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Universality of optimal measurements
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We present optimal and minimal measurements on identical copies of an unknown state of a quantum bit
when the quality of measuring strategies is quantified with the gain of informé#aiback—or mutual
information—of probability distributions We also show that the maximal gain of information occurs, among
isotropic priors, when the state is known to be pure. Universality of optimal measurements follows from our
results: using the fidelity or the gain of information, two different figures of merits, leads to exactly the same
conclusions for isotropic distributions. We finally investigate the optimal capacity @ipies of an unknown
state as a quantum channel of informatip1050-2947®9)51311-5

PACS numbd(s): 03.67—a, 03.65.Bz

Consider an unknown state of a two-level quantum sys- These equivalent definitions of the fidelity, plus the
tem described by the density matmg), b being the Bloch foII_owing pro_p_ertk_es that character_ize it further, make it a
vector,bz|5|$1. The preparation device providesiden- unique quantlflqauon of the ,compa,rlson of tw9 general ,quan—
tical copies of the system, so that the state at our disposal Fg;“@ itaF?S'F((') ,)O_iolip,p, )_T)F(p (,iﬁ))gFl(U (ILIJ)T UF(’pL'JpT))
p(b)®N. In the past few years the optimal measuring strat-_ PP TP TP py =P

- . o =F(p,p"), UUT=UTU=1. (iv) F(|¢)(l.p)=(¢lpl¥).
egy, i.e., the most successful at revealing the identity of th%v) F(p®a,p'®@0")=F(p,p')F(a,0'). Vi) F[p,pps+(1
unknown state, has been obtained, first for pure sfadte§] “p) F?]Bp,lf( )+(1_p$|:( ’) O%psl pinleefs
and then for mixed statdg]. Also the minimal ones among 'y g]zthe unlfﬁg\llvn state wasplygﬁo\;vn 10 be 'pun@ 1 but
the optimal strategies, i.e., the ones with the smallest numbe”’ S o
of ou?comes havg been constructed, both for pure saies o knowledge of the direction of the Bloch vector was as-

. ’ Y . pur sumed. In referenclet] the unknown state was a mixed state
a’?d mlxed statefd]. In the processing of '”fO”T“"?“O” con- (iirawn stochastically from a known isotropic distribution
tained in quantum states, knowing the most efficient readou ~
procedures, i.e., the optimal and least resource consumingP). and although the best guessdepended ori(b), the

ones, is of course of importance. optimal measuring.strategy, that is, the_ St} oof po;itive _
In all these contributions the quality of the measuring®Perators of the different outcomes, did not. For isotropic
strategy, characterized by a resolution of the identity dlstrlb_utlons optimal measurements are thus distribution, i.e.,
f(b), independent.
2 M, =1, (1) However, proposing an outcome-dependent guess and
1

evaluating its quality through the fidelity are only two of the
in terms of positive operatofd =0, has been quantified by criteria that could have been used to define optimal measure-
the fidelity [6]. In other words, when outcomie(related to ~ ments. A sound alternative, the one we shall investigate in
M;) happens, one guesses the unknown state topbe this work and prqbably the most sen5|ble. choice in thg con-

text of quantum information theory, consists of quantifying
the quality of measuring strategies through the gain of infor-
F(p(B),p(p)={TrVp(B)2(p)p(B)Y2}2.  (2)  mation about the unknown state. In fact, information theory

One can arrive at Eq2) from several different starting @l'éady supplies a universally accepted, unambiguous
points. One of them is based on a measure of distinguishabicheéme for this purpose, which we shall follow. It is based

Ep(ﬁi) and one quantifies the quality of the guess by

ity of the probability distributions associated withandp’ ~ ©n the Bayes formula, .whic.h .pro.vides» a conditional
by performing general positive operator valued measuretoutcome-dependentposterior distributiorf(b|i) from the
ments[as in Eq.(1)] on them[7] and minimizing, (here isotropit prior distributionf(b), and on the Kullback
2 formula, which quantifies the gain of information acquired
F(p.p’)=min 2 VT pMINTp'MT| . (3 when replacing (b) with f.(b]i).

More specifically, ifP;(b)=Tr[p(b)M,] is the probabil-
Another is based on the standard Hilbert-space scaldty of outcomei when the unknown state j@(B) and
product of the two pure states, which, belonging @8
®C?, lead top andp’ when reduceds],

Fp.p")=max(yly")I, 4
where maximization is performed ovef|u), ¢ )}/p is thea priori probability of outcome, then the Bayes for-

=Trl | )|, p' =Trl|w W' |]. mula states that the posterior distributiég(b|i), the one

that collects our knowledge about the unknown sta(tﬁ)
after measuring when the initial knowledge is givenflfl),
*Electronic address: guifre@ecm.ub.es reads

Pap(i)zf d3bf(b)Pi(6)U d3pf(b)=1 (5)
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fo(Bli)= f(b)Pi(B)/Pp(i) . (6)

The gain of information abowb(ﬁ), Al, is then given, in v o m
i Al i X1,X2,Y1,Y2=0.
bits, by the Kullback formula ofo(b]i) refative tof(b) [12] Corollary 1. An optimal measuring strategy with rank-1

, — | 43 oF o operators always existgf. [14]).

KilTe/t] f d*bic(bli)logyl fe(bl1)/f(b)]. @ Proof. Indeed, suppos&;M;=1 corresponds to an opti-
This expression, the only one satisfying a series of intuitivelynal measurement. Then, M;=X,Ji,k)(i k| is the spectral
reasonable condition13], is well-defined for continuous decomposition oMM, it follows from the theorem that the
distributions (it has no dependence on the measure in théank-1 positive operator valued measuremeni|i,k)(i k|

space of quantum stafesnd its average over possible out- =1 iS also optima/l® _
comes, We can already consider the calSle=1, that is, when

only one copy of the unknown state is available. One can
K[f/f1=2 Pap(i)Ki[fe/f], (8)  convince oneself immediately that an optintahd also mini-
i . mal) measurement is just a standard von Neumann measure-
is precisely the difference of thee priori and averaga pos- ~ Ment. In fact, any will do because of the isotropy fgb).
teriori entropiesH of the corresponding probability distribu- Suppose that we measures,. Then, for b

(X321 XLy X2 (11)
X X5)IN =X7;IN—+X,INn—,
L2 ya+y, Py Py,

tions of states, =(bsinfcose,bsinfsing,bcosh), we have

H[f]—H[f, z—f d®b f(b)log, f(b)+ X, Pay(i) fo(b|*)=(1+bcosh)f(b) (12)

I
and the gain of information is
X | d®b fo(bli)log,f(bli), 9 1
f e(bli)logoe(Bli) © Al(l)=wf db B?f(b)[(1+b)?/b]log,(1+b)

as can be checked by considering E¢®—(8) and that 0
> Pi(B) =119]. This quantification is therefore equivalent to —[(1—b)?/b]log,(1—b)—log, e/2 . (13
the_ one alre_ady _used in _previo_us works on quantum-staté The function in square brackets in Ed.3) is monotoni-
estimation with discrete distributiorisee, e.g., Re{.10]). cally increasing, so that the distribution for which the abso-

First, the question of which are the optimal measurementg,ie increase in knowledge is maximal is
according to this information theoretically based criterion (1) pr
will be addressed. We will check explicitly fdl=1 and fin’(0)=(1/4m)é(b—1), (14)
N=2, and provide clues for any, that optimal—and also i.e., an isotropic distribution of pure states.
minimal—measuring strategies are universal, i.e., indepen- It is interesting to point out that, if instead of using in Ref.
dent of whether the fidelity or the increase of information is[4] the mean average fidelitF") we had used the mean
used for their quantificatiofil 1], and will compute the cor-  average increase in fidelity,
responding optimal gain of informatioal. Then we will D= ()
move to consider which is the isotropic pritgb) for which AFY=FY-Fip, (15
optimal measurements extract most information, so that ifyith the optimal gues®o,=p(0) if no measurement was
corresponds to the optimaisotropig quantum channel of herformed, so that
information. After introducing a reversible compression pro-
cedure we conclude that the optimal amount of extractable Fglp):% 1= Fe(a'\rl)) (16)
information is, asN— <, of one bit per effective quantum bit .
(qubit) isotropic distributions. with (cf. [4])
In order to find an optimal measuring strategy, i.e., a set
of operatorsM; as in Eqg.(1) maximizing the gain of infor-
mation[Eg. (8)], the following theorem and subsequent cor-
ollaries, valid for any number of copidg, will be very use-
ful. . | AF®= 12,4 & (1-417)%— 1. (18)
Thec.)remLe} tEe positive c;?“eratdvllzo .be such that its It is then easily verified that the maximum value &HF )
probability Pi(b) =Tr[M;p(b)~"] can be written, for anp, also corresponds to the distribution equati@d). Thus, for

as the sum of two contributions of the forrR;(b)  N=1, quantifying with the fidelity or with the Kullback in-
ETr[Mi,kp(B)@”\‘], k=1,2, where the operato§l; ;,M;,  formation leads to the samgr N=1 somewhat obvioys
are also positivéandM; ;+ M; , is not necessarily equal to optimal and minimal measuring strategy and to the same
M;). Let us introduce corresponding prior probabilities distribution that maximized1™® andAF™). Is this also true
Pap(i,k) and posterior distributions,(bli k) as in Eqs(5) ~ for N=27 _ .
and (6). Then, In order to answer this question we need to present a
2 second corollary. Notice first that with the following notation
Pap(i)Ki[fc/f]Sz Pap(1.K)K; L f /1. (10 (borrowed from[4]) for the cgmposite Hilbert space of
k=1 ’ copies of the unknown stajg(b),

Proof. It follows from the inequality HN=H,@Hg® ...Hy, (19

IaE47rfldb B?f(b)[(1—b?)/4]¢ (17
0

(lIo=1),=41,,,), we would have obtained
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for the corresponding local spin operators,

. 1.
SAE EO’®I®N_1,

I®oxl N2

5=

N| -

(20

.1 -
SNE§|®N71®O',

and for the partial and total spin operators,
é(a)zﬁ; Ss, a=AB,...N, S=S,_y, (1)

the following spin invariances holdt]:
(S p°M=0, a=A, ... N, (22)
and since
[SF).Si5)]=0, V a.B, (23
the total Hilbert space can be written as a direct sum
HMN = ® (5, Etsioy) (24)

whereE{S(a)} are the simultaneous eigenspaces of all the op-

erators §(2a) VYa#A, with corresponding eigenvalues
{s,(s,+ 1)}, ordered with decreasing (see[4] for more
detailg. For instance, foN=2 only é(ZB) (S(g)) Is relevant,
ie., E{S(Q)}= E;_., and the decomposition reads
HN=2A=E, 0 E,, (25)
whereE; is the triplet or symmetriéunder exchange of cop-
ies) subspace, with total spis=sg =1, whereas, is the

singlet or antisymmetric subspace, with total sgsO0.
Then, we have the following.

S(B)

Corollary 2. There always exists an optimal measuring
strategy consisting only of rank-1 operators of the form
[{S(a)}){{S(w}|, Where the not necessarily normalized vector
|{s(a)}> is an eigenvector of all partial and total spin opera-

tors, i.e.,

St s =sp (st Dl{swb), ¥ B,
and thus it belongs to the subspd?:g(a)}.

Proof. Let Z;M;=1 correspond to an optimal measure-
ment with rank-1 operatons!; = |i)(i| (where thei) do not
need to be orthogonal nor normalizezhd IetH{Sa}=H{25 !

be a projector onto the whole subspaE:ga}. Then it fol-
lows from Eq.(24) that

I g 1= Il =1,
{Sza} {Sad s, {%} {sat

so that if we replace with ;M in the left-hand side of this
equation, we obtain a new measurement

3 lidsidsdl=1 lifs) =Tl (29
Now, since Eq(22) implies that for eachi),

Tr[p<6>®N|i><i|]:{SE}Tr[p<6>®N|i,{sa}><i,{sa}u. (29

(26)

(27)

the theorem guarantees that the measurement of2By is
also optimal.

UNIVERSALITY OF OPTIMAL MEASUREMENTS
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(Notice that exactly the same conclusion was also
achieved, for anyN, when the fidelity was used as a criterion
for optimality [4], this being indicative of the universality we
are considering herge.

Thus, in order to find an optimal measuring strategy for
N=2 we can always choose the pure states on which the
measurement projects to be symmetric or antisymmetric un-
der the exchange of the two qubits. Let us next compute
A1 for the optimal strategy of Ref4], that is, correspond-
ing to a resolution of the identity of the form

3 ..
1=lo)al+7 2, (Im)mih®?, (30
where |o) is the (normalized singlet state,o-n|n)=|n)
((n|ny=1) and the four unitary vectons; point to the four
directions of the vertices of a regular tetrahedron. One
readily obtains

f(b)
Pap(a') ’
fo(b|n)=(1+b-n)2[f(b)/Pyy(n)],

Pap(M=3(1—1,),

fo(blo)=[(1—b?)/4] Pap(0)=11, (3

(32
so that

A.(Z):WJ:db b*f(b){[(1+b)*/b]log,(1+b)

—[(1-b)*/bJlog,(1—b) +(1—b?)log,(1-b?)}
—(1-1,){2log, e/3 +log,[(1—1,/3]}

—1;log, 1,—2. (33

Can we do better, i.e., is there another resolution of the iden-
tity that leads to a largeAl(®? Let us prove that there is
none. Because of corollary 2, the whole question boils down
to whether symmetric entangled states could do better than
the symmetric product statés;)|n;) used in Eq(30). Con-
sider therefore a general symmetric state of Schmidt decom-
position

[9)=\pl+)|+)+VI=pl-)|-),

where the isotropy of (b) has been taken into account in
choosing the basis. One can readily obtain the average Kull-
back information corresponding to this state,

pe[0,1], (39

11 27 1
@_= _
Al ZJOdbef(b)fo dqbf_ld,uhlogzhl[(l 1,)/3],

1=2p(1—p)b%(1—pu?),

k=1+b%u?+(2p—1)2bu,

h=k+1 cos 2¢,
(35
which after integration oty gives
o (1 1
AP =— dbb?f(b) | du{(1+b?u?
v 2)o -1

X logy[3e/2(1—1,)] +klogy(k+ VkZ—12)}.
(36)
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This is a function ofp that we want to maximize. Only using, when restricted to isotropic prior distributions, only
k log,(k+Vk?—1?) depends omp. The part—I? is maximized pure states {=1) to encode classical information as the
for p=0 andp=1. The other part, too, as one can see easilyoptimal method. We can then easily compute the optimal
neglecting the terni?. ThusAI{? is maximized wheny) is ~ capacity of this isotropic quantum channel for ayto find

a product state and the resolution of E80) is indeed opti-  that

mal. N)
As we did forN=1, it is interesting to recall, with the 1M =logy(N+1)—~[N/(N+1)]log; e, (38
help of Ref.[4], the average increase in fidelity for=2 which for largeN gives log N/N bits carried per qubit. No-
tice that this is a purely quantum channel, no additional flow
AF@)= \/(I 1o 32+ (1—41) 2%+ 13—l 1p0. (37)  of classical information being required at any stage. Its poor

capacity can be exponentially enhanced without spoiling this

One can now check that bothl® and AF(®) are again fact if we take into account that a pure stat&" belongs to
maximized for the distribution equatioi4). For A1®®) this  the symmetric subspac§™ of the whole Hilbert space
follows by observing that the part in square brackets in Eqz/ (N) - Since the dimension of™ is N+1, which corre-
(33) is an increasing function df and that the other part, sponds to the dimension of a Hilbert spag&™ of M
which depends ohy, increases ak; goes towards zero. =log,(N+1) qubits, Alice can always compress, by means

We have thus checked fo#=1 andN=2 that both the of a state-independent, unitafand thus fully reversible
fidelity and the Kullback information lead to the same opti- transformation, the state®N to fit in M qubits, which will
mal measuring strategy and to the same, pure-state distrib¢hen pe transferred to Bob. In this case the capacity increases
tion that maximizes their increases. We conjecture, while Nofip to 1 O(1/logN) bits per qubit, which is asymptotically
foreseeing any feature that could jeopardize extending thghe classical onéas expected, since for any two inequivalent
proof toN>2, that the universality of optimal measurementSstatesg and ¢', ¢V, and ¢’ N become orthogonal as
holds for any numbeN of copies of the unknown stafé5]. —»), and which is consistent with the Levitin-Holevo
Corollary 2 makes this conjecture very plausible. The precis§ound[16] for the classical capacity of a quantum channel.
optimal strategy is in fact determined to a great extent by the Summarizing, using the gain of information as a guide,
isotropy of the prior distribution, the symmetries of the statéye have constructed optimal and minimal measurements on
p(b)®N that allow us to choose each positive operdfgrto  N=1,2 identical copies and have shown that for isotropic
act only on one of the subspacEsy,),, and the fact that distributions the maximal gain of information is achieved for
both the fidelity and the Kullback information favor strate- pure states. Also the universality of optimal measurements
gies with outcomeswhose normalized probability of occur- has been proven, since these measurements exactly coincide
rence TEP(B)NMi]/Tr[Mi] spans the |arge5t possib|e rangeWith those Obt?.:ImEd in prevlious Work,.Where the flde“ty was
as a function of the direction df. taken as the 'f|gure of merit. We conjecture that aIsoNQr

Now, suppose we want to use thequbits as a quantum =3 the most informative measurements are the most faithful

channel of classical information. Alice prepafésopies ofa  ONeS, and vice versa.
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the vectorb) and sends them to Bob, who will perform a CIRIT, Contract No. 1998SGR-00026; and from the ESF-
collective measurement in order to recover as much informag|T program is also acknowledged. We thank Antonio Acin
tion aboutb as possible. The previous results single out,and Chris Fuchs for their comments.
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