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Quantum-diffractive background gas collisions in atom-trap heating and loss
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We derive a simple formula for the heating rate that arises from quantum-diffractive background gas
collisions in atom traps. This result appears to explain the residual heating rates reported for recent experiments
with a Cs vapor-loaded, far-detuned optical trap at.1029 Torr @Phys. Rev. Lett.81, 5768~1998!#. Diffractive
collisions may determine the minimum heating rates achievable in shallow all-optical or magnetic atom traps
operating at low temperature and high density.@S1050-2947~99!50307-7#

PACS number~s!: 32.80.Pj
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It is well known that background gas collisions cause
ponential decay in atom traps. For magneto-optical tr
~MOTs!, where the well depthU0 is of order 1 K, the loss
rate can be calculated using a classical small-angle scatte
approximation@1#. A cold (.1 mK! atom leaves the trap
when the scattering angleu exceeds a threshold angleu0

such that the collisional energy change of the trapped at
DE(u.u0), exceedsU0. By contrast, in relatively shallow
traps, for example, in far off resonance traps@2,3# or mag-
netic traps@4#, typical well depths range from less than 1 m
to 10 mK. In this case, the classical small-angle approxim
tion predicts that the ejection cross section grows with
limit as the well depth decreases, since collisions at an e
increasing range are effective in expelling atoms.

However, when the scattering angles required to eject
oms from the trap are sufficiently small, they fall into th
diffractive cone of the scattering amplitude, where a class
small-angle approximation is not valid@5#. In this case, a
quantum-mechanical treatment of the scattering cross se
is needed. In the limit of very shallow traps, the maximu
attainable cross section is the total collision cross section
determined by the optical theorem@6#. The total cross sec
tion includes both classical and diffractive scattering con
butions.

It is known that small-angle collisions withu<u0 can
leave atoms in the trap and cause heating. This hea
mechanism has been explored numerically, including cla
cal and diffractive contributions, by Monroeet al. @5#. In
deep traps, part of the heating rate can arise from class
glancing-angle scattering. However, in shallow traps,
heating rate arises entirely from quantum-diffractive scat
ing. These small residual heating rates from background
collisions may limit the maximum attainable phase-spa
density in current low-temperature trap experiments. To
knowledge, explicit formulas for the expected heating ra
in this regime have not been published previously.

In this paper, we calculate the heating rate that arises f
diffractive collisions of background gas atoms with atoms
shallow traps. A trap is shallow~deep! if U0 is small~large!
compared to the diffractive energy scale defined below.
show that the heating rate, Eq.~16!, is inherently quantum
mechanical and can be written in terms of the total trap l
rate, the well depth, and the natural scale of the energy
parted in a diffractive collision.
PRA 601050-2947/99/60~1!/29~4!/$15.00
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We begin by reviewing the basic features of diffracti
collisions. For a trapped atom of velocityvW a and a back-
ground perturbing gas atom of velocityvW p , the initial rela-
tive velocity isvW r5vW a2vW p . During a collision, the relative
velocity changes byDvW r , leading to a change in the velocit
of the trapped atom

DvW a5
m

M
DvW r , ~1!

where M is the trapped atom mass andm is the reduced
mass. Assuming elastic collisions,uDvW r u252 v r

2(12cosu),
whereu is the scattering angle between the final and init
relative velocity. For the small-angle scattering of intere
here, we takeuDvW r u.v ru. Hence,uDvW au.mv ru/M .

In a diffractive collision, the scale of the scattering ang
is u.ud , where the diffraction angle is of orderud
5ldB /(pR)52/(kR). Here,k52p/ldB5mv r /\ is a ther-
mal wave vector.R is the range of the collision potentia
which is related to the total scattering cross sections. In the
hard-sphere approximation,s.2pR2. Half of the total cross
section arises from classical scattering with a geometr
cross sectionpR2. An additionalpR2 arises from diffraction
@7#. With the small-angle approximation to Eq.~1!, the
trapped-atom velocity change in a diffractive collision
then uDvW au.2\/(MR). An interesting feature of this resu
is that the perturber properties enter only through the ra
of the potentialR @8,9#. For a trapped atom moving at a low
velocity compared to the velocity change imparted by
collision (uvW au!uDvW au), the natural scale for the diffractive
energy change of a trapped atom ised5M (DvW a)2/2. ed de-
pends only on the total scattering cross sections and the
trapped atom massM,

ed5
4p\2

Ms
. ~2!

Table I shows typical values fored for trapped alkali-metal-
background alkali-metal self-collisions. Such collisions o
cur in all atom traps and are dominant in vapor loaded tra
The total cross sections are determined from the Van
Waals constants, as described below, assuming that the b
ground atoms are at room temperature, 300 K. T
R29 ©1999 The American Physical Society
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diffractive-energy change ranges fromed51.4 mK for Cs-Cs
collisions to 110 mK for Li-Li collisions, showing that dif
fractive collisions can impart substantial energy compare
the energy of atoms in low-temperature traps. For trap
very low pressure, He and H2 are likely to be the dominan
background gases. Table I shows that the small cross
tions for these perturbers result in large values ofed .

In general, the energy change of a trapped atom isDE

5M @(vW a1DvW a)22vW a
2#/2. For very cold atoms with initial

energies Ea near the bottom of the well,Ea5MvW a
2/2

!U0, and the threshold angleu0 is approximately inde-
pendent ofvW a . Then, we can make an isotropic assumpt
and takê vW a•DvW a&.0 so thatDE.M (DvW a)2/2. Using Eq.
~1! in the small-angle approximation yields

DE~u!5
1

2

m2

M
v r

2u2. ~3!

For an atom to be ejected from the trap, we requireu
>u0, while for heating, we requireu<u0, where the thresh-
old angleu0 is determined byDE(u0)5U0. The well depth
then definesu0 according to

U05
1

2

m2

M
v r

2u0
25ed

u0
2

ud
2

. ~4!

For shallow wells, whereU0!ed , we haveu0,ud . In this
case, the collisions that cause heating are entirely in the
fractive regime, where a classical small-angle approxima
is invalid.

TABLE I. Total collision cross sectionss, total collision rate
gC @gC /np (1029 cm3/sec)#, and diffractive energy changesed

for background gas collisions with alkali-metal atoms in shall
traps. Note that we assume87Rb in calculatinged for Rb. For
7Li-Li, ed594.3 mK; for 7Li-He, ed5535 mK; and for7Li2H2 ,
ed5363 mK. The background temperature is taken to beT5300 K.
C6 constants are given in atomic units~a.u.!5e2a0

5, wheree is the
electron charge anda0 is the Bohr radius.

Atom C6 (a.u.) s (Å2) gC /np ed (mK)

6Li-Li 1390 920 8.8 110
Na-Na 1470 1230 6.0 21.4
K-K 3810 2000 7.5 7.7
Rb-Rb 4430 2500 6.3 2.8
Cs-Cs 6330 3140 6.4 1.4

6Li-He 21.9 162 1.9 624
Na-He 25.1 171 2.0 154
K-He 34.5 194 2.3 80.2
Rb-He 36.6 198 2.3 35.1
Cs-He 44.9 215 2.5 21.2

6Li2H2 82.5 239 4.0 423
Na-H2 91.0 249 4.1 106
K-H2 130 286 4.7 54.3
Rb-H2 140 295 4.9 23.6
Cs-H2 170 320 5.3 14.3
to
at

c-

if-
n

The collision rate to scatter into a solid angledV is
npv r(ds/dV)dV, whereds/dV is the differential scatter-
ing cross section andnp is the background gas density. For
scalar interaction potential,ds/dV5u f (u)u2, where f (u) is
the scattering amplitude. Using Eq.~4! to determineu0 in
terms of the well depth, the loss rate is given by

gC5npv r E
u0

p

2p du sinu u f ~u!u2. ~5!

When the thermalization time of the atoms in the trap
short compared to the observation time, the total ene
transferred to the trapped atoms by collisions with the ba
ground gas heats the stored atoms, raising their average
ergy. The corresponding average heating rate per atom
u0!1 can be written in the small-angle approximation as

Q̇5npv r E
0

u0
2p du u u f ~u!u2DE~u!. ~6!

In the classical limit, wherekRu@1, the scattering ampli-
tude can be evaluated in the stationary phase approxima
@10#. The differential cross section then is given by the cla
sical formulau f (u)u25@b(u)/sinu#db/du, whereu(b) is the
scattering angle for impact parameterb.

To determine the heating rate for diffractive collisions, w
use a standard approximation for the scattering amplit
that is valid in the diffractive region. Using the semiclassic
partial-wave phase shifts for a power-law potentialV(r )5
2Cn /r n, yields @7#

u f ~u!ud
2.S ks

4p D 2

q~n! F12c~n!
k2s

8p
u21••• G . ~7!

Here, the optical theorem determines Imf (0)5ks/(4p),
wheres is the total scattering cross section. The factorq(n)
arises becausef (0) has a real part, in general. Forn.3,
q(n)511tan2@p/(n21)#. Reference@7# gives c(n) for n
.5, with c(`)51 andc(6)52.07.

We evaluate the heating rate for diffractive collisions
the limit of a shallow well, so thatU0!ed , andu0!ud . In
this case, with s.2pR2, Eq. ~7! shows that u f (u)u2

.u f (0)u2 is nearly constant, sinceu2k2s/(8p).u2/ud
2!1.

Using Eqs.~4! and ~6! then yields a simple result for th
diffractive contribution to the heating rate,

Q̇d5
q~n!

4
np v r s~v r !

U0
2

ed~v r !
. ~8!

Here, we explicitly include the dependence of the total cr
sections on the relative speed.

For a shallow well whereu0!ud , the corresponding loss
rate is obtained by evaluating Eq.~5! in the limit u0.0. In
this case, the integral overu yields essentially the total cros
section and

gC.np v r s~v r !. ~9!

For a power-law potential, the total scattering cross s
tion for collisions with room-temperature perturbers can
evaluated using semiclassical phase shifts@7#. The cross
section scales with the relative speed ass(v r)
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5s(up)(vr /up)
22/(n21). Equations~8! and ~9! are averaged

over the thermal distribution of background gas speed.
assume an isotropic Maxwellian distribution with a 1/e width
up[A2 kBT/mp for a background atom of massmp at tem-
peratureT5300 K, so thatva!up . Then,

K S v r

up
D 12bL 5

2

Ap
GS 22

b

2 D . ~10!

The loss rate then is given by

gC5
2

Ap
GS 22

1

n21D npups~up!. ~11!

The heating rate from diffractive collisions is

Q̇d5g~n!gC

U0
2

ed
. ~12!

Here, Eq.~2! givesed with s[s(v r5up) from Ref.@7# and

g~n!5
q~n!

4

GS 22
2

n21D
GS 22

1

n21D . ~13!

For a Van der Waals interaction,n56, the total scattering
cross section@7# is

s~up!57.57b6
2~up!,

b6~up!51.033S C6

\up
D 1/5

. ~14!

The corresponding loss rate rate is

gC51.05npups~up!. ~15!

Finally, the heating rate for a shallow well withEa!U0
!ed is given by

Q̇d50.37gC

U0
2

ed
. ~16!

For comparison, in the hard-sphere limit,n→`, Ref. @7#
shows thats→2pb`

2 , whereb`5R is independent ofv r .
The corresponding loss rate differs from Eq.~15! only in the
numerical factor 1.05→2/Ap. For the heating rate, Eq.~16!,
0.37→1/4 in the hard-sphere limit.

Using the Van der WaalsC6 constants given in Ref.@11#,
we obtain the total cross sectionss(up) from Eq. ~14! for a
room-temperature background gas atT5300 K. The corre-
sponding diffractive energies are given by Eq.~2!. These are
summarized in Table I for trapped alkali-metal-backgrou
alkali-metal self-collisions. Table I also summarizes the
sults for He and H2 background gases, usingC6 constants
from Ref. @12#.

Equation~16! is the primary result of this paper. The pr
dicted heating rates can be compared to the residual he
rate of.4 mK/sec reported for a recent elegant experim
on Raman cooling in a Cs vapor-loaded, far-detuned opt
e

d
-

ing
t
al

trap @3#. In the experiments, the vapor pressure is chose
the nTorr range to obtain a high trapped atom density
strong collisional coupling between the radial and axial
rections. The collision time is estimated to be.1 ms and the
radial-axial thermalization time is found to be 50 ms. Hen
we assume that after a background gas collision, all ato
that remain in the trap thermalize quickly compared to
observation time. The well depth isU050.16 mK and the
initial energy of the atoms is!U0, so that Eq.~16! is appli-
cable. The trap 1/e lifetime of 2 sec is limited by background
gas collisions in the cell MOT used to load the optical trap
that gC.0.5 sec21. From Table I for Cs-Cs collisions, we
obtain ed51.4 mK. Using these parameters in Eq.~16!

yields Q̇d53.4 mK/sec, in reasonable agreement with t
observed residual heating rate of 4mK/sec.

When the trap well depthU0 is not small compared toed ,
Eq. ~6! is readily integrated by approximating the scatteri
amplitude, Eq.~7!, as a Gaussian. The result shows that,
general, Eq.~16! must be corrected by a factor.2f(x0)/x0

2,
where x0[c(n)U0 /ed and f(x0)[12(11x0)exp(2x0).
The maximum diffractive heating rate expected for a de
well, whereEa anded!U0, is easily determined from Eq.~6!
in the same approximation:

Q̇d
max52p

\2

M
np^v r&

q~n!

@c~n!#2
, ~17!

where ^v r&5(2/Ap)up5A8 kBT/(p mp). For the Van der
Waals case,n56, we obtain

Q̇d
max52.24

\2

M
np^v r&. ~18!

In the hard-sphere limit, the factor 2.24→2p. An interesting
feature of the maximum diffractive heating rate is that
depends only on the thermal speed and density of the b
ground gas, and the massM of the trapped atom. This arise
because the collision rate is proportional to the cross sect
while the diffractive energy change per collision is inverse
proportional to the cross section. Hence, the cross sec
does not appear in the final result. In the deep-well appro
mation, diffractive collisions are ineffective in expelling a
oms from the trap, and trap loss arises from classical sm
angle scattering as calculated previously@1#. For Cs-Cs
collisions, Eq. ~18! yields a maximum diffractive heating
rate in a deep well ofQ̇d

max.62mK/sec/nTorr. Equation~18!
predicts theminimum collision-induced heating rate for
deep well. Additional heating may arise from classical sma
angle scattering.

In conclusion, we have explored the role of quantum d
fractive background gas collisions in atom trap heating a
loss. We have shown that diffractive collisions produce e
ergy changes that are substantial compared to the dep
most magnetic and optical traps, so that the loss rate is
termined by the total collision cross section. The calcula
diffractive heating rates are inherently quantum mechan
and can be particularly important for vapor-loaded tra
Since the heating rates are quite small, they are most im
tant for very-low-temperature traps. The calculated heat
rates appear to explain the residual heating rates reporte
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a vapor-loaded optical trap@3#. This result suggests that th
dominant nonoptical heating rates in very far-detuned
optical traps may arise from background gas collisions
laser noise-induced trap fluctuations, as described rece
@13,14#.

Note added.We make the simple assumption that col
sionally kicked atoms either cleanly leave the trap~if DE
.U0) or remain and thermalize~if DE,U0). However, for
sufficiently hot atoms, the thermalization time in the tr
may be longer than the observation time, and Eqs.~16!–~18!
may not be applicable. Recently it has come to our atten
that loss and heating arising from background gas collisi
tt

et

tt

ys

y

l-
d
tly

n
s

are discussed by Cornell, Ensher, and Wieman@15#. There,
an estimate of the heating rate also is given, and the issu
thermalization is discussed. Further, it is pointed out that
large and dense atomic samples, multiple scattering of c
sionally kicked atoms may be important, since the maxim
energy transferred to the sample by a background gas c
sion can exceed the well depth.

We are indebted to C. R. Monroe, E. A. Cornell, and
Walker for helpful discussions. This work has been su
ported by the U.S. Army Research Office and the Natio
Science Foundation.
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