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Two-color control of localization: From lattices to spin systems
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We demonstrate control of quantum dynamics in a finite model system described by a tight-binding Hamil-
tonian, through interaction with a multifrequency external field. Effective defects can be introduced into the
lattice by a two-frequency field, and the character of the defects can be controlled by the relative phase between
the two field components. These field-induced defects imply robust localization of d(€$sede} states on
lattice sites. Implications for a spin system in crossed magnetic fields are disd.&E@80-294©9)51211-0

PACS numbs(s): 42.50.Hz

The desire to control dynamics of a quantum system istronger, and robust with respect to small changes in the
both a driving force and a unifying theme in many areas ofexternal field strength. The two-frequency field introduces
modern laser-matter interaction physics. For example, atoraffective defects into the lattice, the strength of which de-
optics focuses on controlling the translational degrees opends on the relative phase of the two colors. For equal
freedom of an atom. Molecular opti¢4] strives to extend couplings between the sites the defects are induced at the
this ability to molecules. Coherent contrf2] focuses on ends of the lattice, but for couplings that are not all equal the
using laser fields to manipulate the internal dynamics ofdefects are also induced within the lattice. In the presence of
atomic and molecular systems; e.g., creating complex supeflecoherence, the two-frequency driving can induce a tunnel-
positions of quantum states according to a given prescriptiofd current, whose direction is controlled by the relative
[3]. phase between the frequencies.

Following the experimenf4], coherent control in solid- The Hamiltonian for the tight-binding system together
state systems became an active dgh In quantum-well ~ With an external time-dependent field is
semiconductor structures, one of the objectives is the control
of electron motion between quantum wells. An intriguing A
theoretical prediction is the coherent suppression of electron
tunneling between the well6] by application of a strong
monochromatic THz electric field. Following the first experi-
ments in quantum-well structurdd], this idea has been
transplanted back into the quantum-optics context: narrow- N
ing of Bloch bands has been observed for cold neutral atoms +V(t)2 n|n){n|, (1)
in optical latticeq 8], with ac driving due to phase modula- 1
tion of the counterpropagating waves that create the lattice.

Suppression of tunneling is caused by a destructive intewhereN is the number of lattice sitegn) is the state local-
ference of different multiphoton quantum pathways, and haszed at thenth site and the},’'s are couplings between ad-
far reaching consequences in the case of the tight-bindingcent sitesV(t) =£(t)d is periodic with periodT =27/ w.
lattice. For example, manipulation of the strength of the THzV(t) arises from the interaction with an external electric field
field allows control of the effective strength of the existing £(t), d being the well spacing.
defects in the lattice, the Anderson localization length, and The Hamiltonian(1) could describe an electron in a mul-
consequently affects the temperature dependence of electrtiple quantum-well structure, or an ion in an optical lattice.
transport9]. For neutral atoms in an optical lattice analogous Hamiltonian

We have studied numerically and analytically coherentis realized by phase-modulating the optical waves creating
control of quantum dynamics in a tight-binding model sys-the lattice[8]. Equation(1) can also be used to represent the
tem subject to a multifrequency periodic external field, ex-dynamics of circular Rydberg atomic states in a circularly
tending the monochromatic field stud®]. Although our polarized microwave fieldthe so-called Trojan stategl0],
analytical results apply to any periodic field, we focus on theor the Zeeman effect in crossed magnetic fields. The coales-
simple case of only two frequencies and 2w, where al- cence of Zeeman lines in an oscillating magnetic field
ready we find a wealth of new effects. crossed with a constant magnetic field, observed almost 30

First, unlike the single-frequency case, in a two-frequencyyears agd11], is formally equivalenf9] to the suppression
field a delocalized initial state can be localized adiabaticallyof tunneling discovered in 1990s. We also note recent con-
at a single well, because the Floguet states of the drivetrol experiments[12], where the time-dependent magnetic
system can be so localized. Second, the site where the elefield was actively controlled to create a prescribed coherent
tron is localized may be changed by adjusting the relativesuperposition of Zeeman levels.
phase of the two frequencies. Third, compared to its single- To explore the dynamics of the system described by Eq.
frequency counterpart, the two-frequency localization is(1), we first apply a unitary transformatiofW¥(t))
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=0(t)|w'(t)), where U(t)=exd—ifiV(t')dt'N] and N 1.0
=3n|n)(n|. This is a direct analog of the Kramers-
Henneberger transformation often used for studying atoms in

(a)

A
strong high-frequency fieldsl3]: it gives the exact solution E 03
of the problem wherH,=0. The transformed Hamiltonian v
is 0.0
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where G(t)=exd —i/'V(t")dt']. For a periodicV(t),G(t) -
=3¢ _..Gexp(ikat). If V(t) includes a slowly varying ~ 0.0 s . . .
envelopef(t), such as we shall introduce later, to turn on the 0 100 200 300 400
laser field, therG, is replaced byf (t)G, . The population of Time, field cycles

the nth well is P,=[(n| W (t))]>=|(n| ¥’ (t))|>. f f oal o
e N : FIG. 1. One-frequency vs two-frequency localization 2
The HamiltoniarH" described\ degenerate energy levels wells. Curves show population in the stdte=1). Initially |¥(t

coupled by a multicolor “field” G(t). Its time-independent : L .

part%o prgvides a resonant coupl(in)g, and dominat%s over thé %22'21?2?;;55 ;m/;;n(g;] |Tswlgs}traerc11t3 gr? ggz)vs}lglzezfrggug;ﬁy,
high-frequency, off-resonance coupling&exp(—ikot), =°1/4 ¢=.0- ' "o AR

which primarily cause energy shifts similar to ac Stark shifts. '

Following the usual procedure for ac Stark shifts, we elimi- . o _

nate the fast time dependence by treating terms such as Equation(3) shows that the oscillating fiel(t) induces
Qo[ Gyexp(—ikat) n){n+1|+Gf explket)|n+1)(n[] in  energy shiftsA, in the dlagon_al terms that are propozrtlonal
second-order time-dependent perturbation theory. For ex® oyfference_s in the coupling strengthd,,=Gx (2,
ample, the termG} exp(kwt)|n+1)(n| gives an amplitude —{ln), breaking the degeneracy of the site energies. The
(N+1|W’ (1)) =—(n|¥")Q,G} exp(kat)/ko in the stateln dls:[rlbutlon of shifts among the lattice sites is determined by
+1) which, when substituted back intx{)n|\if’(t)), yields Q,’s, but the overall magnitude and sign are controlled by

- , 2 * L S _ the magnitude and sign dby, which are determined by
sc<rinb|;PS ,E:Rg?;g;&?gﬂ:;’ This diagonal contribution de V(t). Furthermorey(t) modifies the couplings between the

. sites: Q) ,— Q,,Go.
When all the shifts are accounted for to second order we When\V/(t) is such thaGy is zero,H, is diagonal, with

obtain the following time-independent effective Hamil- ) S ) )
tonian: eigenvalues, or quasienergieg,=Gy(;_,—Q;) and
eigenstategn). The Floquet states of the dressed system
N-1 become localized on lattice sites. Thus, coherent decoupling
o L= E Q. [Goln){n+1|+G¥[n+1)(n|] of lattice sites, or coherent destruction of tunneling between
1 them, has been achieved.
N For the case of a single-frequency fialdt) = Vycoswt,
+Gs >, (Q2_,—Q3)|n)(n|, (3  the conditionG,=0 for the coherent decoupling of lattice
T sites reduces to the well-known res(i8] Jy(Vo/w)=0,
whereJ, is the zero-order Bessel function. However, for a
where Gy =3,.G\G}/kw,Qo=0Qy=0, and the result single-frequency fieldGs=0, since|Gy=|G_|. Conse-
holds if w>|G,Q,| for all n. quently there are no diagonal energy shifts; the on-site ener-
Of the same order as the ac Stark shifts are the “twogies remain degenerate. Tunneling is destroyed oni@at
photon” Raman-type couplings between the degenerateJo(Vo/w)=0, and recovers as soon &g deviates from
states|n) and|n+2) due toG(t)==G,exp(—ikwt). These Z€ro, requiring exact tuning ofy/w.
terms are absent from E€B) because the corresponding ma-  In contrast, the addition of the second frequenyt)

trix elements that enter to second ordef)(?.,  =Volcos@!)+cos(t+ )], ensures thalG,|#[G_ and
=001 13k20CG_k/kw, vanish, as can be seen by S0Gx#0 (exceptatp= = m/2). This lifts the degeneracy of
changing the summation index frokito — k. the site energies, creating energy defects in the lattice and

The stationary eigenstat¢® ') of H.; are approxima- Making localization of the Floquet states robust. Localization

. ~ - persists as long as the energy shifts are large enough:
tions to the Floquet states bf’ and, hence, oH (up to the Qn|Go|<|Gz(Qﬁ+1—Q§71)|-

phase-altering transformatids). The dominant part of the "3iq qualitative difference between the effects of single-
rapid time dependence ¢%)=U(t)|¥") (with the period  frequency and two-frequency fields is illustrated in Fig. 1.
of the driving field is included inU(t). The relatively slow The Schrdinger equation given b&q in Eq. (1) was inte-
time dependence ¢ff'’), due, for instance, to the turning on grated numerically to obtain the populations of the sites as
or off of the laser field, is included il by replacingG,  functions of time. The results shown in Fig. 1 are for a
with f(t)Gy. We now discuss the rich physics contained indouble-well system withp=0. In a monochromatic field
Hgss and illustrate the effects with numerical examples.  [Fig. 1(a)], a small 5% detuning o¥, from the value at
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y FIG. 3. Phase control of the Floquet states’ localization length in

FIG. 2. Adiabatic localization in aN=4-well system(sketched ~an (N=10)-well system with random couplingsfl,=0.5(1
in the upper left corner Curves show occupation jm)'s well, as ~ ta){; « is random between 0 and ¥o/w=2.48; A/ w=1/4.
numbered. Initially| ¥ (t=0)) is in the delocalized ground state of
Ho. All Q, are equalQ,=Q; Vo/w=2.480/w=1/4,$=0. For ~ Gs and, hence, the sign of the dc bias induced by the peri-
each point on theéth curve the occupations are averaged over tenodic field.

cycles. Inset shows full time dependence [for= 1) before averag- Our next examplgFig. 3 shows phase control of the
ing, demonstrating the extent of fast oscillations in the occupatioripcalization length of the Floquet states and, hence, of quan-
of the first well. tum transport properties in a lattice with random couplings

Q,. Figure 3 was calculated foN=10 wells with Q,
which Go=0 [given byJy(V,/w)=0] destroys the localiza- =0.5(1+ ) and « random between 0 and 1. The local-
tion completely: all population moves back and forth be-ization length L of a state |¢;) is defined asL;
tween the two wells. In the two-frequency figlflig. 1(b)] =1/ ,[(n|;)|*, which givesL =N for equal populations in
the same 5% detuning &f, from the conditionG,=0 does each well. In Figure 3 we show the localization length aver-
not destroy the effect; localization is robust with respect toaged over aIN=10 Floquet stateound numerically. For
small changes in the field. each of then(n|;)|? is averaged over the field period. Bare

For nondegenerate Floquet states the system, starting 8tates are strongly delocalized, with average localization
an eigenstate dfl, evolves adiabatically into a single Flo- length (|L|)=6.74. In contrast, when the energy shifts in-
quet state oH as the laser field/(t) is slowly turned on. duced by the applied field exceed the field-modified cou-
According to Eq.(3), the two-frequency field breaks the de- plings between the well€),|G,|, the Floquet states localize
generacy of the Floquet states, and thus adiabatic localizatiasn single sites for¢=0,=m. Changing¢ controls (|L|)
of an electron around the induced defects is possible. Figuré-ig. 3).

2 shows numerical results for a four-well system with the One of many physical situations described by the tight-
same for alln. V, is chosen so thaG,=0, makingH.;;  binding Hamiltonian in Eq(1) is the Zeeman effect for a
diagonal. The initial state is the delocalized ground state ogystem with fixed total angular momentudn such as an
Ho. As the fieldV(t) =V, cost)+cos(t+¢)] is slowly — atom in a given electronic state, in crossed magnetic fields.
turned on, Fig. 2 shows that the population is adiabaticall)Ve take the constant fielB, to be along thex axis, the
localized in the leftmostfirst) well for ¢=0. Localization oscillating fieldB,(t) to be along thez axis, and the states
occurs in the rightmostfourth) well for ¢= (not shown.  |n) to be the eigenstates 6§, with n ranging from—J to J
Adiabatic localization can be achieved at sites for whichang N=23+1. Consequently,A,=gugB,J,, and V(1)

!

the eigenstates dfl;;; are nondegenerate. Inspection of Eq. =gugB,(t), where ug is the Bohr magneton angl is the
(3) shows that under the conditions used for Fig. 2, where all_andefactor. The couplingsQ,=gusB <n|j In+1), vary
Q, are equaland Go=0), the eigenstates df.¢¢ are de- | i " T ’

generatl)te, except Z)rr:he Ie;‘]tmost wellllwi;h ag enet;gy shifted " Fgllowing the method outlined above, the transformation
own byGs (), and the rightmost well shifted up g (). ~n T.a f o e e . .
These are the only wells where robust localization is possiblc%fg Tﬂg\)/(vqfr;iéiﬂ Br{; (t)gtzgs)dga]cllf Zr?(;n?ocrjtipzrtgi?t é‘?;itilgn.

for equalQ),,. As the field is slowly turned on, the ground B N s : .
state ofH evolves into the lowest-energy Floquet statélpf throggh an anglé=gug/B,(t")dt'. ‘]Z. IS unaff_ecteq by this
rotation. The transformed and effective Hamiltonians are

which corresponds to the leftmost well whé&g >0. Chang-
ing the relative phaseé of the two frequencies from 0O te

reverses the sign @y and moves the lowest-energy Floquet ~,  QueBy A A
state to the rightmost well. H'=———[G1J-+C*(1)J.],
If the set of(),’s values is chosen suitably, localization )
can be engineered in any selected well. The spectrum of site
energies irH/,;, is determined by(i) the n dependencé)?, ~, _ 9mgBy (gmeBy)?,

(God_+G§J,)+Gy J,,

and (i) the sign of Gy, which is reversed by changing eff ™" 5 2

from ¢=0 to ¢= . For example, Witmﬁrx(n— N/2)? the

second term in the Hamiltonian equati(®) depends linearly .

onn, as if there were a dc bias across the lattice. Changing G(t)=exp< —igﬂsf Bz(t’)dt’),
0

the relative phase fronp=0 to ¢= 7 reverses the sign of
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wherejizjxiijy. In H(; the term proportional taJ, tation value(J,) is invariant under rotations about thexis,
arises from the difference in couplingén|J,/n+1). The and we controkJ,) in the rotating frame through the two-

term GoJ_+G%J, in H.; reduces to f5,|J, after an ad- color field, we controkJ,) in the I_abor.atory frame. For ex-
ditional rotation about the axis by a constant anglé, de- ample, changings reverses the direction ¢fl,). _
fined throughG,=|Go|exp(~if,). This rotation is made in So far we have neglected the effect of decoherence, which
the direction opposite to the previous one, and again, dod§ important in quantum semiconductor structures. The key
not affectJ,. The resulting effective Hamiltonian takes a parameter should be the ratio of the field peribdo the
simple form AJ+CJ,, with A=gugB,G, and C phase relaxat.ion tim&,,. For T<T,, there is suﬁic@ent .
=Gy (9B ?/2. time to establish the Floquet states, and the relaxation will
WhenB,(t)=0,Gs=0; thusC=0 and the eigenstates of OCCUr between these rather than the bare sfétéd]. If the
the system have well-definey. However, when the ampli- Magnitude of field-induced energy shifts, exceeds the en-
tude ofB,(t) is such that,=0, A vanishes and, becomes ergy relaxation widthr_ *, localization survives. In the op-
a good quantum number, as reporféd] for a single-color  posite case oA, T.,<1 an interesting situation arises(,
case. In the two-color cask remains a good quantum num- are chosen to ensure thaf depends linearly on. Then, as
ber as long as the effective field along tkeaxis, B*'™”  we have seen, the two-color field introduces an effective dc
=|Gy|By, is sufficiently small] Go|gugBy<Gs(gugBy)?. bias that will induce a tunneling current. Its direction is re-
As with the lattice, we can adiabatically move the systemversed by changing the relative phase of the two frequencies
from an initial eigenstate od, to an eigenstate o8, by ¢ from O to#. This complements phase control of ionization
slowly turning on a suitably choseB,(t). Since the expec- current first demonstrated [@].
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