB:

ugu252p\2uaaumD/m, ~5!

whereaa is the off-resonance scattering length. Calculatio
@6,9# give aa53.4 nm, m5mm22ma53.3mB ~where mB
59.27310224 J/T is the Bohr magneton!, and D
50.001 mT and 0.1 mT, respectively, for the two res
nances observed at 85.3 mT~853 G! and 90.7 mT~907 G!
R765 ©1999 The American Physical Society
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@1,2#. These values ofD agree with the measured value f
the 90.7-mT resonance, and with the indirectly inferred or
of magnitude for the 85.3-mT resonance.

The analysis below neglects the kinetic-energy terms
Eqs.~3! and ~4!, in accord with the Thomas-Fermi approx
mation. This procedure reduces Eqs.~3! and~4! to a system
of ordinary differential equations forcomplexwa(r ,t) and
wm(r ,t) that depend parametrically onr . The end result is a
set of four real equations that can then be solved nume
cally, for a given value ofg. As initial conditions one can
use either a Thomas-Fermi distribution or a homogene
(r -independent! distribution equal to the mean trap densit

The numerical solutions presented below, for both the
and slow sweep experiments@1,2#, were carried out using
homogeneous initial conditions. However, as we show
low, all significant results concerning the slow-sweep exp
ment can be derived analytically from Eqs.~3! and~4! with-
out recourse to numerical solutions. In this experiment
time-dependent magnetic field was linearly changed from
initial value of B to a final value closer to resonance, a
then the density was measured by shutting off the trap fi
and letting the condensate expand. The experiment wa
peated using various final values of the magnetic field,
the loss was plotted as a function of this final value. It w
noted@2# that the results fit a three-body rate equation for
atomic densityn(r ,t)5uwa(r ,t)u2 of the typeṅ'2K3n3.

Analysis of Eqs.~3! and ~4! shows that, out of the fou
real coupled equations forwa andwm , a single rate equation
for the atomic densityn(r ,t) can be extracted whenever th
following ‘‘ fast decay’’ approximation holds:

ugu2!\2g2n~r ,t !. ~6!

Given condition~6!, the population of the molecular conde
sate is depleted fast enough to keepnm(r ,t)5uwm(r ,t)u2
!n(r ,t) at all times. The resulting rate equation attains
nonlinear form

ṅ~r ,t !52
6ugu2gn3~r ,t !

@V~r !2mB~ t !#21@\gn~r ,t !#2
, ~7!

FIG. 1. Three-body rate coefficient (K3) vs the stopping value
of the magnetic field, calculated with three different values of
deactivation rateg ~in units of cm3/s), on approaching the reso
nance from below or above. These are compared with the exp
mental results@2# ~squares, triangles, and circles! for several values
of the ramp speeddB/dt ~in mT/s!.
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where V(r )52Va(r )2Vm(r ). Equation ~7! has a form
analogous to a Breit-Wigner resonant scattering expres
adapted for zero-momentum collisions. In the Breit-Wign
form one interprets 2gn as the width of the decay channe
and the width of the input channel is proportional tougu2.
This observation establishes a link between the macrosc
approach used here and microscopic approaches that trea
loss rate as a collision process.

Very close to resonance@whereB(t) is within 1 mT of
resonance# the behavior of Eq.~7! effectively attains a one-
body form. But as long as we stay out of this narrow regio
by obeying the ‘‘off-resonance’’ condition

\gn~r ,t !!uV~r !2mB~ t !u, ~8!

we can write Eq.~7! ~to a very good approximation! in the
three-body formṅ52K3(r ,t)n3, with

K3~r ,t !5
12p\2uaaugD

mm@B~ t !2V~r !/m#2
. ~9!

The dependence on the scattering lengthaa follows from Eq.
~5!. Equation~9! is similar to an expression derived earli
@3,8# up to a factor 3/2, which reflects the fact that thr
atoms are lost per one deactivating collision.

If a magnetic-field ramp is assumed to start at timet0 and
end at timet, while Eq.~8! applies throughout the ramp, the
the rate equation may be solved analytically, usingK3 of Eq.
~9!, to give

n~r ,t !5n~r ,t0!@1124p\2uaauDgn2~r ,t0!

3~ t2t0!/~mmḂ2tt0!#21/2, ~10!

where Ḃ is the magnetic-field ramp speed and the extra
lated time of exact resonance is chosen to bet50. We shall
refer to the combination of Eqs.~6! and~8! that leads to Eq.
~9! as the ‘‘three-body’’ approximation.

The graphs shown in Figs. 1 and 2 pertain to the slo
sweep MIT experiment for the strong 90.7-mT resonan
This resonance has been approached from below with
ramp speeds, and from above with one. Figure 1 showsK3

e

ri-

FIG. 2. Surviving mean density vs the stopping value of t
magnetic field, calculated with three different values of the ra
speeddB/dt ~in mT/s!. The resonance was approached from bel
with two ramp speeds, 13 mT/s and 31 mT/s, or from above, w
the ramp speed26 mT/s. Other notations as in Fig. 1.
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vs the stopping value ofB. The difference between Eqs.~9!
and~10! and the results of a direct numerical solution of Eq
~3! and ~4! for all ramp speeds is so small that the cor
sponding plots are indistinguishable. The remaining ato
density, at the momentt of stopping the ramp, is shown i
Fig. 2. The calculated plots were obtained usi
homogeneous-density initial conditions, starting from aB
value of 89.4 mT on approach from below and 91.6 mT fro
above. The corresponding initial mean densities were
tracted from the experimental data@2#. The graphs clearly
show a best fit withg of the order of 10210 cm3/s, which
~given a density of about 1015 cm23) implies a deactivation
time of ;1025 s.

An inelastic rate coefficient 2g with a magnitude of
10210 cm3/s appears to be very reasonable. First, this va
is two orders of magnitude smaller than the upper bound
by the unitarity constraint on theSmatrix @10#. In the limit of
small momentum, unitarity provides 2g<\l/m, where l
~the de Broglie wavelength! in the current situation is limited
by the experimental trap dimensions. This constraint sets
upper bound of 2.531028 cm3/s to 2g. Second, our esti-
mate of 10210 cm3/s for g is consistent with the order o
magnitude of recently calculated@11# vibrational deactiva-
tion rate coefficients due to ultracold collisions of He wi
H2 in highly excited vibrational levels.

The three-body approximation does not hold very close
resonance, and is therefore inapplicable to a descriptio
the fast-sweep experiment, in which the Zeeman shift w
swept rapidly through the resonance, causing dramatic lo
~see Refs.@1,2#!. Nevertheless, the fast decay approximat
~6! may still be valid. A simple analytical expression ca
then be derived for the fast-sweep experiment if, in additi
the magnetic-field variation lasts long enough to reach
‘‘ asymptotic’’ condition

mdB@\gn, ~11!

FIG. 3. Ratio of surviving trap populationN to the initial oneN0

for the 85.3-mT~853-G! and 90.7-mT~907-G! resonances in the
homogeneous-density approximation vssn0 @where the parameters
is defined by Eq.~12! andn0 is the initial density#. The curves show
results of calculations carried out for different magnitudes of
coefficientg ~in units of cm3/s). The asymptotic analytical resu
Eq. ~12! for both resonances is given by the dotted line. The pl
for the 90.7-mT resonance withg51029 cm3/s and for the
85.3-mT resonance withg510210 cm3/s are practically indistin-
guishable. The results of the MIT fast-sweep experiment@2# are
shown for comparison.
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wheredB is the range of variation ofB on both sides of the
resonance. The ramp starting and stopping times can the
approximately extended to6`, obtaining~for all positions
r )

n~r ,`!5
n~r ,2`!

11sn~r ,2`!
, s5

12p2\uaau
m

D

uḂu
. ~12!

This asymptotic result reproduces a characteristic dep
dence on the ramp speed, and is independent ofg. Assum-
ing, as before, a homogeneous initial density within the tr
Eq. ~12! also describes the loss of the total populationN(t)
5*n(r ,t)d3r .

An asymptotic expression for the total population can a
be found when the homogeneous distribution is replaced
the Thomas-Fermi one~see Ref.@12#!. In this case, givenn0
is the maximum initial density in the center of the trap,

N~`!

N0~2`!
5

15

2sn0
H 1

3
1

1

sn0
2

1

2sn0
A11

1

sn0

3 lnF SA11
1

sn0
11D Y SA11

1

sn0
21D G J .

~13!

The analytical results of Eq.~12!, together with the direct
numerical solutions of Eqs.~3! and~4! for the homogeneous
initial distribution, are compared in Fig. 3 with the results
the fast-sweep experiment@1,2#. The numerical solutions
clearly show a dependence ong, as assumptions~6! and~11!
underlying the asymptotic result do not hold in this case. T
loss reaches a maximum at a value ofg, dependent on the
various parameters~e.g., g'10210 cm3/s for the 90.7-mT
resonance whensn0'2), as a result of the conflicting
asymptotic and fast-decay conditions~6! and~11!. These so-
lutions are, however, not as sensitive to the value ofg as
were the fits to the slow-sweep experiments discussed ab
Although one may claim a ‘‘best’’ fit ofg to each of the two
resonances, an agreement with the results of the fast-sw
experiment is not conclusive. Thus other proposed mec
nisms@6,7# may also contribute to the loss.

e

s

FIG. 4. Same as Fig. 3 withg51029 cm3/s only, but taking
account of secondary collisions using two values of the param
sb ~in units of cm3). The asymptotic result, Eq.~12! ~without tak-
ing account of secondary collisions!, is shown as a dotted line fo
comparison.
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Additional atom loss may be provided by secondary c
lisions. A qualitative idea concerning their effect can be o
tained by the following arguments. The deactivation react
Eq. ~2! produces 4gnnm ‘‘hot’’ particles ~atoms and mol-
ecules! in a unit volume per unit time. Traversing a distan
b at a speedv, these particles create new hot particles in
cascading process. The density of hot particles may the
estimated asnh'4gnnm(b/v)exp@bs(n1nm)#, where s is
the elastic collision cross section, considered here to be id
tical for atom-atom and atom-molecule collisions. The ad
tional loss rate due to these secondary collisions is estim
as vsnnh for the atomic condensate andvsnmnh for the
molecular condensate. An account of these losses ca
taken by adding the term 1/2vsnh to gnm in Eq. ~3! and to
gna in Eq. ~4!. This loss rate depends essentially on t
productsb. A conservative estimate of this product is o
tained by takings50.5310212 cm2 ~the elastic Na-Na
cross section at 0.1 K@13#, a typical vibrational deactivation
energy!, andb51023 cm ~the condensate-cloud radius!. A
more realistic estimate may reach a higher value on acc
of the larger axial condensate length, the rise of the ela
M
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cross section at energies below;10 mK @13#, and the added
contribution of inelastic collisions. Two values ofsb are
therefore used in Fig. 4. This figure shows that the second
collisions may appreciably increase the condensate loss.
effects of secondary collisions on the slow-sweep results
generally less prominent, adding up an insignificant corr
tion to the estimated value ofg.

Another mechanism that may contribute appreciably
the loss rate in the fast-sweep case is the unimolecular
cess discussed in Refs.@6,7#. This treatment also takes int
account the effect of the kinetic-energy terms neglected h

In conclusion, the mechanism proposed here~based on
the deactivation of the molecular Feshbach resonance
by an inelastic collision with a third atom! provides a rea-
sonable explanation of the slow-sweep experiments. It a
offers an effect competing with other mechanisms in the fa
sweep case.

The authors are most grateful to Wolfgang Ketterle a
Joern Stenger for helpful information regarding the MIT e
periments, and to Fred Mies for useful comments.
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