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An exact formalism for excitation energies of any interactivglectron system has recently been derived
from the linear-response limit of time-dependent Kohn-Sham theory. A response kernel is determined in this
theory by the functional derivative of the ground-state Kohn-Sham potential function with respect to electron
density. It is shown here that the exchange part of this response kernel is a linear operator determined exactly
by the underlying second-quantized Hamiltonian. If correlation response is neglected, the theory reduces to the
random-phase approximation including exchange. This formalism justifies methods that combine this exact
exchange kernel with density-functional approximations to the correlation k¢8150-294®9)50111-X]

PACS numbd(s): 31.10+z, 31.50+w

Introduction. Density-functional theoryDFT), originally fSEP(rr )
restricted to ground stat¢4,2], has recently been extended 2
to excitation energies by Petersilla al. [3], using time- ~—2> Nebi(r) B (r') / Ir—rt'|p(Np(r’). (5)
dependent linear-response thepy. An alternative formal- k
ism, exact for exchange, is well-established as the linear- The textbook derivations of RPA or TDHF are unlikely to
response limit of time-dependent Hartree-Fock theorybe wrong. The question of why Eq&) and (5) are so dif-
(TDHF) [5], equivalent to the random-phase approximationferent is examined here. A general principle can be stated
(RPA) with exchangd6]. Since the DFT and RPA expres- that determines the exchange part of the two-electron Cou-
sions for the exchange response kerfgeldefined in this lomb interaction in any exact theory derived from the
theory appear to differ, it is important to determine whetherN-electron nonrelativistic Hamiltonian: the only matrix ele-
this difference is significant, and if so, the source of thements of the Coulomb interaction that occur in the second-
difference. guantized Hamiltonian are linear combinations of integrals

The ability to compute excitation energies within a for- of the form (] lulkl)= (ij|ulkl) = (ij|u|lk). No exact theory
mally exact linear-response theory is a potentially very greagan be derived in conflict with this formal structure. This
extension of the area of applicability of der‘SiW'fU”CtionaLErinciple determines an exact expression for the exchange

methods, already widely used in atomic, molecular, anthart of the response kernel in linear-response theory in agree-
solid-state physics. In this theof$,4], excitation frequen-  ment with Eq.(4).

cies are determined by Equivalence to TDHF or RPA theories in the pure-
_ exchange limit, as established here, implies that the formal
Z {0gqr = Mg (@) (0= wq +in}téq(0)=0 (1) linear-response theory is free of mathematical difficulties,
q

o ) except possibly for the correlation response. A further impli-
for spin-indexed ground-state electron density  cation is that systematic corrections to the RPA can be de-
=Zin;i${ ¢; in an exact Kohn-Sham orbital basis, obtainedduced by analysis of effective correlation potentials derived
by minimizing the Hohenberg-Kohn energy functional. Thein density-functional theory. By establishing an exact form
index g denotes a virtual excitation—a, definingw,=€,  for the exchange term, the residual mathematical and com-
— € andag=n;—n,, and similarly forq’:j—Db. putational difficulties of the linear-response theory are rel-

The first application of this theor}8] approximated the egated to this less well characterized correlation term. In
exchange part of the response kernel and neglected the cqiractice, this development should make the theory more ac-

relation part. In this exchange-only limit, curate and more widely applicable.
) ) Section Il summarizes the recently derived DFT linear-
Myg (@)= aq,(aj|u+ f,lib), 2 response theorj4]. Section Il presents a fundamental argu-

ment that establishes an exact universal expression for the

exchange kernel in this theory. Questions relevant to consis-

tent definitions[8] are considered in Sec. IV. A detailed

comparison with local-exchange thedi3] is made in Sec.

V. Principal conclusions are summarized in Sec. VI.

These equations agree if the exchange response kernel is theSummary of linear response theoryhe formalism of

linear operator, tlme-depenc_ient de_ns_lty-functlonal Im_ear response the_ory is
. developed in detail in a recent reviel]. The essential
fu=—(Lr=r"HP(r,r"), (4 equations describing this formalism will be summarized here

whereP permutes the indicated coordinates for equal spinin order to establish the context of the present proposal for

Using the exchange-only optimized effective poteni@EP exact exchange.

in the usual notation for matrix elements of=1/r—r’|.
The corresponding formula in the RHA] is

qu’(w):aq’[(a”u“b)_(aj|u|bi)]- €

for v in the Krieger-Li-lafrate(KLI) [7] approximation, Following Ref. [4], starting from a stationary ground
Petersilkaet al. [3] derive the formula state, the first-order density changg(rt) in the limit
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of linear response is related to a first-order perturbingOn defining the integraléy(w)=[d®/d®’ 2§ (x)[1/x
potential v,(rt) by the density-density response func- —x’|+f,(xx'w)]¢{(X'w) and substituting Eq(6) for xs,
tion x(rt;r't")=3dp(rt)/év(r't")],, o, such thatp,(rt)  excitation frequencies»= are determined by Eq1), in
= [dt’ fd3 x(rt;r't")v,(r't"). The response functioy,  Which

of a noninteracting Kohn-Sham system can be expressed in

terms of the orbital functiong; , eigenvalues;, and occu- ()= f 3 f 3y 1% - = (r
pation numbers; . When Fourier-transformed from time to Mag (@) =g | d7r | d7r Hq(r)< [r—r’| +fx°) =alr).
frequency, (12

Bi(1) i (N b (1) (")

1

The summation in Eq(l) becomes an integral for a system

Xs(IT ’w)=% (ng=n;)

o= (g—e)tin whose unoccupied one-electron states lie in the energy con-
2 (1)E*(r) tinuum. Equation(12) _com_pletes the formal derivatidi3,4].
=> aq& (6) Exchange kernel implied by exact N-electron thedny.
q w—wgtliy the theory ofN-electron wave functions, it is well know®]

for 7—0+. All spin indices are suppressed here and a nothat all matrix elements of the Coulomb interaction between

tation for excitations has been introduced, such that irglex S/at€r (?ete;lmlne;]nts conTtrugec: from ? common b"’}?"s of
denotes a virtual excitatioh—j, Zq(r)=dy(r) i (1), @  SPI-indexe orthonormal orbital wave functions are linear

—ny—n;, and wg—€;— . The formal argument relates combinations of two-electron integrals of=1/r, in the

x(rt;r't’) to the noninteracting response function form
xs(rt;r’'t’) by an integral equation whose kernel contains (ij|U|kI)=(ij|u|k|)—(ij|u|lk). (13)
the functional derivativef, (rt;r't")= vy (rt)/dp(r't’).

This equation, similar to a Dyson equation, is This is a consequence of the fact that the Coulomb interac-

tion in the second-quantized many-electron Hamiltonian is
A eyl 3 3! ’
x(rtsr't") = xq(rt;r't )+f d Xf de d*x de the sum$ =y, (ij [ulkl) 7] ] 7cm . wheren' and 7, respec-
tively, are elementary electron creation and annihilation op-

o(r—1") . erators[6]. Becauser, and 7, anticommute, this sum is
Xxs(rt;xr)| ———+fy(Xmx'7 ) . 1 = Pt o
[x—x']| identical to the formg i (ij [ulkl) 7] 7 . which im-
plies that all two-electron matrix elements in any exact
Xx(xX'7";r't"). (7)

theory take the formi{|ulkl). If a two-electron Coulomb
integral (j|ulkl) occurs in any exact formula derived from
many-body theory it must be accompanied by an exchange
integral of the form— (ij |u|lk).

In a simplified notation, the defining equatign = [ xv,
takes the form

An important purpose of the present paper is to point out

P1:f Xs Vﬁf ﬁ"’fxc fXVI that this rule determines the exchange term in @®). In
X=X order to be consistent with the general rule for two-electron
matrix elements, the Coulomb and exchange part of the in-

:J' Xs[vl+f ﬁ—{_fxc pl}, (8)  tegrand in Eq(12) must take the form
X—x'
equivalent to the inhomogeneous integral equation Eg(r)(;ﬂcx qu(r’)=¢f(r)¢’k‘,(r’) 1
Ir—r’| lr—r’'|
f |5—Xsf x| +fxc)]m=f XV ) X{ N by (1) = by (1) i1} (14)

When the time variable is Fourier-transformed to frequency” agreement with the structure of the second-quantized
o this becomes Hamiltonian, this is equivalent to the linear operator expres-

sion

frt+fy=(1/r10) {1—Pya}, (15

where the direct Coulomb response kernefjs- 1/r , and
, ) 3 ‘P1, permutes the indicated coordinates. In integrals over this
+ foe(XX @) | | pr(X w)IJ d*xxs(xw)va(xw). (100 gperator, summation over spin produces a Kronecker-delta
factor in the spin indices. Equatidi5) gives an exact and
Excitation energies occur for frequencies-() for which  universal formula for the exchange kerrfel
this integral equation is singular, as determined by the non- This formula can be verified for two virtual excitations

f d3xf d3x’[ 5(r—x)5(r—x’)—xs(rxa))(

[x=x'|

linear eigenvalue equation g:i—aandq’:j—b, wherei#j, a#b, nj=n;=1, andn,
=n,=0. The interaction matrix element between the uncor-
f d3xf A3 {8(r—x)8(r—x") — xs(rxw)[ 1/|x—X']| related wave functions denoted B and <I>f’ is [9]

F (XX @) (X @) =0, (11) (DFH|®P)=(ajulib). (16)
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In the, pr*eselnt notation. = (r)=¢3 (1) #i(r), Eq(r')  reference statd. E, and all other terms in the energy func-
=¢u(r')$i ('), and aq=aq =1. Substituting Eqs(15)  tional are defined as reference-state mean values. In the basis
and (14) into Eg. (12), the matrix element for this example, of occupied orbitals of the reference state, this definition of

omitting correlation, is E. implies Eq.(15), because ®|H|®) always has the same
form.
qu,=f dgrf d3r’¢§(r)¢j*(r’) U(jr=r'|) In standard DFT2], a model or reference state is defined
by minimizing the kinetic energyd|T|®) while constrain-
X[1= (1) pi(r') i(r) u(r')1i(r) du(r’) ing the reference-state density functipg to be identical
o with the correlated density functigny, . This definesb as a
=(aj|ulib), (17 functional ofpy or pg , consistent with the natural definition

of E. given above. Alternatively, in reference-state DFT
in agreement with Eq.16). In an orbital basis representation (RDFT) [10], ® is determined by maximum projection on
of Eq. (7), matrix elements of the Coulomb interaction can¥, and the ground-state energy is a functionalpgf. In
be modified to include exact exchange by using @&). RDFT all one-electron terms drop out Bf .

If the matrix elements given by Eql7) are substituted To discuss the locality of the DFT exchange-correlation
into Egs.(1) this provides a theory that is valid when corre- potential, it is necessary to distinguish between the “Kohn-
lation response can be neglected. Comparison with timeSham construction’(minimizing reference-state kinetic en-
dependent Hartree-Fo¢KDHF) theory[5] shows that when ergy with a density constrainand the “exact Kohn-Sham
Egs. (1) are expressed in terms of coefficied{ w— wy equations” derived by minimizing the exact Hohenberg-
+i7) these equations give exactly the linear-response limikohn energy functional with respect to variations of the oc-
of TDHF. As discussed by Thoule§8], these equations are cupied orbital functions of the Kohn-Sham reference state.
equivalent to the random-phase approximation when exThe coupled equations for occupied orbitals derived in these
change is included in the latter. As is well known in the two formalisms differ if the effective exchange-correlation
theory of metals, an exact-exchange theory is not physicallpotential in the exact Kohn-Sham equations is a linear op-
correct for any system with nonvanishing density of states agrator that is not equivalent to a local potential function in
the Fermi surface, so parallel consideration of correlatiorthe context of these equations. Effective potentials in the
response is needed, except for applications with discrete emexact Kohn-Sham equations take the form of density-
ergy levels, and must be included in any theory intended tdunctional derivatives. The relevant mathematical issue is
improve on the RPA. whether a definition of functional derivatives restricted to

Consistent definitionslt is widely assumed in the DFT local potential functions is appropriate to the variational
literature that the exact ground-state energy functional estafiheory of these equations. In the case of the kinetic-energy
lished by Hohenberg-Kohn theoryl] defines a local functional, the assumption of locality implies the equiva-
exchange-correlation potential in exact Kohn-Sham equalence of Thomas-Fermi theory and exact Kohn-Sham theory,
tions[2]. By extension, the response keriiigl in Eq.(12) is  if both are derived from the same Hohenberg-Kohn energy
expected to be defined as @number function in exact functional. This assumption is negated by the fact that these
linear-response theofB,4]. The exact exchange kernel de- theories are inconsistent unless all Kohn-Sham one-electron
fined by Eq.(15) is a nonlocal linear operator. It thus appearsenergies are equél3]. Kohn and Shan2] follow standard
to be inconsistent with the DFT derivation of Ed.2) [4].  variational theory in using the linear operater;V? of
This apparent inconsistency can be resolved in one of tw&chralinger, rather than assuming that the density-functional
ways: either an exact DF@-number exchange response ker- derivative of the kinetic energy functional defines a local
nel exists, and is equivalent in the system of equations depotential. They also consider a variant of DEZ], Sec. Il B
rived in linear-response theory to the exact nonlocal lineain Which “exact” exchange is represented by the nonlocal
operator of Eq(15), or else the assumption of locality fails. Fock exchange operator.

Evidence for the second conclusion exists, and is discussed Comparison with local-exchange theohy.Eq. (6) [4], xs
below. However, the first conclusion cannot be ruled outis evaluated using exact Kohn-Sham orbitals computed for a
without proof. Definitions needed to make this issue clear arétationary ground state. This is justified in the linear-
summarized here. response limit, assuming that the unperturbed external poten-

While Eq.(15) is a necessary consequence of the structur&al is time independent. The functional derivative
of the second-quantized Hamiltonian, it requires a consisterfixc(rt;r't") is also to be evaluated in the limit of vanishing
definition of exchange and correlation energy in the energyperturbing field. In Coulomb gauge, if the electromagnetic
functional [8]. This can be put into a general context by radiation field is neglected, Coulomb interactions are instan-
defining a reference sta®, described by a single Slater taneous. Even for nonzero frequencies, it can be expected for
determinant, determined by some rule from the exact correinstantaneous interactions that
lated wave function¥. H_ohenberg—Kohr_l theory implies_ for foo(Ir ' @)=f,(rr'0)= 8°E,/ Sp(r)dp(r'). (18
ground states thab and its set of occupied orbital functions
{¢;} are functionals of the density function.df and¥ are  For example, given the classical Coulorithartree energy
normalized so that®|¥)=(d|P)=1, thenE=(D|H|V)  En=3[[p(r)p(r')/|r—r'|]dd? ", the functional second
=(®|H|P)+(P|H|P—-P) and @|¥—-Dd)=0 by con- derivative isf,=6%Ey/Sp?>=1/r—r’|, which describes an
struction. This unsymmetric formula expresses any total eninstantaneous interaction. For a system with continuous en-
ergy eigenvalue in the fornE=(®|H|®)+E., and pro- ergy levels at the Fermi level, single-electron states acquire a
vides a natural definition of correlation ener§y for any lifetime and the response kernel must be considered to be
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frequency dependent. Otherwise, it is consistent to include Using the exchange-only optimized effective potential
the exchange kernel required in E¢L2) in the form [11,12 for vi'® in the KLI [7] approximation, Petersilka
(8%16p?)(En+EQ=1/r—r'|+f,(rr'0). et al. [3] derive Eq.(5), which clearly differs from Eq(4).

A relationship can be established between TDHF-RPAAlthough Eg. (5) is itself an approximation of the OEP
equations and the expressidp= 6°E,/dp? derived from theory, it is an important question whether a result derived
exact Kohn-Sham theory. For any orbital functiofahatis  from such a theory, based on a local-exchange potential,
also a density functional, the infinitesimal variation gener-could be equivalent to the exact expression fipgiven by

ated by orbital variations is given by the linear exchange operator in Hg). The assumption that
a density-functional derivative must yield a local potential
SF=>, f{g(ﬁi* (8F15¢p%) +c.crdr function for ground states has recently been shown to be
i false in the case of the kinetic-energy functional in DFT and

. 5 Thomas-Fermi theory13]. Numerical criteria computed in
=> nif{5¢i (NL6FIdp(r)] gi(r)+c.cyd’r. (19 unrestricted Hartree-Fock theory indicate that density-
! functional derivatives are not in general equivalent to local

This is expressed in a form valid for linear operators, bugP0tential functions for either kinetic or exchange energy

reduces to the usual definitiaiF = [ (5F/5p) 8p if the func- functionals[14]. Other results in existing Iiteratyr(_a imply
tional derivative is a local function. The implied chain rule that an exact theory cannot be based on the optimized effec-

for functional derivatives isSF/3¢* =n,(SF/3p) ;. For tive potential model. This model is known to be inexact for

example, using the natural definition of correlation energyexact-exchangéHartree-Fock ground states. OEP ground-

the sum of Coulomb and exchange energies for ground statg’éate energies computed by Aasharessl. [15] and with

. ; . improved accuracy by Engel and Voskt6] are —14.5724
determines the density functional for Be and —128.5455 for Ne in Hartree units, above the

_ _1 GO Hartree-Fock energies 14.573 02 for Be and-128.547 10
Ulp]=(@U®)=2 .2;‘ iy (i ulip), 20 for Ne [17] by amgunts greater than the expected residual
in the notation of Eq(13). When evaluated in a basis of Numerical inaccuracy. It is unlikely that an exact theory of
orbital functions derived from exact Kohn-Sham equations!inéar response and excitation can be based on a model that
functional derivatives of this explicit orbital functional are IS inexact for ground states.

determined by the chain rule given above. Thus in ground- Conclusionsit has been shown here that an exact expres-
state theory, sion exists for the exchange part of the response kernel in

linear-response theory based on density-functional theory.
5U/5¢j* =n; (8U/p) ¢j:njz ni(i|U|i)¢j, (22) Using this exact-exchange expression, the theory becomes

i equivalent to the RPA or linear-response limit of time-

which definesdU/8p as the linear operator of Fock. Since dependent Hartree-Fock theory if the electronic correlation
this expression is itself an orbital functional, the functionalpart of the response kernel is neglected. This exact-exchange

second derivative is kernel retains its form when correlation energy is included in
S2U nn. 52U the theory, consistent with the “natural” definition of corre-
= ' $i(1)¢;(2) lation energy discussed in Sec. [8].
S¢t (1)8¢F(2) 9p(1)p(2) The integrals in Eq(2) are no easier to compute using Eq.

o (5) than Eq.(4). Even if a practical way were found to elimi-
_ e oy 4. _ nate the KLI approximation and to use the full OEP theory in
ro [#1(1)4;(2)=¢i(D¢i(2)]. (22 Eq. (5), it might not offer any practical advantage over the
o ] ~_ RPA formula. In view of this, one might as well use the
Terms withi=| drop out because of antisymmetry. This is nonjocal RPA expression, EG), for the exchange response
equivalent to the linear operator expression given in(E8).  kernel, augmenting it with a correlation kernel obtained from
fo+f=0%U/0p(1)8p(2) =(1Ir1) {1-P1z}, (23  pET.

and agrees with Eg4), which gives the RPA formula for The author is grateful to R. Colle for discussions and to

My () in Eq. (3). the Scuola Normale SuperiofBisag for support.
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