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Detection and analysis of interloping molecular resonances
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An analytic method that exploits the properties of the eigenphase sum and its derivative is developed and
implemented to study resonance structure found in the phase shift for electron scattering by diatomic molecular
cations. The approach is used to locate narrow resonances and identify interloper resonances found within
dominant Rydberg series. The power of the technique is illustrated for two molecular catiggen and
titanium oxide. [S1050-294{@9)50412-5

PACS numbg(s): 32.80.Dz, 32.70.Jz, 34.16x, 34.80-i

The vast majority of theoretical methods used to detechances series, a problem that the present method addresses.
resonances invariably involve some form of fitting procedureTherefore, @ and the heteronuclear TiQon are chosen to
with all its inherent difficulties and limitationgl,2]. Recent illustrate the applicability of the method. An alternative
success using the eigenphase sum derivative to analyze resnethod (the time delay of theS matrix), first applied by
nances found irab initio Rmatrix studies of electron inter- Smith [9] in low-energy heavy-patrticle collisions, has re-
actions with atomic ions has been demonstrd8d] when  cently been implemented for the case of electron scattering
compared to experimental and theoretical results. Similarlyfrom molecules, comparing favorably with the standard
work performed recently on ultracold—atom-molecule Breit-Wigner approacti10,11].

(He-H,) collisions employed an approach based on using the In the study of electrons colliding with molecules,
numerical derivative of the eigenphase sum on an fine energg-matrix theory partitions Hilbert space into two regions.
mesh to analyze narrow isolated Feshbach resondisdes The inner region is defined by a hypersphere of radius
The eigenphase sum in Hesldollisions was obtained via a centered on the center of mass of the complex, chosen to
rovibrational close-coupling approa¢]. The generality of effectively enclose the target electrons’ charge clpLgl.

the present approach would make it feasible to determing/hen the incident electron is within this hypersphere, a mul-
similar properties of narrow resonances found in ultracold-ticenter expansion is used to solve the many-body Schro
atom-molecule or atom-atom collision complexes, provideddinger equation. Outside of this hypersphere, the neglect of
an R-matrix description of the collision complex exists, as in electron exchange in the molecular system reduces the com-
the case of reactive scattering from atom-diatom complexeplexity of the collision problem and thR matrix connects
[12]. Interloper resonances are important to understand ake two regions.

their presence disrupts the regular Rydberg resonance seriesThe reactance matri ) and the associatel or S matrix
pattern, whereas those straddling thresholds will clearly endetermined in electron molecule collisions contain the infor-
hance reactive rates. The widths of the interloping resomation on the scattering process, from which one may cal-
nances are in general broader than those belonging to thmilate the relevant physical observables. The power of the
dominant Rydberg series in their vicinity due to their largerR-matrix approach is the fact that the solution of a system of
binding energie$6]. Presently, this elegant and widely ap- coupled equations is replaced by a single matrix diagonaliza-
plicable approach is adapted for use both within a multistatéion. This is of great practical importance in the region of
configuration interaction and a multichannel context to studynarrow resonances where solutions are needed for many
quasibound interloping narrow resonances found in electroolosely spaced electron-impact energies to fully resolve the
molecular-ion collision complexes. structure.

Our method is based on the analysis of the eigenphase In multistate close-coupling electron molecule collisions
sum derivative to interpret interloping resonances foundor certain collision energies and scattering symmetries,
within a dominant Rydberg series. The present approach restructure(identified as Feshbach Rydberg resonaniseseen
lies on theR matrix being an analytic function of energy and in the eigenphase sum approaching the thresholds of the ex-
therefore differentiable to provide the derivative of the eigen-ited states of the target cation. A resonance manifests itself
phase sum in scattering collisiofi3,4]. Resonant states of in theoretical calculations by a rapid increasenafadians in
TiO are of importance in cool staf§] and information on the total eigenphase sum superimposed on a background. In
resonant states of molecular oxygen, @re currently of practice, because a resonance has a finite width, the increase
interest in photoabsorption measuremdis Reliable tech- in the eigenphase sum may not be exaetlgtue to the back-
nigues are clearly desirable for the analysis of such resaground variation. Therefore, a more useful definition of a

resonance position is the energy at which the gradient of the
eigenphase sum is maximum, i.e., the derivatiéédE. The
*Present address: Department of Physics and Applied Physicgnergy positions of Rydberg resonances are seen to obey the

Strathclyde University, Glasgow G4 ONG, United Kingdom. formula .. — €, = 2%/ (n— wp) 2= 2%/ v? wherev is the ef-
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along the internuclear axis, and wheug,, is the quantum TABLE I. Comparison of experimental and theoretical ioniza-
defect. Rydberg states of the molecule can then be assigndidn energies and effective quantum numbefor the [b *X ]
as 2S*DA:nIx, with Sbeing the total spin and the total NP, quasibound Rydberg states of molecular oxygen in‘tHg
orbital angular-momentum projection along the internucleagymmetry, with our five state work at the_ internuclear separation of
axis, which echoes Rydberg’s empirical formula for term2-3o- A1, Az, andA, are percentage differences.
series in the spectra of alkali-metal atom3;,=T. N
~RZ2/(n~ p)? [19]. E Ry) SN Y e e A
Qualitatively the need for a quantum defect arises from P™ QB CLL" Ay QB CLLT YT" 42" 4,
the fact that, as the electron penetrates the molecular cloud,3b7, —0.184 —0.205 11.4 2.335 2.247 3.8
no longer recognizes the target as a point charge and compz, -0.090 —0.095 5.6 3.340 3.283 3.313 1.7 0.8
pensates for the deviation away from a pure Coulombic field5pwu —0.053 —0.055 3.8 4336 4.287 4333 1.1 0.1
The incident electron and molecular charge cloud can interg, . -~ _0.035 —0.036 2.9 5322 5273 5335 09 0.2
act in a way similar to a S|.mple hydrogenic system. C<_Jre-7 7, —0025 —0026 4.0 6302 6246 6.325 0.9 0.4
excited resonances may arise from the fact that the incide 7, —0019 —0018 53 7.257 7.209 7.326 0.7 1.0
electron energy is not sufficiently large enough to escape
initially, and that after excitation the electron loses sufficient¥onization energyRy) relative to theb 429‘ cation state.
energy to coincide with one of the quasi-bound-state ener*Theoretical values from Chung, Lin, and LE0].
gies allowed in the field produced by the excited target mol“Experimental values from Yoshino and TandR4].
ecule. The electron then requires time to regain the effectivéA ; for resonance positions with Rd20].
binding energye,, =z%/(N— unn)2=2%/v? to escape from ©A, for effective quantum number with Ref. [20].
the target. The quantum defegt,, is dependent on the or- fAj; for effective quantum number with Ref. [21].
bital angular momenturh, and to lesser extent on whether
the incident electron i, ,4,..., in character. As the orbital sum derivative. Resonance widthsare related to the in-
angular momentunh increases, core penetration diminishesverse of the eigenphase sum derivative at resonance, as can
and the effective quantum numbehbecomes more integer- be seen by differentiating the Breit-Wigner form and assum-
like and can be interpreted as the bound Rydberg electrofhg the background gradient’ <I'"!, and settingE=E,
being compelled to occupy distant orbitals outside the coregne gets
When consideringm overlapping and interacting reso-

nances with a background phase, the most established way of '=2/8'(E,). (1)
analyzing resonances is by superimposing the Breit-Wigner
form onto an eigenphase Suf(E) given by Generalizing to the multichannel cagehanneli), the nor-
malized widthsI'; are obtained by projecting onto the open
m o, I channels using th&-matrix eigenvectors<, which are re-
o(E)= 5o(E)+i21 tan 2E-E) lated to the autoionization decay rates bi;/T

=2?21Xi]—5j’/5’, whereng is the number of open channels

Here 6o(E) is the slowly varying background phasgeor-  [4]. Since the Breit-Wigner form is valid strictly for isolated
mally linear or quadratic in energyand I'; and E, are re-  resonances, one should estimate the perturbation of the width
spectively the width and energy position of thih reso- by a nearby resonand@]. Differentiating the Breit-Wigner
nances. form and evaluating dE=E, gives the expression

The present method exploits the analytical properties of o o
the R matrix to obtain the energy derivative of the reactance S'(E)=08"(E)+2M=T=2[68(E,)—-6'(E)], (2
(K) matrix, without using a pure Coulomb potential at a
large scattering distance. The method defines matficasd  which includes the effect of a background gradient.
B in terms of asymptotic solutionéence its name the R To illustrate the applicability of our method to electron—
matrix and the energy derivatives, so tii¢/dE=B"1Q, molecular-ion collisions, the’ll, scattering symmetry for
from which eigenphase gradients of the matrix are ob- thee -O," homonuclear complex and tHe\ symmetry for
tained. Resonance positions are then defined as the maxhe e -TiO™ heteronuclear system are considered respec-
mum gradient, with their associated widths being related tdgively in five- and three-state close-coupling approximations.
the inverse of the eigenphase gradients. Qfietechnique is A valence configuration-interaction representation is used for
centered around diagonalizing tie matrix in the external both the target and scattering molecular wave functions
region to provide an eigenphase sum from which the derivawithin the context of theR-matrix ab initio approach. The
tive allows the determination of the relevant resonance padiagonalization of the appropriate electronic Hamiltonian
rameters. Theab initio quantum chemistry approach for with the Bloch operator ensures Hermiticity and yields the
electron-molecule collision§14] provides the inner-region appropriate surface amplitudesw;() and eigenenergies
surface amplitudesw;) and eigenenergiegolese;) from  (polese;), which are the starting points for the outer region
Wigner-Eisenbud?-matrix theory{ 14—17, together with the  solutions of the coupled differential equations.dh initio
necessary Buttle[18] corrections. The solution of the R-matrix studies of electrons colliding with molecules, a
electron-molecule scattering problem provides the reactandsoundary radius of 1, is normally chosen that ensures that
(K) matrix and the appropriate eigenphase st(B). the target charge cloud density is totally enveloped within

Following the work of Berrington and co-workefi3,4]to  this hypersphere. This inner region is enlarged so that the
locate the resonances, we find the maxima in the eigenphagetential matrix elements coupling the target statgsat and
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FIG. 1. Eigenphase sum and its derivative as a function of ef- FIG. 2. Eigenphase sum and its derivative as a function of col-
fective quantum numbew for the 3IT, scattering symmetry of lision energy for the’A scattering symmetry o™ -TiO", below
e -0, , below the lowest-lyinga “II, threshold at the fixed bond the lowest-lying?S,* threshold at the fixed bond separation of 2.9
separation of 2.3 Bohr. Thessy, ndoy, andngo, series con- Bohr. Thends and andnfé series are identified, as are the two
verging to thea “I1, threshold are identified, as are the interlopersinteriopers pa and 3w associated with the higher-lying 11
3say, 4sarg, and 3o, associated with thé 2IT, and the pm,  threshold.
with theb “X ;" thresholds.

O," cation the most self-evident are typically broader, as
beyond the hypersphere may be set to zero, which simplifieéey are either the first/second member of higher-lying series
the collision problem in the outer region. The validity of this that usually interlopes with Rydberg members=5) asso-
approximation is dependent on the diatomic cation, the maggiated with the lower-lying thresholds. This may not always
nitude of the appropriate dipole and quadrupole momentge the case, as it depends on the compactness of the target
the associated potential coupling coefficients, and the arbieation excited-state thresholds. In general, the derivative of
trary choice of theR-matrix boundary size. In the case of the the eigenphase sum of the interlopers stands out in stark
e -0O," complex, a radius of 1 was used, and for contrast to that of the expected Rydberg series.

e -TiO" collisions it was increased to 4§. Investigation Table Il gives the total and partial decay widths for two
of the coupling potential matrix elements between states fomembers of thensoy and ndoy series converging to the
these systems, at and beyond the hypersphere radius, indi-*II, threshold of the @ cation. Results from Table I
cated that they were=10® and 10°°, respectively, which indicate that for the doy and Sy resonances=40% of
justifies their neglect.

Table | presents our results from tEB method for the TABLE II. Total and partial autoionization decay resonances
31, scattering symmetry ie -O," collisions. Our results Widths (units of Rydbergsand effective quantum numbersfor
when compared with previous theoretid@0] and experi- tWo members of thesoy,ndoy series converging to tha “II,
mental studie§21] for the effective quantum numbers of the threshold and the sk, interloper associated with the higher-lying
npm, Rydberg series approaching tbGAEg threshold of Aﬁ Hli thrgshold found in the®Il, scattering symmetry of the
the O," cation show excellent agreement. The position of the® - Oz collision complex at 2.3,
lowest resonance shows the greatest variation between the

o - . Total Partial
methods, as it is likely to be the most sensitive to the colli- o arars
. del. The derivati f the ei h f Resonance (Ry) (Ry)
sion model. The derivative of the eigenphase sum of an un- ... Y r . - T_e

perturbed series would follow & law, whereas the presence
of interlopers are seen visually to break that pattern in Figs3sog A ?II,  2.3377 8.004* 7.148 % 0.832* 0.024°*
1 and 2. Figure 1 compares the eigenphase sum and its de- 4

rivative as a function of effective quantum numbefor the Esgg a 4H“ 2.8955 2'907: 1'24¢Z 1'6632 0.0
311, scattering symmetry ie~-O," obtained using th@B Ssoga’ll, 38869 2.123° 9.808° 1.140 0.0
method. Interloping resonances are clearly distinguishable iz;olgg a‘ll, 3.0591 2.143°5 1.290° 8.508° 0.0
the derivative of the eigenphase sum and thesdgjg a®ll, 4.0758 1.273° 8313° 4.417° 0.0
nsoy,ndogy,ngoy a 411, Rydberg series identified. For the
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the total width decays to the channel with angular momenthan ~10 ¢ Ry. For TiO", Fig. 2 presents the eigenphase
tum | =1, whereas~60% decays to the channel witk-3  sym and its derivative for the energy region below "
coupled to the ground-state cation. The reverse occurs for thereshold. Two interlopers are presenp2and 3, asso-
4dog and Hog resonances. In the case of thes3 inter-  ciated with the higher-lying 21T threshold and interspersed
loper the decay is primarily~90%) into the channel with i, the regulamds andnfs Rydberg series. Thegs series,

angular momenturh= 1. The power of th&)B technique is although present, have not been analyzed.
the ability to detect interloping resonances and to analyze

narrow resonances, providing information on partial and to- This work was supported by research grants from the UK
tal autoionization widths, as the conventional method of fit-Engineering and Physical Research CourEPSRQ and
ting the Breit-Wigner form to the eigenphase sum becomesj|pevR/European Social Fun@&Sh.

numerically unstable when autoionization widths are less
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