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Quantum-diffractive background gas collisions in atom-trap heating and loss
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We derive a simple formula for the heating rate that arises from quantum-diffractive background gas
collisions in atom traps. This result appears to explain the residual heating rates reported for recent experiments
with a Cs vapor-loaded, far-detuned optical trap=dt0~° Torr [Phys. Rev. Lett81, 5768(1998]. Diffractive
collisions may determine the minimum heating rates achievable in shallow all-optical or magnetic atom traps
operating at low temperature and high dendi§1050-294{@9)50307-1

PACS numbe(s): 32.80.Pj

It is well known that background gas collisions cause ex- We begin by reviewing the basic features of diffractive
ponential decay in atom traps. For magneto-optical trapgollisions. For a trapped atom of velocity, and a back-

(MOTs), \k;vherel thle V‘(’je" o_IepthJOI is of (l)rder “1 K, tlhe 0SS ground perturbing gas atom of velocity,, the initial rela-
rate can be calculated using a classical small-angle scatterig, \eiocity is 5, = v, -v,. During a collision, the relative

approximation[1]. A cold (=1 mK) atom leaves the trap ) - . , )
when the scattering anglé exceeds a threshold angh velocity changes byAv,, leading to a change in the velocity
such that the collisional energy change of the trapped atomo,f the trapped atom

AE(6>6,), exceeddJ,. By contrast, in relatively shallow s B .

traps, for example, in far off resonance trd@s3] or mag- AUa:MAUrv (1)
netic trapg 4], typical well depths range from less than 1 mK

to 10 mK. In this case, the classical small-angle approxima\-/\,here M is the trapped atom mass apdis the reduced

tion predicts that the ejection cross section grows WithoutmaSS Assuming elastic collisionme 2=2 21— cos6)
limit as the well depth decreases, since collisions at an eve(/'vherée is the s%atterin angle betv;)éer:thgrfinal and il'"nitial
increasing range are effective in expelling atoms. g ang

However, when the scattering angles required to eject ar_elatlve velocity. For the small-angle scattering of interest

oms from the trap are sufficiently small, they fall into the Nere, we takgAv,|=v, 8. Hence |Avy|=uv 0/M.
diffractive cone of the scattering amplitude, where a classical In a diffractive CO”'S'On.’ the _scale of the_ scattering angle
small-angle approximation is not valid]. In this case, a S 9=0y, where the diffraction angle is Of. ordedy
quantum-mechanical treatment of the scattering cross sectign ~¢8/ (7R) = 2/(KR). Here,k=2m/\qg= v, /% is a ther-

. o . mal wave vectorR is the range of the collision potential,
is needed. In the limit of very shallow traps, the maximum_ - . . ;

) . . . which is related to the total scattering cross sectiorn the
attainable cross section is the total collision cross section,

- ; P 2
determined by the optical theoref@]. The total cross sec- Tard sphere approximation=2mR . Half of the total cross

tion includes both classical and diffracti teri t_section arises from classical scattering with a geometrical
blﬁ?iolzcs:u es both classical and difiractive scattering contr-¢ s sectionrR2. An additionalmR? arises from diffraction

) o ] [7]. With the small-angle approximation to Eql), the
It is known that small-angle collisions with<6, can  {apped-atom velocity change in a diffractive collision is

IeavE aFomsh n kt)he trap landd cause _hel?tln_g. ITQ.'S hTat'%en|AJa|22ﬁ/(M R). An interesting feature of this result
mechanism has been explored numerically, INCIUING Classy v, ot the perturber properties enter only through the range

cal and diffractive contributions, by Monroet al. [5]. In oéthe potentiaR [8.9]. For a trapped atom moving at a low

deep_traps, part of thg heating rate can arise from classicg locity compared to the velocity change imparted by the
glancing-angle scattering. However, in shallow traps, the

heating rate arises entirely from quantum-diffractive scatter€ollision (val<|Avgl), the natural scale for the diffractive
ing. These small residual heating rates from background ga@nergy change of a trapped atomejs=M (Av,)?/2. €4 de-
collisions may limit the maximum attainable phase-spacéends only on the total scattering cross sectorand the
density in current low-temperature trap experiments. To outrapped atom masi,
knowledge, explicit formulas for the expected heating rates
in this regime have not been published previously. _47Tﬁ2
In this paper, we calculate the heating rate that arises from ‘" Mo
diffractive collisions of background gas atoms with atoms in
shallow traps. A trap is shallowdeep if Uy is small(large ~ Table | shows typical values fary for trapped alkali-metal-
compared to the diffractive energy scale defined below. Wévackground alkali-metal self-collisions. Such collisions oc-
show that the heating rate, E(L6), is inherently quantum cur in all atom traps and are dominant in vapor loaded traps.
mechanical and can be written in terms of the total trap los3he total cross sections are determined from the Van der
rate, the well depth, and the natural scale of the energy imWaals constants, as described below, assuming that the back-
parted in a diffractive collision. ground atoms are at room temperature, 300 K. The

@
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TABLE I. Total collision cross sections, total collision rate The collision rate to scatter into a solid angl€) is
vc [vc/n, (107° cm/sec), and diffractive energy changes, npo,(do/dQ)dQ, wheredo/dQ is the differential scatter-
for background gas collisions with alkali-metal atoms in shallowing cross section ang, is the background gas density. For a
traps. Note that we assunf&Rb in calculatingey for Rb. For scalar interaction potentiadicr/dQ=|f(6)|2, wheref(9) is

Trisli — . U — . Ti— . . . . .
Li-Li, €4=94.3 mK; for 'Li-He, 4=535 mK; and for'Li~H,,  the scattering amplitude. Using E€f) to determined in
€4=363 mK. The background temperature is taken td 68800 K. 1o ms of the well depth, the loss rate is given by

Cg constants are given in atomic un(ts.u)zezag, wheree is the '

electron charge and, is the Bohr radius. ™
ycznpvrf 27w désing|f()|>. (5)
Atom Cs (au) o (AR? ye/n, € (MK) %
6Lj-Li 1390 920 8.8 110 When the thermalization time of the atoms in the trap is
Na-Na 1470 1230 6.0 21.4 short compared to the observation time, the total energy
K-K 3810 2000 75 77 transferred to the trapped atoms by collisions with the back-
Rb-Rb 4430 2500 6.3 238 ground gas heats the stored atoms, raising their average en-
Cs-Cs 6330 3140 6.4 14 ergy. The corresponding average heating rate per atom for
0p<<1 can be written in the small-angle approximation as

8Li-He 21.9 162 1.9 624 ] bo
Na-He 25.1 171 2.0 154 Q=npvrj 27d6o 0|f(6)|2AE(H). (6)
K-He 345 194 2.3 80.2 0
Rb-He 36.6 198 2.3 35.1 In the classical limit, wher&kR#>1, the scattering ampli-
Cs-He 44.9 215 2.5 212 tude can be evaluated in the stationary phase approximation

. [10]. The differential cross section then is given by the clas-
®Li—H, 82.5 239 4.0 423 sical formula|f(6)|2=[b(#6)/sin 8]db/ds, where 6(b) is the
Na-H, 91.0 249 4.1 106 scattering angle for impact parameter
K-H, 130 286 4.7 54.3 To determine the heating rate for diffractive collisions, we
Rb-H, 140 295 4.9 23.6 use a standard approximation for the scattering amplitude
Cs-H, 170 320 5.3 14.3 that is valid in the diffractive region. Using the semiclassical

partial-wave phase shifts for a power-law potentigl)=
—C,/r", yields[7]
diffractive-energy change ranges frag= 1.4 mK for Cs-Cs

collisions to 110 mK for Li-Li collisions, showing that dif- 5 o\?
fractive collisions can impart substantial energy compared to [F(0)|g= A q(n)
the energy of atoms in low-temperature traps. For traps at

very low pressure, He and,tare likely to be the dominant Here, the optical theorem determines fi(@)=kao/(4),
background gases. Table | shows that the small cross seehereo is the total scattering cross section. The facitm)
tions for these perturbers result in large values pf arises becaus&(0) has a real part, in general. For>3,

In general, the energy change of a trapped atomEs q(n)=1+tarf[ 7/(n—1)]. Reference7] givesc(n) for n
=M[(va+Av,)2—v2]/2. For very cold atoms with initial =5, with c(<)=1 andc(6)=2.07. o
eneties €, near the botom of the welE,wuZ2 Ve Svallele e neatng e o difacive colions i
<U,, and Ehe threshold anglé, is approxima‘Fer inde-  this case, with 0'227TR2’, Eq. (7;3 sr?o’ws thgt|f€é)|2
pendent ofva. Ihen, we can make an |§otroplc assumptlon:|f(o)|2 is nearly constant, sincézkza/(8w):02/0§<l.
and take(v,- Av,)=0 so thatAE=M(Av,)?/2. Using Eq.  Using Eqgs.(4) and (6) then yields a simple result for the

k2o
1—c(n)g¢92+~-- . (7

(1) in the small-angle approximation yields diffractive contribution to the heating rate,
1p? . _a(n) us
AE(G)—EVUra . () Qd=Tnper(v,)m- 8

For an atom to be ejected from the trap, we require Here, we explicitly include the dependence of the total cross
= 6y, while for heating, we requiré< 6,, where the thresh- sectiono on the relative speed.

old angleé, is determined bYAE(6y)=U,. The well depth For a shallow well wher#,< 6,4, the corresponding loss
then defined, according to rate is obtained by evaluating E¢p) in the limit 6,=0. In
this case, the integral overyields essentially the total cross
1 p? 03 section and
U0=§er26%=ed—2. (4)
04 ')’C:npvro'(vr)- 9
For shallow wells, wherd&J,<eq, we havedy<#6y. In this For a power-law potential, the total scattering cross sec-

case, the collisions that cause heating are entirely in the dition for collisions with room-temperature perturbers can be
fractive regime, where a classical small-angle approximatiorevaluated using semiclassical phase shité The cross
is invalid. section scales with the relative speed as(v,)
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=a(up)(v,/up)*2’(”*1). Equations(8) and (9) are averaged trap[3]. In the experiments, the vapor pressure is chosen in
over the thermal distribution of background gas speed. W¢he nTorr range to obtain a high trapped atom density and
assume an isotropic Maxwellian distribution with & #idth ~ strong collisional coupling between the radial and axial di-
up= 2 kgT/m, for a background atom of mass, at tem-  rections. The collision time is estimated to € ms and the

peratureT =300 K, so thaw,<u,. Then, radial-axial thermalization time is found to be 50 ms. Hence,
we assume that after a background gas collision, all atoms
v\ 1P 2 B that remain in the trap thermalize quickly compared to the
<(_) >: _F<2_ _)- (100 opservation time. The well depth 1$,=0.16 mK and the
Up J 2

initial energy of the atoms iU, so that Eq(16) is appli-
The loss rate then is given by cable. The trap ¥lifetime of 2 sec is limited by background
gas collisions in the cell MOT used to load the optical trap so

2 that yc=0.5 sec!. From Table | for Cs-Cs collisions, we
ch\/—;F(Z——_l NpUpo(Up). (11)  obtain €s=1.4 mK. Using these parameters in EQ6)
yields Qy=3.4 uK/sec, in reasonable agreement with the
The heating rate from diffractive collisions is observed residual heating rate of 4K/sec.
When the trap well deptb; is not small compared tey,
) US Eq. (6) is readily integrated by approximating the scattering
Qu=9(n)yc f_d (12 amplitude, Eq(7), as a Gaussian. The result shows that, in

general, Eq(16) must be corrected by a factequS(xo)/xS,
Here, Eq.(2) giveseq with o=o(v,=up) from Ref.[7]and  where x,=c(n)Uy/eq and ¢(Xg)=1—(1+Xg)eXP(—X0).
The maximum diffractive heating rate expected for a deep

_ well, whereE, andey;<U,, is easily determined from
o2 Il, whereE . ande < Uy, is easily d ined from E¢6)
_ Q(n) n—1 13 in the same approximation:
B a(n)
n-1 Q[jnax 2 p<vr> (17

. . . c(n)]?’
For a Van der Waals interaction=6, the total scattering [ |

cross section7] is where (v,)=(2/Jm)u,=8kgT/(mmy). For the Van der
o(up)=7.575(up), Waals casen=6, we obtain

ﬁ2
Qnax= 2,24, (v, (18)

C6 1/5
be(up)=1.033 ﬁ_up) . (149
In the hard-sphere limit, the factor 2.2€ 7. An interesting
feature of the maximum diffractive heating rate is that it
yc=1.05n,u,0(up). (15) depends only on the thermal speed and density of the back-
ground gas, and the mabtof the trapped atom. This arises
Finally, the heating rate for a shallow well witB,<U, because the collision rate is proportional to the cross section,
<€y IS given by while the diffractive energy change per collision is inversely
proportional to the cross section. Hence, the cross section
. does not appear in the final result. In the deep-well approxi-
Qd:o'37706_d' (16) mation, diffractive collisions are ineffective in expelling at-
oms from the trap, and trap loss arises from classical small-
For comparison, in the hard-sphere limit.—~, Ref. [7]  angle scattering as calculated previou$lyj. For Cs-Cs
shows thate—27b? , whereb,.=R is independent of, . collisions, Eg.(18) yields a maximum diffractive heating

The corresponding loss rate differs from Ef5) only in the  rate in a deep well 0©7#=62 uK/sec/nTorr. Equatioli18)
numerical factor 1.05-2/\/ar. For the heating rate, EG16), predicts theminimum collision-induced heating rate for a

The corresponding loss rate rate is

2

0.37—1/4 in the hard-sphere limit. deep well. Additional heating may arise from classical small-
Using the Van der Waal€g constants given in Ref11], angle scattering.
we obtain the total cross sectiongu,,) from Eq.(14) for a In conclusion, we have explored the role of quantum dif-

room-temperature background gasTat 300 K. The corre- fractive background gas collisions in atom trap heating and
sponding diffractive energies are given by E2). These are loss. We have shown that diffractive collisions produce en-
summarized in Table | for trapped alkali-metal-backgroundergy changes that are substantial compared to the depth of
alkali-metal self-collisions. Table | also summarizes the re-most magnetic and optical traps, so that the loss rate is de-
sults for He and H background gases, usir@g constants termined by the total collision cross section. The calculated
from Ref.[12]. diffractive heating rates are inherently quantum mechanical
Equation(16) is the primary result of this paper. The pre- and can be particularly important for vapor-loaded traps.
dicted heating rates can be compared to the residual heatir®ince the heating rates are quite small, they are most impor-
rate of =4 uK/sec reported for a recent elegant experimenttant for very-low-temperature traps. The calculated heating
on Raman cooling in a Cs vapor-loaded, far-detuned opticalates appear to explain the residual heating rates reported for
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a vapor-loaded optical tra8]. This result suggests that the are discussed by Cornell, Ensher, and Wierfi]. There,
dominant nonoptical heating rates in very far-detuned allan estimate of the heating rate also is given, and the issue of
optical traps may arise from background gas collisions andhermalization is discussed. Further, it is pointed out that for
laser noise-induced trap fluctuations, as described recentlgrge and dense atomic samples, multiple scattering of colli-
[13,14. sionally kicked atoms may be important, since the maximum

~ Note addedWe make the simple assumption that colli- energy transferred to the sample by a background gas colli-
sionally kicked atoms either cleanly leave the tl@AE  gjon can exceed the well depth.

>Ug) or remain and thermalizéf AE<U,). However, for

sufficiently hot atoms, the thermalization time in the trap We are indebted to C. R. Monroe, E. A. Cornell, and T.
may be longer than the observation time, and E§§—(18)  Walker for helpful discussions. This work has been sup-
may not be applicable. Recently it has come to our attentioported by the U.S. Army Research Office and the National
that loss and heating arising from background gas collisionScience Foundation.
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