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Exact exchange in linear-response theory

R. K. Nesbet
IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099

~Received 4 September 1998; revised manuscript received 20 January 1999!

An exact formalism for excitation energies of any interactingN-electron system has recently been derived
from the linear-response limit of time-dependent Kohn-Sham theory. A response kernel is determined in this
theory by the functional derivative of the ground-state Kohn-Sham potential function with respect to electron
density. It is shown here that the exchange part of this response kernel is a linear operator determined exactly
by the underlying second-quantized Hamiltonian. If correlation response is neglected, the theory reduces to the
random-phase approximation including exchange. This formalism justifies methods that combine this exact
exchange kernel with density-functional approximations to the correlation kernel.@S1050-2947~99!50111-X#

PACS number~s!: 31.10.1z, 31.50.1w
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Introduction.Density-functional theory~DFT!, originally
restricted to ground states@1,2#, has recently been extende
to excitation energies by Petersilkaet al. @3#, using time-
dependent linear-response theory@4#. An alternative formal-
ism, exact for exchange, is well-established as the line
response limit of time-dependent Hartree-Fock the
~TDHF! @5#, equivalent to the random-phase approximat
~RPA! with exchange@6#. Since the DFT and RPA expres
sions for the exchange response kernelf x defined in this
theory appear to differ, it is important to determine wheth
this difference is significant, and if so, the source of t
difference.

The ability to compute excitation energies within a fo
mally exact linear-response theory is a potentially very gr
extension of the area of applicability of density-function
methods, already widely used in atomic, molecular, a
solid-state physics. In this theory@3,4#, excitation frequen-
cies are determined by

(
q8

$dqq82 Mqq8~v!/~v2vq81 ih!%jq8~v!50 ~1!

for spin-indexed ground-state electron densityr
5( inif i* f i in an exact Kohn-Sham orbital basis, obtain
by minimizing the Hohenberg-Kohn energy functional. T
index q denotes a virtual excitationi→a, defining vq5ea
2e i andaq5ni2na , and similarly forq8: j→b.

The first application of this theory@3# approximated the
exchange part of the response kernel and neglected the
relation part. In this exchange-only limit,

Mqq8~v!5aq8~a j uu1 f xu ib !, ~2!

in the usual notation for matrix elements ofu51/ur2r 8u.
The corresponding formula in the RPA@6# is

Mqq8~v!5aq8@~a j uuu ib !2~a j uuubi !#. ~3!

These equations agree if the exchange response kernel
linear operator,

f̂ x52 ~1/ur2r 8u!P~r ,r 8!, ~4!
whereP permutes the indicated coordinates for equal sp
Using the exchange-only optimized effective potential~OEP!
for vx

stat in the Krieger-Li-Iafrate~KLI ! @7# approximation,
Petersilkaet al. @3# derive the formula
PRA 601050-2947/99/60~5!/3343~4!/$15.00
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k

nkfk~r !fk* ~r 8!U2Y ur2r 8ur~r !r~r 8! . ~5!

The textbook derivations of RPA or TDHF are unlikely
be wrong. The question of why Eqs.~4! and ~5! are so dif-
ferent is examined here. A general principle can be sta
that determines the exchange part of the two-electron C
lomb interaction in any exact theory derived from th
N-electron nonrelativistic Hamiltonian: the only matrix el
ments of the Coulomb interaction that occur in the seco
quantized Hamiltonian are linear combinations of integr
of the form (i j uūukl)5( i j uuukl)2( i j uuu lk). No exact theory
can be derived in conflict with this formal structure. Th
principle determines an exact expression for the excha
part of the response kernel in linear-response theory in ag
ment with Eq.~4!.

Equivalence to TDHF or RPA theories in the pur
exchange limit, as established here, implies that the for
linear-response theory is free of mathematical difficulti
except possibly for the correlation response. A further imp
cation is that systematic corrections to the RPA can be
duced by analysis of effective correlation potentials deriv
in density-functional theory. By establishing an exact fo
for the exchange term, the residual mathematical and c
putational difficulties of the linear-response theory are r
egated to this less well characterized correlation term.
practice, this development should make the theory more
curate and more widely applicable.

Section II summarizes the recently derived DFT line
response theory@4#. Section III presents a fundamental arg
ment that establishes an exact universal expression for
exchange kernel in this theory. Questions relevant to con
tent definitions@8# are considered in Sec. IV. A detaile
comparison with local-exchange theory@3# is made in Sec.
V. Principal conclusions are summarized in Sec. VI.

Summary of linear response theory.The formalism of
time-dependent density-functional linear response theor
developed in detail in a recent review@4#. The essential
equations describing this formalism will be summarized h
in order to establish the context of the present proposal
exact exchange.

Following Ref. @4#, starting from a stationary groun
state, the first-order density changer1(r t) in the limit
R3343 ©1999 The American Physical Society
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of linear response is related to a first-order perturb
potential v1(r t) by the density-density response fun
tion x(r t;r 8t8)5dr(r t)/dv(r 8t8)uv1→0, such that r1(r t)

5*dt8*d3r 8x(r t;r 8t8)v1(r 8t8). The response functionxs
of a noninteracting Kohn-Sham system can be expresse
terms of the orbital functionsf i , eigenvaluese i , and occu-
pation numbersni . When Fourier-transformed from time t
frequency,

xs~rr 8v!5(
j ,k

~nk2nj !
f j~r !fk* ~r !f j* ~r 8!fk~r 8!

v2~e j2ek!1 ih

5(
q

aq

Jq~r !Jq* ~r 8!

v2vq1 ih
~6!

for h→01. All spin indices are suppressed here and a
tation for excitations has been introduced, such that indeq
denotes a virtual excitationk→ j , Jq(r )5f j (r )fk* (r ), aq

5nk2nj , and vq5e j2ek . The formal argument relate
x(r t;r 8t8) to the noninteracting response functio
xs(r t;r 8t8) by an integral equation whose kernel conta
the functional derivativef xc(r t;r 8t8)5dvxc(r t)/dr(r 8t8).
This equation, similar to a Dyson equation, is

x~r t;r 8t8!5xs~r t;r 8t8!1E d3xE dtE d3x8E dt8

3xs~r t;xt!S d~t2t8!

ux2x8u
1 f xc~xt;x8t8!D

3x~x8t8;r 8t8!. ~7!

In a simplified notation, the defining equationr15*xv1
takes the form

r15E xsH v11E S d

ux2x8u
1 f xcD E xv1J

5E xsH v11E S d

ux2x8u
1 f xcD r1J , ~8!

equivalent to the inhomogeneous integral equation

E H d2xsE S d

ux2x8u
1 f xcD J r15E xsv1 . ~9!

When the time variable is Fourier-transformed to frequen
v this becomes

E d3xE d3x8H d~r2x!d~r2x8!2xs~rxv!S 1

ux2x8u

1 f xc~xx8v!D J r1~x8v!5E d3xxs~rxv!v1~xv!. ~10!

Excitation energies occur for frequenciesv5V for which
this integral equation is singular, as determined by the n
linear eigenvalue equation

E d3xE d3x8$d~r2x!d~r2x8!2xs~rxv!@1/ux2x8u

1 f xc~xx8v!#%z~x8v!50. ~11!
g
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-
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n-

On defining the integraljq(v)5*d3x*d3x8Jq* (x)@1/ux
2x8u1 f xc(xx8v)#z(x8v) and substituting Eq.~6! for xs ,
excitation frequenciesv5V are determined by Eq.~1!, in
which

Mqq8~v!5aq8E d3rE d3r 8Jq* ~r !S 1

ur2r 8u
1 f xcD Jq8~r 8!.

~12!

The summation in Eq.~1! becomes an integral for a syste
whose unoccupied one-electron states lie in the energy
tinuum. Equation~12! completes the formal derivation@3,4#.

Exchange kernel implied by exact N-electron theory.In
the theory ofN-electron wave functions, it is well known@9#
that all matrix elements of the Coulomb interaction betwe
Slater determinants constructed from a common basis
spin-indexed orthonormal orbital wave functions are line
combinations of two-electron integrals ofu51/r 12 in the
form

~ i j uūukl !5~ i j uuukl !2~ i j uuu lk !. ~13!

This is a consequence of the fact that the Coulomb inte
tion in the second-quantized many-electron Hamiltonian
the sum1

2 ( i jkl ( i j uuukl)h j
†h i

†hkh l , whereh† andh, respec-
tively, are elementary electron creation and annihilation
erators @6#. Becausehk and h l anticommute, this sum is
identical to the form1

4 ( i jkl ( i j uūukl)h j
†h i

†hkh l , which im-
plies that all two-electron matrix elements in any exa
theory take the form (i j uūukl). If a two-electron Coulomb
integral (i j uuukl) occurs in any exact formula derived from
many-body theory it must be accompanied by an excha
integral of the form2( i j uuu lk).

An important purpose of the present paper is to point
that this rule determines the exchange term in Eq.~12!. In
order to be consistent with the general rule for two-elect
matrix elements, the Coulomb and exchange part of the
tegrand in Eq.~12! must take the form

Jq* ~r !S 1

ur2r 8u
1 f xD Jq8~r 8!5f j* ~r !fk8

* ~r 8!
1

ur2r 8u

3$fk~r !f j 8~r 8!2f j 8~r !fk~r 8!%. ~14!

In agreement with the structure of the second-quanti
Hamiltonian, this is equivalent to the linear operator expr
sion

f h1 f x5~1/r 12! $12P12%, ~15!

where the direct Coulomb response kernel isf h51/r 12 and
P12 permutes the indicated coordinates. In integrals over
operator, summation over spin produces a Kronecker-d
factor in the spin indices. Equation~15! gives an exact and
universal formula for the exchange kernelf x .

This formula can be verified for two virtual excitation
q: i→a andq8: j→b, whereiÞ j , aÞb, ni5nj51, andna
5nb50. The interaction matrix element between the unc
related wave functions denoted byF i

a andF j
b is @9#

~F i
auHuF j

b!5~a j uūu ib !. ~16!
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In the present notation,Jq* (r )5fa* (r )f i(r ), Jq8(r 8)
5fb(r 8)f j* (r 8), and aq5aq851. Substituting Eqs.~15!
and ~14! into Eq. ~12!, the matrix element for this example
omitting correlation, is

Mqq85E d3rE d3r 8fa* ~r !f j* ~r 8! 1/~ ur2r 8u!

3@12 fb~r !f i~r 8!/f i~r !fb~r 8!#f i~r !fb~r 8!

5~a j uūu ib !, ~17!

in agreement with Eq.~16!. In an orbital basis representatio
of Eq. ~7!, matrix elements of the Coulomb interaction c
be modified to include exact exchange by using Eq.~15!.

If the matrix elements given by Eq.~17! are substituted
into Eqs.~1! this provides a theory that is valid when corr
lation response can be neglected. Comparison with ti
dependent Hartree-Fock~TDHF! theory@5# shows that when
Eqs. ~1! are expressed in terms of coefficientsj/(v2vq8
1 ih) these equations give exactly the linear-response l
of TDHF. As discussed by Thouless@6#, these equations ar
equivalent to the random-phase approximation when
change is included in the latter. As is well known in th
theory of metals, an exact-exchange theory is not physic
correct for any system with nonvanishing density of state
the Fermi surface, so parallel consideration of correlat
response is needed, except for applications with discrete
ergy levels, and must be included in any theory intended
improve on the RPA.

Consistent definitions.It is widely assumed in the DFT
literature that the exact ground-state energy functional es
lished by Hohenberg-Kohn theory@1# defines a local
exchange-correlation potential in exact Kohn-Sham eq
tions @2#. By extension, the response kernelf xc in Eq. ~12! is
expected to be defined as ac-number function in exac
linear-response theory@3,4#. The exact exchange kernel d
fined by Eq.~15! is a nonlocal linear operator. It thus appea
to be inconsistent with the DFT derivation of Eq.~12! @4#.
This apparent inconsistency can be resolved in one of
ways: either an exact DFTc-number exchange response ke
nel exists, and is equivalent in the system of equations
rived in linear-response theory to the exact nonlocal lin
operator of Eq.~15!, or else the assumption of locality fails
Evidence for the second conclusion exists, and is discus
below. However, the first conclusion cannot be ruled
without proof. Definitions needed to make this issue clear
summarized here.

While Eq.~15! is a necessary consequence of the struc
of the second-quantized Hamiltonian, it requires a consis
definition of exchange and correlation energy in the ene
functional @8#. This can be put into a general context b
defining a reference stateF, described by a single Slate
determinant, determined by some rule from the exact co
lated wave functionC. Hohenberg-Kohn theory implies fo
ground states thatF and its set of occupied orbital function
$f i% are functionals of the density function. IfF andC are
normalized so that (FuC)5(FuF)51, thenE5(FuHuC)
5(FuHuF)1(FuHuC2F) and (FuC2F)50 by con-
struction. This unsymmetric formula expresses any total
ergy eigenvalue in the formE5(FuHuF)1Ec , and pro-
vides a natural definition of correlation energyEc for any
e-
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reference stateF. Ex and all other terms in the energy func
tional are defined as reference-state mean values. In the
of occupied orbitals of the reference state, this definition
Ec implies Eq.~15!, because (FuHuF) always has the sam
form.

In standard DFT@2#, a model or reference state is define
by minimizing the kinetic energy (FuTuF) while constrain-
ing the reference-state density functionrF to be identical
with the correlated density functionrC . This definesF as a
functional ofrC or rF , consistent with the natural definitio
of Ec given above. Alternatively, in reference-state DF
~RDFT! @10#, F is determined by maximum projection o
C, and the ground-state energy is a functional ofrF . In
RDFT all one-electron terms drop out ofEc .

To discuss the locality of the DFT exchange-correlati
potential, it is necessary to distinguish between the ‘‘Koh
Sham construction’’~minimizing reference-state kinetic en
ergy with a density constraint! and the ‘‘exact Kohn-Sham
equations’’ derived by minimizing the exact Hohenber
Kohn energy functional with respect to variations of the o
cupied orbital functions of the Kohn-Sham reference sta
The coupled equations for occupied orbitals derived in th
two formalisms differ if the effective exchange-correlatio
potential in the exact Kohn-Sham equations is a linear
erator that is not equivalent to a local potential function
the context of these equations. Effective potentials in
exact Kohn-Sham equations take the form of dens
functional derivatives. The relevant mathematical issue
whether a definition of functional derivatives restricted
local potential functions is appropriate to the variation
theory of these equations. In the case of the kinetic-ene
functional, the assumption of locality implies the equiv
lence of Thomas-Fermi theory and exact Kohn-Sham the
if both are derived from the same Hohenberg-Kohn ene
functional. This assumption is negated by the fact that th
theories are inconsistent unless all Kohn-Sham one-elec
energies are equal@13#. Kohn and Sham@2# follow standard
variational theory in using the linear operator2 1

2 ¹2 of
Schrödinger, rather than assuming that the density-functio
derivative of the kinetic energy functional defines a loc
potential. They also consider a variant of DFT~@2#, Sec. II B!
in which ‘‘exact’’ exchange is represented by the nonloc
Fock exchange operator.

Comparison with local-exchange theory.In Eq. ~6! @4#, xs
is evaluated using exact Kohn-Sham orbitals computed fo
stationary ground state. This is justified in the linea
response limit, assuming that the unperturbed external po
tial is time independent. The functional derivativ
f xc(r t;r 8t8) is also to be evaluated in the limit of vanishin
perturbing field. In Coulomb gauge, if the electromagne
radiation field is neglected, Coulomb interactions are inst
taneous. Even for nonzero frequencies, it can be expecte
instantaneous interactions that

f xc~rr 8v!. f xc~rr 80!5 d2Exc/dr~r !dr~r 8! . ~18!

For example, given the classical Coulomb~Hartree! energy
Eh5 1

2 *@r(r )r(r 8)/ur2r 8u#d3rd3r 8, the functional second
derivative is f h5d2Eh /dr251/ur2r 8u, which describes an
instantaneous interaction. For a system with continuous
ergy levels at the Fermi level, single-electron states acqui
lifetime and the response kernel must be considered to
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frequency dependent. Otherwise, it is consistent to inclu
the exchange kernel required in Eq.~12! in the form
(d2/dr2)(Eh1Ex)51/ur2r 8u1 f x(rr 80).

A relationship can be established between TDHF-R
equations and the expressionf x5d2Ex /dr2 derived from
exact Kohn-Sham theory. For any orbital functionalF that is
also a density functional, the infinitesimal variation gen
ated by orbital variations is given by

dF5(
i
E $df i* ~dF/df i* ! 1c.c.%d3r

5(
i

niE $df i* ~r !@dF/dr~r !# f i~r !1c.c.%d3r . ~19!

This is expressed in a form valid for linear operators, b
reduces to the usual definitiondF5*(dF/dr)dr if the func-
tional derivative is a local function. The implied chain ru
for functional derivatives isdF/df i* 5ni(dF/dr)f i . For
example, using the natural definition of correlation ener
the sum of Coulomb and exchange energies for ground st
determines the density functional

U@r#5~FuUuF!5 1
2 (

i , j
ninj~ i j uūu i j !, ~20!

in the notation of Eq.~13!. When evaluated in a basis o
orbital functions derived from exact Kohn-Sham equatio
functional derivatives of this explicit orbital functional ar
determined by the chain rule given above. Thus in grou
state theory,

dU/df j* 5nj ~dU/dr! f j5nj(
i

ni~ i uūu i !f j , ~21!

which definesdU/dr as the linear operator of Fock. Sinc
this expression is itself an orbital functional, the function
second derivative is

d2U

df i* ~1!df j* ~2!
5

ninjd
2U

dr~1!dr~2!
f i~1!f j~2!

5
ninj

r 12
@f i~1!f j~2!2f j~1!f i~2!#. ~22!

Terms with i 5 j drop out because of antisymmetry. This
equivalent to the linear operator expression given in Eq.~15!,

f h1 f x5d2U/dr~1!dr~2! 5~1/r 12! $12P12%, ~23!

and agrees with Eq.~4!, which gives the RPA formula for
Mqq8(v) in Eq. ~3!.
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Using the exchange-only optimized effective potent
@11,12# for vx

stat in the KLI @7# approximation, Petersilka
et al. @3# derive Eq.~5!, which clearly differs from Eq.~4!.
Although Eq. ~5! is itself an approximation of the OEP
theory, it is an important question whether a result deriv
from such a theory, based on a local-exchange poten
could be equivalent to the exact expression forf x given by
the linear exchange operator in Eq.~4!. The assumption tha
a density-functional derivative must yield a local potent
function for ground states has recently been shown to
false in the case of the kinetic-energy functional in DFT a
Thomas-Fermi theory@13#. Numerical criteria computed in
unrestricted Hartree-Fock theory indicate that dens
functional derivatives are not in general equivalent to lo
potential functions for either kinetic or exchange ener
functionals @14#. Other results in existing literature impl
that an exact theory cannot be based on the optimized e
tive potential model. This model is known to be inexact f
exact-exchange~Hartree-Fock! ground states. OEP ground
state energies computed by Aashamaret al. @15# and with
improved accuracy by Engel and Vosko@16# are214.5724
for Be and2128.5455 for Ne in Hartree units, above th
Hartree-Fock energies214.573 02 for Be and2128.547 10
for Ne @17# by amounts greater than the expected resid
numerical inaccuracy. It is unlikely that an exact theory
linear response and excitation can be based on a model
is inexact for ground states.

Conclusions.It has been shown here that an exact expr
sion exists for the exchange part of the response kerne
linear-response theory based on density-functional the
Using this exact-exchange expression, the theory beco
equivalent to the RPA or linear-response limit of tim
dependent Hartree-Fock theory if the electronic correlat
part of the response kernel is neglected. This exact-excha
kernel retains its form when correlation energy is included
the theory, consistent with the ‘‘natural’’ definition of corre
lation energy discussed in Sec. IV@8#.

The integrals in Eq.~2! are no easier to compute using E
~5! than Eq.~4!. Even if a practical way were found to elimi
nate the KLI approximation and to use the full OEP theory
Eq. ~5!, it might not offer any practical advantage over th
RPA formula. In view of this, one might as well use th
nonlocal RPA expression, Eq.~4!, for the exchange respons
kernel, augmenting it with a correlation kernel obtained fro
DFT.

The author is grateful to R. Colle for discussions and
the Scuola Normale Superiore~Pisa! for support.
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