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Detection and analysis of interloping molecular resonances

C. P. Ballance,* K. A. Berrington,† and B. M. McLaughlin
Department of Applied Mathematics and Theoretical Physics, The Queens University of Belfast, Belfast BT7 1NN, United Kin

~Received 15 December 1998!

An analytic method that exploits the properties of the eigenphase sum and its derivative is developed and
implemented to study resonance structure found in the phase shift for electron scattering by diatomic molecular
cations. The approach is used to locate narrow resonances and identify interloper resonances found within
dominant Rydberg series. The power of the technique is illustrated for two molecular cations~oxygen and
titanium oxide!. @S1050-2947~99!50412-5#

PACS number~s!: 32.80.Dz, 32.70.Jz, 34.10.1x, 34.80.2i
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The vast majority of theoretical methods used to det
resonances invariably involve some form of fitting proced
with all its inherent difficulties and limitations@1,2#. Recent
success using the eigenphase sum derivative to analyze
nances found inab initio R-matrix studies of electron inter
actions with atomic ions has been demonstrated@3,4# when
compared to experimental and theoretical results. Simila
work performed recently on ultracold–atom-molecu
(He-H2) collisions employed an approach based on using
numerical derivative of the eigenphase sum on an fine en
mesh to analyze narrow isolated Feshbach resonances@5#.
The eigenphase sum in He-H2 collisions was obtained via a
rovibrational close-coupling approach@6#. The generality of
the present approach would make it feasible to determ
similar properties of narrow resonances found in ultraco
atom-molecule or atom-atom collision complexes, provid
anR-matrix description of the collision complex exists, as
the case of reactive scattering from atom-diatom comple
@12#. Interloper resonances are important to understand
their presence disrupts the regular Rydberg resonance s
pattern, whereas those straddling thresholds will clearly
hance reactive rates. The widths of the interloping re
nances are in general broader than those belonging to
dominant Rydberg series in their vicinity due to their larg
binding energies@6#. Presently, this elegant and widely a
plicable approach is adapted for use both within a multis
configuration interaction and a multichannel context to stu
quasibound interloping narrow resonances found in elec
molecular-ion collision complexes.

Our method is based on the analysis of the eigenph
sum derivative to interpret interloping resonances fou
within a dominant Rydberg series. The present approach
lies on theR matrix being an analytic function of energy an
therefore differentiable to provide the derivative of the eige
phase sum in scattering collisions@3,4#. Resonant states o
TiO are of importance in cool stars@7# and information on
resonant states of molecular oxygen (O2) are currently of
interest in photoabsorption measurements@8#. Reliable tech-
niques are clearly desirable for the analysis of such re
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nances series, a problem that the present method addre
Therefore, O2

1 and the heteronuclear TiO1 ion are chosen to
illustrate the applicability of the method. An alternativ
method ~the time delay of theS matrix!, first applied by
Smith @9# in low-energy heavy-particle collisions, has r
cently been implemented for the case of electron scatte
from molecules, comparing favorably with the standa
Breit-Wigner approach@10,11#.

In the study of electrons colliding with molecule
R-matrix theory partitions Hilbert space into two region
The inner region is defined by a hypersphere of radiua
centered on the center of mass of the complex, chose
effectively enclose the target electrons’ charge cloud@13#.
When the incident electron is within this hypersphere, a m
ticenter expansion is used to solve the many-body Sch¨-
dinger equation. Outside of this hypersphere, the neglec
electron exchange in the molecular system reduces the c
plexity of the collision problem and theR matrix connects
the two regions.

The reactance matrix~K ! and the associatedT or S matrix
determined in electron molecule collisions contain the inf
mation on the scattering process, from which one may c
culate the relevant physical observables. The power of
R-matrix approach is the fact that the solution of a system
coupled equations is replaced by a single matrix diagonal
tion. This is of great practical importance in the region
narrow resonances where solutions are needed for m
closely spaced electron-impact energies to fully resolve
structure.

In multistate close-coupling electron molecule collisio
for certain collision energies and scattering symmetri
structure~identified as Feshbach Rydberg resonances! is seen
in the eigenphase sum approaching the thresholds of the
cited states of the target cation. A resonance manifests i
in theoretical calculations by a rapid increase ofp radians in
the total eigenphase sum superimposed on a backgroun
practice, because a resonance has a finite width, the incr
in the eigenphase sum may not be exactlyp due to the back-
ground variation. Therefore, a more useful definition of
resonance position is the energy at which the gradient of
eigenphase sum is maximum, i.e., the derivativedd/dE. The
energy positions of Rydberg resonances are seen to obe
formula e`2enll5z2/(n2mnll)25z2/n2 wheren is the ef-
fective quantum number,n the principal quantum number,l
the orbital angular momentum number,l the projection ofl
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along the internuclear axis, and wheremnll is the quantum
defect. Rydberg states of the molecule can then be assi
as (2S11)L:nll, with S being the total spin andL the total
orbital angular-momentum projection along the internucl
axis, which echoes Rydberg’s empirical formula for te
series in the spectra of alkali-metal atoms;Tn5T`

2RZ2/(n2mn)2 @19#.
Qualitatively the need for a quantum defect arises fr

the fact that, as the electron penetrates the molecular clou
no longer recognizes the target as a point charge and c
pensates for the deviation away from a pure Coulombic fie
The incident electron and molecular charge cloud can in
act in a way similar to a simple hydrogenic system. Co
excited resonances may arise from the fact that the incid
electron energy is not sufficiently large enough to esc
initially, and that after excitation the electron loses sufficie
energy to coincide with one of the quasi-bound-state en
gies allowed in the field produced by the excited target m
ecule. The electron then requires time to regain the effec
binding energyenll5z2/(n2mnll)25z2/n2 to escape from
the target. The quantum defectmnll is dependent on the or
bital angular momentuml, and to lesser extent on wheth
the incident electron iss,p,d,..., in character. As the orbita
angular momentuml increases, core penetration diminish
and the effective quantum numbern becomes more integer
like and can be interpreted as the bound Rydberg elec
being compelled to occupy distant orbitals outside the co

When consideringm overlapping and interacting reso
nances with a background phase, the most established w
analyzing resonances is by superimposing the Breit-Wig
form onto an eigenphase sumd(E) given by

d~E!5d0~E!1(
i 51

m

tan21
G i

2~Er
i 2E!

.

Here d0(E) is the slowly varying background phase~nor-
mally linear or quadratic in energy! and G i and Er

i are re-
spectively the width and energy position of thei th reso-
nances.

The present method exploits the analytical properties
the R matrix to obtain the energy derivative of the reactan
~K ! matrix, without using a pure Coulomb potential at
large scattering distance. The method defines matricesQ and
B in terms of asymptotic solutions~hence its name!, the R
matrix and the energy derivatives, so thatdK /dE5B21Q,
from which eigenphase gradients of theK matrix are ob-
tained. Resonance positions are then defined as the m
mum gradient, with their associated widths being related
the inverse of the eigenphase gradients. TheQB technique is
centered around diagonalizing theK matrix in the external
region to provide an eigenphase sum from which the der
tive allows the determination of the relevant resonance
rameters. Theab initio quantum chemistry approach fo
electron-molecule collisions@14# provides the inner-region
surface amplitudes (wi j ) and eigenenergies~poles« j ) from
Wigner-EisenbudR-matrix theory@14–17#, together with the
necessary Buttle@18# corrections. The solution of the
electron-molecule scattering problem provides the reacta
~K ! matrix and the appropriate eigenphase sumd(E).

Following the work of Berrington and co-workers@3,4# to
locate the resonances, we find the maxima in the eigenp
ed
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sum derivative. Resonance widthsG are related to the in-
verse of the eigenphase sum derivative at resonance, as
be seen by differentiating the Breit-Wigner form and assu
ing the background gradientd̄8!G21, and settingE5Er
one gets

G52/d8~Er !. ~1!

Generalizing to the multichannel case~channeli!, the nor-
malized widthsG i are obtained by projecting onto the ope
channels using theK-matrix eigenvectorsX, which are re-
lated to the autoionization decay rates byG i /G
5( j 51

n0 Xi j d j8/d8, wheren0 is the number of open channe
@4#. Since the Breit-Wigner form is valid strictly for isolate
resonances, one should estimate the perturbation of the w
by a nearby resonance@3#. Differentiating the Breit-Wigner
form and evaluating atE5Er gives the expression

d8~Er !5 d̄8~Er !12/G⇒G52/@d8~Er !2 d̄8~Er !#, ~2!

which includes the effect of a background gradient.
To illustrate the applicability of our method to electron

molecular-ion collisions, the3Pu scattering symmetry for
thee2-O2

1 homonuclear complex and the3D symmetry for
the e2-TiO1 heteronuclear system are considered resp
tively in five- and three-state close-coupling approximatio
A valence configuration-interaction representation is used
both the target and scattering molecular wave functio
within the context of theR-matrix ab initio approach. The
diagonalization of the appropriate electronic Hamiltoni
with the Bloch operator ensures Hermiticity and yields t
appropriate surface amplitudes (wi j ) and eigenenergies
~poles« j ), which are the starting points for the outer regio
solutions of the coupled differential equations. Inab initio
R-matrix studies of electrons colliding with molecules,
boundary radius of 10a0 is normally chosen that ensures th
the target charge cloud density is totally enveloped wit
this hypersphere. This inner region is enlarged so that
potential matrix elements coupling the target statesVi j at and

TABLE I. Comparison of experimental and theoretical ioniz
tion energies and effective quantum numbern for the @b 4Sg

2#
nppu quasibound Rydberg states of molecular oxygen in the3Pu

symmetry, with our five state work at the internuclear separation
2.3a0 . D1 , D2 , andD2 are percentage differences.

nppu

E ~Ry!a

QB CLLb D1
d QB

n
CLLb YTc D2

e D3
f

3ppu 20.184 20.205 11.4 2.335 2.247 3.8
4ppu 20.090 20.095 5.6 3.340 3.283 3.313 1.7 0.
5ppu 20.053 20.055 3.8 4.336 4.287 4.333 1.1 0.
6ppu 20.035 20.036 2.9 5.322 5.273 5.335 0.9 0.
7ppu 20.025 20.026 4.0 6.302 6.246 6.325 0.9 0.
8ppu 20.019 20.018 5.3 7.257 7.209 7.326 0.7 1.

aIonization energy~Ry! relative to theb 4Sg
2 cation state.

bTheoretical values from Chung, Lin, and Lee@20#.
cExperimental values from Yoshino and Tanaka@21#.
dD1 for resonance positions with Ref.@20#.
eD2 for effective quantum numbern with Ref. @20#.
fD3 for effective quantum numbern with Ref. @21#.
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beyond the hypersphere may be set to zero, which simpl
the collision problem in the outer region. The validity of th
approximation is dependent on the diatomic cation, the m
nitude of the appropriate dipole and quadrupole mome
the associated potential coupling coefficients, and the a
trary choice of theR-matrix boundary size. In the case of th
e2-O2

1 complex, a radius of 15a0 was used, and for
e2-TiO1 collisions it was increased to 18a0 . Investigation
of the coupling potential matrix elements between states
these systems, at and beyond the hypersphere radius,
cated that they were'1026 and 1025, respectively, which
justifies their neglect.

Table I presents our results from theQB method for the
3Pu scattering symmetry ine2-O2

1 collisions. Our results
when compared with previous theoretical@20# and experi-
mental studies@21# for the effective quantum numbers of th
nppu Rydberg series approaching theb 4Sg

2 threshold of
the O2

1 cation show excellent agreement. The position of
lowest resonance shows the greatest variation between
methods, as it is likely to be the most sensitive to the co
sion model. The derivative of the eigenphase sum of an
perturbed series would follow an3 law, whereas the presenc
of interlopers are seen visually to break that pattern in F
1 and 2. Figure 1 compares the eigenphase sum and its
rivative as a function of effective quantum numbern for the
3Pu scattering symmetry ine2-O2

1 obtained using theQB
method. Interloping resonances are clearly distinguishabl
the derivative of the eigenphase sum and
nssg ,ndsg ,ngsg a 4Pu Rydberg series identified. For th

FIG. 1. Eigenphase sum and its derivative as a function of
fective quantum numbern for the 3Pu scattering symmetry of
e2-O2

1 , below the lowest-lyinga 4Pu threshold at the fixed bond
separation of 2.3 Bohr. Thenssg , ndsg , and ngsg series con-
verging to thea 4Pu threshold are identified, as are the interlope
3ssg , 4ssg , and 3dsg associated with theA 2Pu and the 3ppu

with the b 4Sg
2 thresholds.
es
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O2
1 cation the most self-evident are typically broader,

they are either the first/second member of higher-lying se
that usually interlopes with Rydberg members (n>5) asso-
ciated with the lower-lying thresholds. This may not alwa
be the case, as it depends on the compactness of the t
cation excited-state thresholds. In general, the derivative
the eigenphase sum of the interlopers stands out in s
contrast to that of the expected Rydberg series.

Table II gives the total and partial decay widths for tw
members of thenssg and ndsg series converging to the
a 4Pu threshold of the O2

1 cation. Results from Table II
indicate that for the 4ssg and 5ssg resonances,'40% of

f- FIG. 2. Eigenphase sum and its derivative as a function of c
lision energy for the3D scattering symmetry ofe2-TiO1, below
the lowest-lying2S1 threshold at the fixed bond separation of 2
Bohr. Thendd and andn fd series are identified, as are the tw
interlopers 2pp and 3dp associated with the higher-lying 12P
threshold.

TABLE II. Total and partial autoionization decay resonanc
widths ~units of Rydbergs! and effective quantum numbersn for
two members of thenssg ,ndsg series converging to thea 4Pu

threshold and the 3ssg interloper associated with the higher-lyin
A 2Pu threshold found in the3Pu scattering symmetry of the
e2-O2

1 collision complex at 2.3a0 .

Resonance
state n

Total
~Ry!

G G l 51

Partials
~Ry!
G l 53 G l 55

3ssg A 2Pu 2.3377 8.00424 7.14824 0.83224 0.02424

4ssg a 4Pu 2.8955 2.90725 1.24425 1.66325 0.0
5ssg a 4Pu 3.8869 2.12325 9.80826 1.14025 0.0

4dsg a 4Pu 3.0591 2.14325 1.29025 8.50826 0.0
5dg jg a 4Pu 4.0758 1.27325 8.31326 4.41726 0.0
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the total width decays to the channel with angular mom
tum l 51, whereas'60% decays to the channel withl 53
coupled to the ground-state cation. The reverse occurs fo
4dsg and 5dsg resonances. In the case of the 3ssg inter-
loper the decay is primarily~'90%! into the channel with
angular momentuml 51. The power of theQB technique is
the ability to detect interloping resonances and to anal
narrow resonances, providing information on partial and
tal autoionization widths, as the conventional method of
ting the Breit-Wigner form to the eigenphase sum becom
numerically unstable when autoionization widths are l
m

al-

al-

,

-

he

e
-
-
s
s

than '1026 Ry. For TiO1, Fig. 2 presents the eigenpha
sum and its derivative for the energy region below the2S1

threshold. Two interlopers are present, 2pp and 3dp, asso-
ciated with the higher-lying 12P threshold and intersperse
in the regularndd andn fd Rydberg series. Thengd series,
although present, have not been analyzed.
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