
RAPID COMMUNICATIONS

PHYSICAL REVIEW A DECEMBER 1999VOLUME 60, NUMBER 6
Two-color control of localization: From lattices to spin systems
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We demonstrate control of quantum dynamics in a finite model system described by a tight-binding Hamil-
tonian, through interaction with a multifrequency external field. Effective defects can be introduced into the
lattice by a two-frequency field, and the character of the defects can be controlled by the relative phase between
the two field components. These field-induced defects imply robust localization of dressed~Floquet! states on
lattice sites. Implications for a spin system in crossed magnetic fields are discussed.@S1050-2947~99!51211-0#

PACS number~s!: 42.50.Hz
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The desire to control dynamics of a quantum system
both a driving force and a unifying theme in many areas
modern laser-matter interaction physics. For example, a
optics focuses on controlling the translational degrees
freedom of an atom. Molecular optics@1# strives to extend
this ability to molecules. Coherent control@2# focuses on
using laser fields to manipulate the internal dynamics
atomic and molecular systems; e.g., creating complex su
positions of quantum states according to a given prescrip
@3#.

Following the experiment@4#, coherent control in solid-
state systems became an active area@5#. In quantum-well
semiconductor structures, one of the objectives is the con
of electron motion between quantum wells. An intriguin
theoretical prediction is the coherent suppression of elec
tunneling between the wells@6# by application of a strong
monochromatic THz electric field. Following the first expe
ments in quantum-well structures@7#, this idea has been
transplanted back into the quantum-optics context: narr
ing of Bloch bands has been observed for cold neutral at
in optical lattices@8#, with ac driving due to phase modula
tion of the counterpropagating waves that create the latt

Suppression of tunneling is caused by a destructive in
ference of different multiphoton quantum pathways, and
far reaching consequences in the case of the tight-bind
lattice. For example, manipulation of the strength of the T
field allows control of the effective strength of the existin
defects in the lattice, the Anderson localization length, a
consequently affects the temperature dependence of ele
transport@9#.

We have studied numerically and analytically coher
control of quantum dynamics in a tight-binding model sy
tem subject to a multifrequency periodic external field, e
tending the monochromatic field study@9#. Although our
analytical results apply to any periodic field, we focus on
simple case of only two frequenciesv and 2v, where al-
ready we find a wealth of new effects.

First, unlike the single-frequency case, in a two-frequen
field a delocalized initial state can be localized adiabatica
at a single well, because the Floquet states of the dri
system can be so localized. Second, the site where the
tron is localized may be changed by adjusting the rela
phase of the two frequencies. Third, compared to its sin
frequency counterpart, the two-frequency localization
PRA 601050-2947/99/60~6!/4225~4!/$15.00
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stronger, and robust with respect to small changes in
external field strength. The two-frequency field introduc
effective defects into the lattice, the strength of which d
pends on the relative phase of the two colors. For eq
couplings between the sites the defects are induced at
ends of the lattice, but for couplings that are not all equal
defects are also induced within the lattice. In the presenc
decoherence, the two-frequency driving can induce a tun
ing current, whose direction is controlled by the relati
phase between the frequencies.

The Hamiltonian for the tight-binding system togeth
with an external time-dependent field is

Ĥ5Ĥ01V~ t !N̂

5 (
1

N21

Vn~ un&^n11u1un11&^nu!

1V~ t !(
1

N

nun&^nu, ~1!

whereN is the number of lattice sites,un& is the state local-
ized at thenth site and theVn’s are couplings between ad
jacent sites.V(t)5E(t)d is periodic with periodT52p/v.
V(t) arises from the interaction with an external electric fie
E(t), d being the well spacing.

The Hamiltonian~1! could describe an electron in a mu
tiple quantum-well structure, or an ion in an optical lattic
For neutral atoms in an optical lattice analogous Hamilton
is realized by phase-modulating the optical waves crea
the lattice@8#. Equation~1! can also be used to represent t
dynamics of circular Rydberg atomic states in a circula
polarized microwave field~the so-called Trojan states! @10#,
or the Zeeman effect in crossed magnetic fields. The coa
cence of Zeeman lines in an oscillating magnetic fie
crossed with a constant magnetic field, observed almos
years ago@11#, is formally equivalent@9# to the suppression
of tunneling discovered in 1990s. We also note recent c
trol experiments@12#, where the time-dependent magne
field was actively controlled to create a prescribed coher
superposition of Zeeman levels.

To explore the dynamics of the system described by
~1!, we first apply a unitary transformationuC(t)&
R4225 ©1999 The American Physical Society
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5Û(t)uC8(t)&, where Û(t)[exp@2i*0
t V(t8)dt8N̂# and N̂

[(nun&^nu. This is a direct analog of the Kramers
Henneberger transformation often used for studying atom
strong high-frequency fields@13#: it gives the exact solution
of the problem whenH050. The transformed Hamiltonian
is

Ĥ85 (
1

N21

Vn„G~ t !un&^n11u1G* ~ t !un11&^nu…, ~2!

where G(t)[exp@2i*tV(t8)dt8#. For a periodicV(t),G(t)
5(k52`

` Gkexp(2ikvt). If V(t) includes a slowly varying
envelopef (t), such as we shall introduce later, to turn on t
laser field, thenGk is replaced byf (t)Gk . The population of
the nth well is Pn[ z^nuC(t)& z25 z^nuC8(t)& z2.

The HamiltonianĤ8 describesN degenerate energy leve
coupled by a multicolor ‘‘field’’G(t). Its time-independen
partG0 provides a resonant coupling, and dominates over
high-frequency, off-resonance couplings,Gkexp(2ikvt),
which primarily cause energy shifts similar to ac Stark shi
Following the usual procedure for ac Stark shifts, we elim
nate the fast time dependence by treating terms such
Vn@Gkexp(2ikvt)un&^n11u1Gk*exp(ikvt)un11&^nu# in
second-order time-dependent perturbation theory. For
ample, the termGk* exp(ikvt)un11&^nu gives an amplitude
^n11uC8(t)&52^nuC8&VnGk* exp(ikvt)/kv in the stateun
11& which, when substituted back intoi ^nuĊ8(t)&, yields
2^nuC8(t)&Vn

2GkGk* /kv. This diagonal contribution de
scribes the energy shift.

When all the shifts are accounted for to second order
obtain the following time-independent effective Ham
tonian:

Ĥe f f8 5 (
1

N21

Vn@G0un&^n11u1G0* un11&^nu#

1GS(
1

N

~Vn21
2 2Vn

2!un&^nu, ~3!

where GS5(kÞ0GkGk* /kv,V0[VN[0, and the result
holds if v@uGkVnu for all n.

Of the same order as the ac Stark shifts are the ‘‘tw
photon’’ Raman-type couplings between the degene
statesun& and un12& due toG(t)5(Gkexp(2ikvt). These
terms are absent from Eq.~3! because the corresponding m
trix elements that enter to second order,Vn,n12

(2)

5VnVn11(kÞ0GkG2k /kv, vanish, as can be seen b
changing the summation index fromk to 2k.

The stationary eigenstatesuC8& of He f f8 are approxima-

tions to the Floquet states ofĤ8 and, hence, ofĤ ~up to the
phase-altering transformationÛ). The dominant part of the
rapid time dependence ofuC&5Û(t)uC8& ~with the period
of the driving field! is included inÛ(t). The relatively slow
time dependence ofuC8&, due, for instance, to the turning o
or off of the laser field, is included inHe f f8 by replacingGk

with f (t)Gk . We now discuss the rich physics contained
He f f8 and illustrate the effects with numerical examples.
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Equation~3! shows that the oscillating fieldV(t) induces
energy shiftsDn in the diagonal terms that are proportion
to differences in the coupling strengths,Dn5GS(Vn21

2

2Vn
2), breaking the degeneracy of the site energies. T

distribution of shifts among the lattice sites is determined
Vn’s, but the overall magnitude and sign are controlled
the magnitude and sign ofGS , which are determined by
V(t). Furthermore,V(t) modifies the couplings between th
sites:Vn→VnG0.

WhenV(t) is such thatG0 is zero,He f f8 is diagonal, with

eigenvalues, or quasienergies,Ẽn5GS(Vn21
2 2Vn

2) and
eigenstatesun&. The Floquet states of the dressed syst
become localized on lattice sites. Thus, coherent decoup
of lattice sites, or coherent destruction of tunneling betwe
them, has been achieved.

For the case of a single-frequency fieldV(t)5V0cosvt,
the conditionG050 for the coherent decoupling of lattic
sites reduces to the well-known result@6# J0(V0 /v)50,
whereJ0 is the zero-order Bessel function. However, for
single-frequency fieldGS50, since uGku5uG2ku. Conse-
quently there are no diagonal energy shifts; the on-site e
gies remain degenerate. Tunneling is destroyed only atG0
5J0(V0 /v)50, and recovers as soon asG0 deviates from
zero, requiring exact tuning ofV0 /v.

In contrast, the addition of the second frequency,V(t)
5V0@cos(vt)1cos(2vt1f)#, ensures thatuGkuÞuG2ku and
soGSÞ0 ~except atf56p/2). This lifts the degeneracy o
the site energies, creating energy defects in the lattice
making localization of the Floquet states robust. Localizat
persists as long as the energy shifts are large eno
VnuG0u,uGS(Vn11

2 2Vn21
2 )u.

This qualitative difference between the effects of sing
frequency and two-frequency fields is illustrated in Fig.
The Schro¨dinger equation given byĤ in Eq. ~1! was inte-
grated numerically to obtain the populations of the sites
functions of time. The results shown in Fig. 1 are for
double-well system withf50. In a monochromatic field
@Fig. 1~a!#, a small 5% detuning ofV0 from the value at

FIG. 1. One-frequency vs two-frequency localization forN52
wells. Curves show population in the stateun51&. Initially uC(t
50)&5u1&; the field turn-on is instantaneous.~a! Single frequency,
V0 /v52.525,V/v51/4. ~b! Two frequencies,V0 /v52.60, V/v
51/4,f50.
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which G050 @given byJ0(V0 /v)50# destroys the localiza
tion completely: all population moves back and forth b
tween the two wells. In the two-frequency field@Fig. 1~b!#
the same 5% detuning ofV0 from the conditionG050 does
not destroy the effect; localization is robust with respect
small changes in the field.

For nondegenerate Floquet states the system, startin
an eigenstate ofH0, evolves adiabatically into a single Flo
quet state ofH as the laser fieldV(t) is slowly turned on.
According to Eq.~3!, the two-frequency field breaks the d
generacy of the Floquet states, and thus adiabatic localiza
of an electron around the induced defects is possible. Fig
2 shows numerical results for a four-well system withVn the
same for alln. V0 is chosen so thatG050, makingHe f f8
diagonal. The initial state is the delocalized ground state
H0. As the fieldV(t)5V0@cos(vt)1cos(2vt1f)# is slowly
turned on, Fig. 2 shows that the population is adiabatic
localized in the leftmost~first! well for f50. Localization
occurs in the rightmost~fourth! well for f5p ~not shown!.

Adiabatic localization can be achieved at sites for wh
the eigenstates ofHe f f8 are nondegenerate. Inspection of E
~3! shows that under the conditions used for Fig. 2, where
Vn are equal~and G050), the eigenstates ofHe f f8 are de-
generate, except for the leftmost well with an energy shif
down byGSV, and the rightmost well shifted up byGSV.
These are the only wells where robust localization is poss
for equalVn . As the field is slowly turned on, the groun
state ofH0 evolves into the lowest-energy Floquet state ofH,
which corresponds to the leftmost well whenGS.0. Chang-
ing the relative phasef of the two frequencies from 0 top
reverses the sign ofGS and moves the lowest-energy Floqu
state to the rightmost well.

If the set ofVn’s values is chosen suitably, localizatio
can be engineered in any selected well. The spectrum of
energies inHe f f8 is determined by~i! the n dependenceVn

2 ,
and ~ii ! the sign ofGS , which is reversed by changingf
from f50 to f5p. For example, withVn

2}(n2N/2)2 the
second term in the Hamiltonian equation~3! depends linearly
on n, as if there were a dc bias across the lattice. Chang
the relative phase fromf50 to f5p reverses the sign o

FIG. 2. Adiabatic localization in anN54-well system~sketched
in the upper left corner!. Curves show occupation inun& ’s well, as
numbered. InitiallyuC(t50)& is in the delocalized ground state o

Ĥ0. All Vn are equal,Vn5V; V0 /v52.48,V/v51/4,f50. For
each point on thenth curve the occupations are averaged over
cycles. Inset shows full time dependence forun51& before averag-
ing, demonstrating the extent of fast oscillations in the occupa
of the first well.
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GS and, hence, the sign of the dc bias induced by the p
odic field.

Our next example~Fig. 3! shows phase control of th
localization length of the Floquet states and, hence, of qu
tum transport properties in a lattice with random couplin
Vn . Figure 3 was calculated forN510 wells with Vn
50.5(11a)V and a random between 0 and 1. The loca
ization length L of a state uc j& is defined as L j
51/(nz^nuc j& z4, which givesL5N for equal populations in
each well. In Figure 3 we show the localization length av
aged over allN510 Floquet states~found numerically!. For
each of themz^nuc j& z2 is averaged over the field period. Ba
states are strongly delocalized, with average localizat
length ^uLu&56.74. In contrast, when the energy shifts i
duced by the applied field exceed the field-modified co
plings between the wells,VnuG0u, the Floquet states localiz
on single sites forf50,6p. Changingf controls ^uLu&
~Fig. 3!.

One of many physical situations described by the tig
binding Hamiltonian in Eq.~1! is the Zeeman effect for a
system with fixed total angular momentumJ, such as an
atom in a given electronic state, in crossed magnetic fie
We take the constant fieldBx to be along thex axis, the
oscillating fieldBz(t) to be along thez axis, and the states
un& to be the eigenstates ofĴz , with n ranging from2J to J

and N52J11. Consequently,Ĥ05gmBBxĴx , and V(t)
5gmBBz(t), wheremB is the Bohr magneton andg is the
Landéfactor. The couplings,Vn5gmBBx^nuĴxun11&, vary
with n.

Following the method outlined above, the transformati
Û(t)5exp@2iĴzgmB*0

t Bz(t8)dt8# is a time-dependent rotation
The new frame rotates back and forth about thez axis
through an angleu5gmB*Bz(t8)dt8. Jz is unaffected by this
rotation. The transformed and effective Hamiltonians are

Ĥ85
gmBBx

2
@G~ t !Ĵ21G* ~ t !Ĵ1#,

~4!

Ĥe f f8 5
gmBBx

2
~G0Ĵ21G0* Ĵ1!1GS

~gmBBx!
2

2
Ĵz ,

G~ t !5expS 2 igmBE
0

t

Bz~ t8!dt8D ,

n

n

FIG. 3. Phase control of the Floquet states’ localization length
an (N510)-well system with random couplings:Vn50.5(1
1a)V; a is random between 0 and 1.V0 /v52.48; V/v51/4.
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where Ĵ6[ Ĵx6 i Ĵy . In He f f8 the term proportional toĴz

arises from the difference in couplings,^nuĴxun11&. The
term G0Ĵ21G0* Ĵ1 in He f f8 reduces to 2uG0uĴx after an ad-
ditional rotation about thez axis by a constant angleu0 de-
fined throughG05uG0uexp(2iu0). This rotation is made in
the direction opposite to the previous one, and again, d
not affect Jz . The resulting effective Hamiltonian takes
simple form AĴx1CĴz , with A5gmBBxG0 and C
5GS(gmBBx)

2/2.
WhenBz(t)50,GS50; thusC50 and the eigenstates o

the system have well-definedJx . However, when the ampli
tude ofBz(t) is such thatG050, A vanishes andJz becomes
a good quantum number, as reported@11# for a single-color
case. In the two-color caseJz remains a good quantum num
ber as long as the effective field along thex axis, Bx

(e f f)

5uG0uBx , is sufficiently small:uG0ugmBBx!GS(gmBBx)
2.

As with the lattice, we can adiabatically move the syst
from an initial eigenstate ofJx to an eigenstate ofJz by
slowly turning on a suitably chosenBz(t). Since the expec-
v.

em
c.,
.

n

es

tation valuê Jz& is invariant under rotations about thez axis,
and we control̂ Jz& in the rotating frame through the two
color field, we control̂ Jz& in the laboratory frame. For ex
ample, changingf reverses the direction of^Jz&.

So far we have neglected the effect of decoherence, wh
is important in quantum semiconductor structures. The
parameter should be the ratio of the field periodT to the
phase relaxation timeTph . For T!Tph there is sufficient
time to establish the Floquet states, and the relaxation
occur between these rather than the bare states@6,14#. If the
magnitude of field-induced energy shifts,Dn exceeds the en
ergy relaxation widthTen

21 , localization survives. In the op
posite case ofDnTen,1 an interesting situation arises ifVn

are chosen to ensure thatDn depends linearly onn. Then, as
we have seen, the two-color field introduces an effective
bias that will induce a tunneling current. Its direction is r
versed by changing the relative phase of the two frequen
f from 0 top. This complements phase control of ionizatio
current first demonstrated in@4#.
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