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Coulomb-stable triply charged diatomic: HeY®*
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Accurate relativistic coupled-cluster calculations show that the triply charged specie¥ le¥ stable
molecule and represents the lightest diatomic trication that does not undergo a Coulomb fragmentation into
charged fragments. The diatomic potential-energy curve is approximated by an extended Morse potential, and
vibrational-rotational constants for H&Y are predicted R.=224.3pm, Dy=0.394 eV, w,=437 cm?,
weXe=15.8cn!, B,=0.877 cmi}). It is further shown that the He'Y®* bond can basically be described as
a charge-induced dipole interactidi®1050-294{@9)50711-1

PACS numbgs): 31.25.Nj, 32.10-f, 31.30.Jv, 33.20.Vq

The investigation of multiply charged diatomic cations jonization potentiaV,p, (E2*—E*") smaller than the first
represents a challenging task. Already for doubly chargeg i, a4ion potential onHe is yttriurf6] (Table ). It is there-
diatomic compounds most potential curves are repulsivef;ore likely that He¥*" forms a stable species, and the curve
thus theXY?" species undergo a Coulomb fragmentationCrossing between the repulsive HeY2* anéi the bound
with X*+Y" as the dissociation lim1,2]. Triply charged e+Y?3" potential curves does not occur. We investigated

diatomic compounds are even more elusive and generall ; .
occur in metastable states only, i.e., in local minima on exi"e¢ Bom-Oppenheime(BO) potential-energy curve/(R)

cited potential curveabovethe positively charged fragments T the He+Y®" system at the Douglas-KralDK) [11] rela-
[3]. For example, Sakaét al. could recently generate the tVistic coupled-cluster leve[CCSDT)] [12], using very
metastable halogen trications,&l, Br,3*, and L** by fem-  large Gaussian-type basis séBaussian-type orbita[13] of
tosecond pulse strong-field multiphoton ionizatiet. The  Hartree-FockHF) limit quality [14—16. The atomic results
search forstabletriply charged diatomics so far has focused areé shown in Table I, and the good agreement with available
on the rare-earth or actinide series, as these elements exhiBiperimental data demonstrates the quality of the employed
low ionization potentials. These heavy metals are in generdbasis sets and methods. The calculated potential-energy
combined with helium, which has the highest first ionizationcurve is shown in Fig. 1; spectroscopic constants derived
potential of all elements\(,poz 24.59 eV)[5] or with other  from a numerical Numerov-Cooley procedlfe] are listed
hardly ionizable atomps—9]. For element& other than the in Table II.
f elements there is no evidence so far that a Coulomb stable The results show that HEY represents the lightest stable
helide HE®" can exist(we define as Coulomb stable if any triply charged diatomic molecule. Its dissociation enefyy
of the dissociation limits HE +E*3™", n=0, 1, and 2, lie compared to the HeY®" exit channel amounts to 0.42 eV,
above the HE®*" minimum) [3,6,10. and Coulomb fragmentation into the charged fragments
The lightest element in the periodic table that has a thirdHe" +Y?2" is endothermic by 4.7 eV. This does not preclude

TABLE I. Atomic ionization potentials for He and Y. All values are in eV. The fourth ionization potential
is defined by ¥*(*S,)— Y*"(?P3). Identical contraction schemes but different contraction coefficients
have been used in the nonrelativistitR) and Douglas-Krol(DK) calculations. num. stands for numerical;
alg, stands for algebraic calculations.

NRHF NRHF NRCCSOT) DHF DKHF DKCCSD(T)

(num) (alg) (alg) (num) (alg) (alg) Expt2
He(*S,) 23.448  23.448 24.564 23.448  23.448 24.564 24.580
He" (%S, 54.423  54.418 54.418 54.426  54.420 54.420 54.400
Y(?Dsp) 5.749 5.896 6.320 5355 P b 6.5
Y (1Sy) 10.402  10.278 11.627 11132 11.111 11.800 12.4
Y2+ (2Dyypp) 19.889  19.998 20.470 19.613  19.603 20.294 20.5
Y3 (1Sy) 59.833  59.617 60.520 59.505  59.967 60.889

8Experimental values from Reff5].
®No first VIP can be given since the ROHF scheme implementeabircAs3 yields an incorrect description
of the valence orbital in Y°.
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TABLE Il. Spectroscopic constants for HEY Hartree-Fock,
HF, second-order many-body perturbation theory, MBPT2, and
coupled cluster singles-doubles with noniterative triples, Ca$D
Bond distance$}, in pm, bond dissociation energied, and D,

(the latter corrected for vibrational contributioria eV, harmonic
frequenciesw, in cm %, first and second anharmonicity constant

0.01

] weXe andwgy, in cm™ 2, rotational constarB,, in cm™ %, centrifugal
1 distortion constan€, in 10 °cm™?, vibration-rotational coupling
0+ constante, in cm™ L. The sign convention of Huber and Herzberg is
] used[1].
1 HF MBPT2 ccsnoT)
-0.005
i Re 230.0 223.7 224.3
De 0.336 0.413 0.421
; Do 0.312 0.387 0.394
0.0+ we 389 432 437
®eXe 16.8 15.6 15.8
®eYe 0.150 0.042 0.052
-0.015 Be 0.832 0.878 0.877
1 Ce 1.17 1.14 1.12
! = Hep . 4 a 0.036 0.033 0.032
l' VCID(R)— 4.5(XD R e
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FIG. 1. Potential-energy curve of H&Y. The dots indicate the V(R) Zl Aie ™ ® using the boundary condition

calculated DKCCSDT) points, the solid line represents the ex-

tended Morse potential of Eq2), and the dashed curve the ion- n

induced dipole interaction. De=— 21 A, 2
=

that lighter H&3" species can be found that are stable, but ) .
they will be repulsive in the outer part of the potential- WNe'€A; and «; are fit parameters. The original Morse po-
energy curve. The 0.42-eV dissociation energy of fiels  tential is a special case of E() with n=2, A,=D,, and

slightly higher than the previously proposed rare-earth-%2=2a1, and gives a good description for short distances
helium Hex®* dissociation energied., that lie between 0.20 and the equilibrium while the deviation towards the dissocia-

and 0.39 eV[8]. The bonding situation can mainly be de- tion becomes significant. Using our extended version, an ex-

scribed by a charge-induced dipdl@ID) interaction[ 18 cellent least-squares fit along the entire potential curve is
y g paleID) [18] obtained by the choice of=4 and the following parameters

9 (atomic units are used throughgut A;=+0.042 33,
Vep(R) = — 7ageR‘4, (1) A,=-0.02616, A;=+0.04549, A,=-0.07712, a
=0.7727,a,=0.5518,03=0.6279, anda,=0.1986. The
modeled potential-energy curve can accommodate up to 14
whereq is the charge of the catiom&3 for Y3%), ap®is  vibrational energy levels. The calculated vibrational-
the static dipole polarizability of Hé1.383 a.u.[19], andR  rotational constants listed in Table Il will help to identify this
the internuclear bond distance®'as a small cation allows gas phase species by future experimental work. We finally
for a short equilibrium bond distance of 224 pm, thus ren-mention that the next transition element compound FeZzr
dering Vep(Re) relatively large. A comparison of the may also be stable, as the experimental ionization potential
Vep(R) curve with the calculate(_j BQ pote_ntiall-energy curvevlpz(2r2+)=24_8 eV only slightly exceed\sqpo(He) [5]. Fur-
V(R) at the DKCCSDT) level is given in Fig. 1. Both ,armore; the recently published ionization potentials for the
curves agree nicely for longer distances and start to signifiztinide series of elements makes in unlikely that a purely
cgntly deviate at smaller .distances t.han the equilibriqm bongyound potential curve can be found for a quadruply charged
distanceR, where repulsive forces in the BO potential be- speciesXY** (the smallest fourth ionization potential in the

come non-negligible. Second, a charge-density Mulliken,nihanide or actinide series is that of Th with 28.65) eV
analysis also reveals that the system can mainly be describegl

as a CID interaction, as the atomic charges are almost per-
fectly zero for He and+3 for Y at R.. Third, note that the We are grateful to the Marsden fund Wellingt@ontract
spectroscopic constants at the HF level are reasonably clod. 96-UOA-PSE-008)1 the Deutsche Forschungsgemein-
to the correlated valuegTable Il), as small correlation ef- schaft, the Royal Society of New Zealand, the European Sci-
fects can be expected for a classical CID interaction. ence FoundatiodfREHE prograny, and the Auckland Uni-
The plotted BO potential-energy cur(eig. 1) represents versity Research Committee for financial support. We thank
an approximation of the DKCCSD) points by an extended Professor H. Schwar@U Berlin) for arousing our interest in
Morse potential, triply charged diatomics.
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