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Universality of optimal measurements
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We present optimal and minimal measurements on identical copies of an unknown state of a quantum bit
when the quality of measuring strategies is quantified with the gain of information~Kullback—or mutual
information—of probability distributions!. We also show that the maximal gain of information occurs, among
isotropic priors, when the state is known to be pure. Universality of optimal measurements follows from our
results: using the fidelity or the gain of information, two different figures of merits, leads to exactly the same
conclusions for isotropic distributions. We finally investigate the optimal capacity ofN copies of an unknown
state as a quantum channel of information.@S1050-2947~99!51311-5#

PACS number~s!: 03.67.2a, 03.65.Bz
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Consider an unknown state of a two-level quantum s
tem described by the density matrixr(bW ), bW being the Bloch
vector,b[ubW u<1. The preparation device providesN iden-
tical copies of the system, so that the state at our dispos
r(bW ) ^ N. In the past few years the optimal measuring str
egy, i.e., the most successful at revealing the identity of
unknown state, has been obtained, first for pure states@1–3#
and then for mixed states@4#. Also the minimal ones among
the optimal strategies, i.e., the ones with the smallest num
of outcomes, have been constructed, both for pure state@5#
and mixed states@4#. In the processing of information con
tained in quantum states, knowing the most efficient read
procedures, i.e., the optimal and least resource consum
ones, is of course of importance.

In all these contributions the quality of the measuri
strategy, characterized by a resolution of the identity

(
i

M i51, ~1!

in terms of positive operatorsMi>0, has been quantified b
the fidelity @6#. In other words, when outcomei ~related to
Mi) happens, one guesses the unknown state to ber̃ i

[r(pW i) and one quantifies the quality of the guess by

F„r~bW !,r~pW i !…[$Tr@Ar~bW !1/2r~pW i !r~bW !1/2#%2. ~2!

One can arrive at Eq.~2! from several different starting
points. One of them is based on a measure of distinguisha
ity of the probability distributions associated withr andr8
by performing general positive operator valued measu
ments@as in Eq.~1!# on them@7# and minimizing,

F~r,r8!5minS (
j

ATr@rM j #ATr@r8M j # D 2

. ~3!

Another is based on the standard Hilbert-space sc
product of the two pure states, which, belonging toC 2

^ C 2, lead tor andr8 when reduced@8#,

F~r,r8!5maxz^cuc8& z2, ~4!

where maximization is performed over$uc&,uc ’ &%/r
5Tra@ uc&^cu#, r85Tra@ uc ’ &^c ’ u#.
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These equivalent definitions of the fidelity, plus th
following properties that characterize it further, make it
unique quantification of the comparison of two general qu
tum states: ~i! 0<F~r,r8!5F~r8,r!<1. ~ii ! F~r,r8!
51⇔r5r8; F~r,r8!50⇔rr850. ~iii ! F(UrU†,Ur8U†)
5F(r,r8), UU†5U†U51. ~iv! F(uc&^cu,r)5^curuc&.
~v! F(r ^ s,r8^ s8)5F(r,r8)F(s,s8). ~vi! F@r,pr11(1
2p)r2#>pF(r,r1)1(12p)F(r,r2),0<p<1. In Refs.
@2,3,5# the unknown state was known to be pure,b51, but
no knowledge of the direction of the Bloch vector was a
sumed. In reference@4# the unknown state was a mixed sta
drawn stochastically from a known isotropic distributio
f (b), and although the best guessr̃ i depended onf (b), the
optimal measuring strategy, that is, the set$Mi% of positive
operators of the different outcomes, did not. For isotro
distributions optimal measurements are thus distribution,
f (b), independent.

However, proposing an outcome-dependent guess
evaluating its quality through the fidelity are only two of th
criteria that could have been used to define optimal meas
ments. A sound alternative, the one we shall investigate
this work and probably the most sensible choice in the c
text of quantum information theory, consists of quantifyin
the quality of measuring strategies through the gain of inf
mation about the unknown state. In fact, information theo
already supplies a universally accepted, unambigu
scheme for this purpose, which we shall follow. It is bas
on the Bayes formula, which provides a condition
~outcome-dependent!, posterior distributionf c(bW u i ) from the
~here isotropic! prior distribution f (b), and on the Kullback
formula, which quantifies the gain of information acquire
when replacingf (b) with f c(bW u i ).

More specifically, ifPi(bW )[Tr@r(bW )Mi # is the probabil-
ity of outcomei when the unknown state isr(bW ) and

Pap~ i ![E d3b f~b!Pi~bW !S E d3b f~b!51D ~5!

is thea priori probability of outcomei, then the Bayes for-
mula states that the posterior distributionf c(bW u i ), the one
that collects our knowledge about the unknown stater(bW )
after measuring when the initial knowledge is given byf (b),
reads
R3339 ©1999 The American Physical Society
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f c~bW u i !5 f ~b!Pi~bW !/Pap~ i ! . ~6!

The gain of information aboutr(bW ), DI , is then given, in
bits, by the Kullback formula off c(bW u i ) relative tof (b) @12#

Ki@ f c / f #[E d3b fc~bW u i !log2@ f c~bW u i !/ f ~b!# . ~7!

This expression, the only one satisfying a series of intuitiv
reasonable conditions@13#, is well-defined for continuous
distributions ~it has no dependence on the measure in
space of quantum states!, and its average over possible ou
comes,

K̄@ f c / f #[(
i

Pap~ i !Ki@ f c / f #, ~8!

is precisely the difference of thea priori and averagea pos-
teriori entropiesH of the corresponding probability distribu
tions of states,

H@ f #2H̄@ f c#[2E d3b f~b!log2 f ~b!1(
i

Pap~ i !

3E d3b fc~bW u i !log2f c~bW u i !, ~9!

as can be checked by considering Eqs.~6!–~8! and that
( i Pi(bW )51 @9#. This quantification is therefore equivalent
the one already used in previous works on quantum-s
estimation with discrete distributions~see, e.g., Ref.@10#!.

First, the question of which are the optimal measureme
according to this information theoretically based criteri
will be addressed. We will check explicitly forN51 and
N52, and provide clues for anyN, that optimal—and also
minimal—measuring strategies are universal, i.e., indep
dent of whether the fidelity or the increase of information
used for their quantification@11#, and will compute the cor-
responding optimal gain of informationDI . Then we will
move to consider which is the isotropic priorf (b) for which
optimal measurements extract most information, so tha
corresponds to the optimal~isotropic! quantum channel o
information. After introducing a reversible compression p
cedure we conclude that the optimal amount of extracta
information is, asN→`, of one bit per effective quantum b
~qubit! isotropic distributions.

In order to find an optimal measuring strategy, i.e., a
of operatorsMi as in Eq.~1! maximizing the gain of infor-
mation@Eq. ~8!#, the following theorem and subsequent co
ollaries, valid for any number of copiesN, will be very use-
ful.

Theorem.Let the positive operatorMi>0 be such that its
probabilityPi(bW )5Tr@Mir(bW ) ^ N# can be written, for anybW ,
as the sum of two contributions of the formPi ,k(bW )
[Tr@Mi ,kr(bW ) ^ N#, k51,2, where the operatorsMi ,1 ,Mi ,2
are also positive~andMi ,11Mi ,2 is not necessarily equal t
Mi). Let us introduce corresponding prior probabiliti
Pap( i ,k) and posterior distributionsf c(bW u i ,k) as in Eqs.~5!
and ~6!. Then,

Pap~ i !Ki@ f c / f #<(
k51

2

Pap~ i ,k!Ki ,k@ f c / f #. ~10!

Proof. It follows from the inequality
y
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~x11x2!ln
x11x2

y11y2
<x1 ln

x1

y1
1x2 ln

x2

y2
, ~11!

; x1 ,x2 ,y1 ,y2>0. j
Corollary 1. An optimal measuring strategy with rank-

operators always exists~cf. @14#!.
Proof. Indeed, suppose( iM i51 corresponds to an opti

mal measurement. Then, ifMi5(ku i ,k&^ i ,ku is the spectral
decomposition ofMi , it follows from the theorem that the
rank-1 positive operator valued measurement( i ,ku i ,k&^ i ,ku
51 is also optimal.j

We can already consider the caseN51, that is, when
only one copy of the unknown state is available. One c
convince oneself immediately that an optimal~and also mini-
mal! measurement is just a standard von Neumann meas
ment. In fact, any will do because of the isotropy off (b).
Suppose that we measuresz . Then, for bW
5(b sinu cosf,bsinu sinf,bcosu), we have

f c~bW u6 !5~16b cosu! f ~b! ~12!

and the gain of information is

DI (1)5pE
0

1

db b2f ~b![ ~11b!2/b] log2~11b!

2@~12b!2/b# log2~12b!2 log2 e/2 . ~13!

The function in square brackets in Eq.~13! is monotoni-
cally increasing, so that the distribution for which the abs
lute increase in knowledge is maximal is

f m
(1)~b!5~1/4p!d~b21!, ~14!

i.e., an isotropic distribution of pure states.
It is interesting to point out that, if instead of using in Re

@4# the mean average fidelityF̄ (1) we had used the mea
average increase in fidelity,

DF (1)[F̄ (1)2Fap
(1) , ~15!

with the optimal guessr̃0[r(0) if no measurement wa
performed, so that

Fap
(1)5 1

2 1I 1/25Fap
(N) ~16!

with ~cf. @4#!

I a[4pE
0

1

db b2f ~b!@~12b2!/4#a ~17!

(I 051,I a>4I a11), we would have obtained

DF (1)5AI 1/2
2 1 1

36 ~124I 1!22I 1/2. ~18!

It is then easily verified that the maximum value ofDF (1)

also corresponds to the distribution equation~14!. Thus, for
N51, quantifying with the fidelity or with the Kullback in-
formation leads to the same~for N51 somewhat obvious!
optimal and minimal measuring strategy and to the sa
distribution that maximizesDI (1) andDF (1). Is this also true
for N52?

In order to answer this question we need to presen
second corollary. Notice first that with the following notatio
~borrowed from@4#! for the composite Hilbert space ofN
copies of the unknown stater(bW ),

H (N)[HA^ HB^ . . . HN , ~19!
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for the corresponding local spin operators,

SW A[
1

2
sW ^ I ^ N21,

SW B[
1

2
I ^ sW ^ I ^ N22,

~20!A

SW N[
1

2
I ^ N21

^ sW ,

and for the partial and total spin operators,

SW (a)[ (
b5A

a

SW b , a5A,B, . . . ,N, SW [SW (a5N) , ~21!

the following spin invariances hold@4#:

@SW (a)
2 ,r ^ N#50, a5A, . . . ,N, ~22!

and since

@SW (a)
2 ,SW (b)

2 #50, ; a,b, ~23!

the total Hilbert space can be written as a direct sum
H (N)5 % $s(a)%

E$s(a)%
, ~24!

whereE$s(a)%
are the simultaneous eigenspaces of all the

erators SW (a)
2 ,;aÞA, with corresponding eigenvalue

$sa(sa11)%, ordered with decreasinga ~see@4# for more
details!. For instance, forN52 only SW (B)

2 (s(B)) is relevant,
i.e., E$s(a)%

5Es(B)
, and the decomposition reads

H (N52)5E1% E0 , ~25!

whereE1 is the triplet or symmetric~under exchange of cop
ies! subspace, with total spins[s(B)51, whereasE0 is the
singlet or antisymmetric subspace, with total spins50.
Then, we have the following.

Corollary 2. There always exists an optimal measuri
strategy consisting only of rank-1 operators of the fo
u$s(a)%&^$s(a)%u, where the not necessarily normalized vec
u$s(a)%& is an eigenvector of all partial and total spin ope
tors, i.e.,

SW (b)
2 u$s(a)%&5s(b)~s(b)11!u$s(a)%&, ; b, ~26!

and thus it belongs to the subspaceE$s(a)%
.

Proof. Let ( iM i51 correspond to an optimal measur
ment with rank-1 operatorsMi5u i &^ i u ~where theu i & do not
need to be orthogonal nor normalized! and letP$sa%5P$sa%

2

be a projector onto the whole subspaceE$sa% . Then it fol-
lows from Eq.~24! that

(
$sa%

P$sa%1P$sa%5(
$sa%

P$sa%51, ~27!

so that if we replace1 with ( iM i in the left-hand side of this
equation, we obtain a new measurement

(
i ,$sa%

u i ,$sa%&^ i ,$sa%u51, u i ,$sa%&[P$sa%u i &. ~28!

Now, since Eq.~22! implies that for eachu i &,

Tr@r~bW ! ^ Nu i &^ i u#5(
$sa%

Tr@r~bW ! ^ Nu i ,$sa%&^ i ,$sa%u#, ~29!

the theorem guarantees that the measurement of Eq.~28! is
also optimal.j
-

r
-

~Notice that exactly the same conclusion was a
achieved, for anyN, when the fidelity was used as a criterio
for optimality @4#, this being indicative of the universality w
are considering here.!

Thus, in order to find an optimal measuring strategy
N52 we can always choose the pure states on which
measurement projects to be symmetric or antisymmetric
der the exchange of the two qubits. Let us next comp
DI (2) for the optimal strategy of Ref.@4#, that is, correspond-
ing to a resolution of the identity of the form

15us&^su1
3

4 (
i 51

4

~ un̂i&^n̂i u! ^ 2, ~30!

where us& is the ~normalized! singlet state,sW •n̂un̂&5un̂&
(^n̂un̂&51) and the four unitary vectorsn̂i point to the four
directions of the vertices of a regular tetrahedron. O
readily obtains

f c~bW us!5 [ ~12b2!/4]
f ~b!

Pap~s!
, Pap~s!5I 1 , ~31!

f c~bW un̂!5 3
16 ~11bW •n̂!2@ f ~b!/Pap~ n̂!# ,

Pap~ n̂!5 1
2 ~12I 1!, ~32!

so that

DI (2)5pE
0

1

db b2f ~b!$[ ~11b!3/b# log2~11b!

2@~12b!3/b# log2~12b!1~12b2!log2~12b2!%

2~12I 1!$2 log2 e/3 1 log2@~12I 1/3#%

2I 1 log2 I 122. ~33!

Can we do better, i.e., is there another resolution of the id
tity that leads to a largerDI (2)? Let us prove that there i
none. Because of corollary 2, the whole question boils do
to whether symmetric entangled states could do better t
the symmetric product statesun̂i&un̂i& used in Eq.~30!. Con-
sider therefore a general symmetric state of Schmidt dec
position

uc&5Apu1&u1&1A12pu2&u2&, pP@0,1#, ~34!

where the isotropy off (b) has been taken into account
choosing the basis. One can readily obtain the average K
back information corresponding to this state,

DI c
(2)5

1

2E0

1

db b2f ~b!E
0

2p

dfE
21

1

dmh log2 h/@~12I 1!/3# ,

h[k1 l cos 2f, l[2Ap~12p!b2~12m2!,

k[11b2m21~2p21!2bm, ~35!

which after integration off gives

DI c
(2)5

p

2E0

1

db b2f ~b!E
21

1

dm$~11b2m2!

3 log2@3e/2~12I 1!# 1k log2~k1Ak22 l 2!%.

~36!
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This is a function ofp that we want to maximize. Only
k log2(k1Ak22 l 2) depends onp. The part2 l 2 is maximized
for p50 andp51. The other part, too, as one can see ea
neglecting the terml 2. ThusDI c

(2) is maximized whenuc& is
a product state and the resolution of Eq.~30! is indeed opti-
mal.

As we did for N51, it is interesting to recall, with the
help of Ref.@4#, the average increase in fidelity forN52

DF (2)5A~ I 1/22I 3/2!
21 1

16 ~124I 1!21I 3/22I 1/2. ~37!

One can now check that bothDI (2) and DF (2) are again
maximized for the distribution equation~14!. For DI (2) this
follows by observing that the part in square brackets in
~33! is an increasing function ofb and that the other part
which depends onI 1, increases asI 1 goes towards zero.

We have thus checked forN51 andN52 that both the
fidelity and the Kullback information lead to the same op
mal measuring strategy and to the same, pure-state dist
tion that maximizes their increases. We conjecture, while
foreseeing any feature that could jeopardize extending
proof toN.2, that the universality of optimal measuremen
holds for any numberN of copies of the unknown state@15#.
Corollary 2 makes this conjecture very plausible. The prec
optimal strategy is in fact determined to a great extent by
isotropy of the prior distribution, the symmetries of the sta
r(bW ) ^ N that allow us to choose each positive operatorMi to
act only on one of the subspacesE$s(a)% , and the fact that
both the fidelity and the Kullback information favor strat
gies with outcomesi whose normalized probability of occur
rence Tr@r(bW )NMi #/Tr@Mi # spans the largest possible ran
as a function of the direction ofbW .

Now, suppose we want to use theN qubits as a quantum
channel of classical information. Alice preparesN copies of a
given stater(bW ) ~the classical information being encoded
the vectorbW ) and sends them to Bob, who will perform
collective measurement in order to recover as much infor
tion about bW as possible. The previous results single o
m

fo

o

ly
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u-
t
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e
e

e
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using, when restricted to isotropic prior distributions, on
pure states (b51) to encode classical information as th
optimal method. We can then easily compute the optim
capacity of this isotropic quantum channel for anyN, to find
that

DI (N)5 log2~N11!2@N/~N11!# log2 e, ~38!

which for largeN gives log2 N/N bits carried per qubit. No-
tice that this is a purely quantum channel, no additional fl
of classical information being required at any stage. Its p
capacity can be exponentially enhanced without spoiling
fact if we take into account that a pure statef ^ N belongs to
the symmetric subspaceS (N) of the whole Hilbert space
H (N). Since the dimension ofS (N) is N11, which corre-
sponds to the dimension of a Hilbert spaceH (M ) of M
[ log2(N11) qubits, Alice can always compress, by mea
of a state-independent, unitary~and thus fully reversible!
transformation, the statef ^ N to fit in M qubits, which will
then be transferred to Bob. In this case the capacity incre
up to 12O(1/logN) bits per qubit, which is asymptotically
the classical one~as expected, since for any two inequivale
statesf and f8, f ^ N, andf8^ N become orthogonal asN
→`), and which is consistent with the Levitin-Holev
bound@16# for the classical capacity of a quantum chann

Summarizing, using the gain of information as a guid
we have constructed optimal and minimal measurements
N51,2 identical copies and have shown that for isotro
distributions the maximal gain of information is achieved f
pure states. Also the universality of optimal measureme
has been proven, since these measurements exactly coi
with those obtained in previous work, where the fidelity w
taken as the figure of merit. We conjecture that also forN
>3 the most informative measurements are the most fait
ones, and vice versa.
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