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Quantum analysis of the photonic blockade mechanism
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A recently proposed photonic blockade mechanism using four-level atoms inside an optical cavity is re-
viewed and analyzed. Various possible theoretical approaches are discussed, including adiabatic elimination of
atomic variables, linearization, and numerical calculations in the weak excitation regime.
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Introduction. Driving multilevel atoms with several co- single mode of the electromagnetic field inside a caise
herent light beams is a way to generate interesting nonlinedfig. 1, insel. The driving field is characterized by its Rabi
optical effects, either in the classiddl] or in the nonclassi- frequency() and its optical frequency,,, taken equal to the
cal regime of quantum opticE]. Electromagnetically in- transition frequency between levels) and|2). The action
duced transparend§IT), for instance, allows atoms irradi- 0f the cavity field on the atoms is determined by the coupling
ated by a laser beam to become transparent to a second ligt@nstantsgy; andg, to the atomic transitions from level6)
field on an otherwise optically thick transitip8] and can be to|2) and|1) to|3), respectively. For simplicity we assume
used to obtain enhanced laser gdh Interesting quantum- the empty cavity(resonance frequency.) to be resonant
statistical properties have been predicted for light generatewith the transition between the atomic levé@® and |2).
by devices based on EIT, such as narrower laser linewidth§he cavity mode is driven by a coherent field with amplitude
[5] and reduction of intensity fluctuation®—8]. Photon  «;,/\2x and center frequency;,, and losses through the
turnstile devices have been recently realized in semiconducsingle port of the cavity are accounted for by a damping rate
tors[9]. In a recent Lettef10,11] Imamodu et al. have pro-  2«. Spontaneous emission takes place from l¢RElo lev-
posed an EIT-based scheme to create a giant Kerr nonlineagis |0) and|1) at the respective ratesl'3, and A";,, and
ity with negligible absorption. Their scheme assumes that &om level |3) to level|1) at a rate Z'5. The equations for
large numbeN of atoms isweaklycoupled to a single mode the evolution of this system can be written conveniently in a
of an optical resonator. The authors have claimed that theotating frame with respect to the external field frequencies
collective interaction between the atoms and the resonatap;, and w,. The Hamiltonian describing thelow system
mode implements a photonic blockade mechanism: due to @volution is thus given by
large x©®) nonlinearity, a single photon inside the cavity cre-
ates a detuning large enough to prevent other photons from N N
entering this cavity. This would implement a turnstile device H(O/h= a:lz o s T H O]+ Hie(t), (1a)
for single photons, which could find application in the design =~ 777
of quantum logical gates for photonic quantum HKigsibitg

a__ a (43 « T
[12] or in controlling the quantum noise of very-low- Hs=A3053+ Apoyt Aroty+(Ac/N)a'a

intensity light beam$13]. +ap(at+ah)/N+(Q* o5+ H.c)
However, several of the assumptions made by Imamoglu
et al. have been contested, including an adiabatic elimination +(gra'og,+gsalofs+He), (1b)
procedure by which all atomic degrees of freedpid,15
are removed. A preliminary semiclassical analy$i4] of the H (1) =V2T sbl(a,t) 0%+ V2T b (@, t) o
interaction, which does not employ adiabatic elimination, @ $Ts neoe
suggests that a dramatic reduction of available bandwidth for +2T b)) o+ H.c., (1o
the light leaving the resonator should occur. Independently,
Lukin et al.[16] have recently found that EIT within an op- 1.0 —
tical cavity can give rise to a significant narrowing of the 5 08 i
linewidth of the cavity light field. In this paper we will show g
that, beside a linewidth narrowing, the scheme also exhibits a ; 0.6+
critical dependence on the amount of energy that is tempo- g 0.4 ot
rarily stored in the atomic medium. 024 L
Model. The scheme presented in REL0] relies on the ; . . .m/K
interaction of an ensemble dfi four-level atoms with a 0.0 02 04 06 08 10

strong coherent driving field and a weakly coupled quantized Fig. 1. squeezing spectrum for the figolid) and naive adia-
batic (dashedl models demonstrating significant bandwidth narrow-
ing. The inset shows the energy-level diagram of the system. Pa-
*Permanent address: Institut d’'Optique @hique et Appligue, rameters:(0=A;=30, g;a,=0.1, I'j;=I'3=1, «=0.1, and u
B.P. 147, 91403 Orsay Cedex, France. =111.
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H,o(t)=\2kb'(t)a+H.c., (1d  Since the mode couples weakly to each individual atom,
Poo.=1 is a meaningful assumption to iteratively determine
where the following detunings have been defined: the remaining coefficients of the expansion. Reinsertion of
the appropriate terms into the evolution equation of the mode

A=~ 0, Az=wzt oy~ 2w, leaves us with a parametric mod&err effech for the
intracavity interaction with a nonlinear coupling strength
A=~ 0, A1=0;tw,— o, proportional to the number of atoms. The approximated

mode equation then reads
with w; being the energy differences between stajesand

|0). In the remainder of this paper we will assume tkhat da=dLa(t)+ix¥a’a’dt—2i[im x®a'dBe1),
and the cavity field form a Raman resonance, 8. A, (4)
=0.

The reservoir operators obey usual bosonic commutatio 10 two-phot b tion. Thi i h di
relations, and since the reservoirs are in a vacuum state, € 1o two-photon absorption. This equation, however, dis-
regards two essential aspects of the problem. Since EIT

are in the limit ofquantum white noiseand the noise opera- . ; ) . ;
tors ares correlated in time. This allows us to describe the “3US€S the otherwise dominant linear dispersive and absorp-

evolution of the atom-cavity system operators by using thélVe contribution in the expansion ofg, to disappear, we are
usual damping and fluctuation terms. We note that th eft with a third-order nonlinearity as the leading term. This

Hamiltonian (1) couples all atoms with identical coupling €ff€Ct is, however, strongly frequency dependent, and any
strength to the cavity moda and to the coherent driving Sightly mistuned frequency component of the mode will ex-
field O, respectively. This symmetry of the dynamics would Pernence huge linear dispersion. S_lnce the. nonlinearity must
allow us to restrict the time evolution to the fully symmetric &t 1€ast be comparable to the cavity damping constafur
subspace of the atomic Hilbert space. However, fluctuationgn @Ppreciable nonlinear effect, all frequency components
of the coupling strengtiidue to atomic motionand sponta- that are not extremely close to the cavity resonance fre-
neous emission will prevent the atoms from acting in and4€ncy will be driven out of resonance and are strongly sup-
exclusively cooperative fashion. In order to account for thisPressed. We thus conclude that the temporal response of the
we will adopt theindependent-atom approximatiowhich ~ mede will be poorly described by EG4). Another problem-

assumes that atom-atom correlations are negligible. Spontli¢ @spect is that the field contains less than one photon on
neous emission is supposed to take place independently #Yerage, so that shelving of energy in the atomic medium
each atom. This is known as tpevate bath assumptioand =~ Must be expected to degrade the statistics. Again all such
is consistent with the approximation of uncorrelated atoms. IEff€CtS have been disregarded in the adiabatic elimination
amounts to neglecting all collective spontaneous radiativérocedure adopted in Re[flor]]. A

events other than those mediated through the cavity mode. A !N order to demonstrate the bandwidth narrowfibg], we
brute force solution of the system's evolution remains very2SSUme that the mode contains a sufficiently large number of
difficult, due to both the nonlinear character of the Heisenph()t(_)nS th_at a f'EId_ with a reasonably well-de_fmed coherent
berg equations of motions and the huge dimension of th@mplitude is established in the resonator. This allows us to
system’s Hilbert space. We therefore have to adopt furthetest the validity of the adiabatic approximation, as the same

simplifying assumptions as to the system’s effective size ophysical mec_hamsm is §t||| at work, despite the different na-
to the nature of its time evolution. ture of the field statistics. Instead of a regular source of

Solution strategiesAdiabatic elimination of the atomic SiNgle photons this scheme offers the possibility of effi-

degrees of freedom is the method chosen by Imamoglu angf€Nty suppressing the quantum fluctuations in a phase

co-workers. Their basic assumption was that the atomic jnduadrature component of the light leaving the resonator. The
ternal states evolve rapidly on the time scales relevant for thi'dependent-atom assumption suggests the introduction of

cavity mode. The mode evolution equation for the unaplescaled collective atomic operators; == ,07j/N. These
proximated model reads rescaled quantities, together with the field operators, now

form a set of 18 operators whose time evolution equations
_ e e are directly obtainable from E@l). A quantum noise analy-
da(t)=dLa(t)—i 12 | [97 og(t) +05 o35(t) ]dt, sis of the system can be obtained by linearizing the 18 Ito
“ @) gquantum stochastic differential equations around their semi-
classical mean values, i.e., by writing(t) ~ X+ 6X(t) for
dLa(t)=—[(k+iAg)a(t)+iap]dt—iy2x dB(t), any system operatoX with 5X being small[17-19,22,23
We thus obtain two sets of equations. The first one is non-
wheredB(t) =B(t-+dt) — B(t)=Db(t)dt. Adiabatic elimina- linear and comprises only the semiclassical steady-state ex-
tion of the atoms allows us to express the coherences appeqectation valueX. For instance, the equation describing the

ing in EqQ.(2) in terms of the mode operators. Formally this macroscopic behavior of the cavity light fiekd= « reads
is accomplished by neglecting the time derivatives of the

\Aéézth Im x>0 anddB,, representing vacuum excess noise

atomic coherence operatoes; . To obtain a Taylor series dra=—(k+iA )a—iN(g*;onr g*;m)—iw . (5
expansion in powers of the mode creation and annihilation ¢ ! 2 "
operators up to third order, one sets fet], The fluctuation termsSX(t), whereX can be any of the 18

1 system operators, form a linear set of differential equations

0 2 3 2 . . ..
L+ piatpflatatpata? (3 that describe the atom-cavity response to small deviations

O-icj¥~ pI(J ,a
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from the semiclassical steady state. The equation for the de- 0.8 - - -

viations from the steady-state expectation vadueof a is i

given by 0.6 ]

déa=dLda(t) —iN(g] Sopit) + g5 Soi5(t))dt.  (6)

The way to deal with such linearized equations is standard
and will not be detailed here. With three-level systd24],

the utility of such an analysis has been underpinned by the
excellent agreement between theoretical prediction and ex-

probability density
=3 =
[\ £

e
=

perimental result in a recent quantum nondemolition experi- ] 1 2 3 4
2(daykt
ment[13].
Discussion.In order to get dispersive effects with negli-  FIG. 2. Normalized waiting time distributions obtained from Eq.

gible absorption, one expects that the atoms should remain i11) for (a) A,qu=2.16, a;,=0.5x, w=0 (this reproduces the
the ground stat¢0) with a probability close to unity. To naive adiabatic model withRey®)|=2.16«), (b) »=0.108, and
obtain the semiclassical steady-state solution, we thus followd) x=0.5. Curve(c) is obtained from a 30-atom quantum—Monte
the logic used in Eq(3). Up to third-order perturbation Carlo simulation for parameters that are expected to yield the same
theory in the field-coupling constants andg,, the coher- effective parameters as those for cu. Clearly curve(b) with

ences are given by the following expressions, £ 0): ©=0.108 provides a better fit than curt@ with w=0. The inset
shows the dependence gf?(0) on u as obtained from a full
_ g 0¥ _ |91as|2 one-atom moqledfour.internal Ievel;with A qu=2.16« kept con-
O~ — ———=—, O11~ , (79 stant andu being adjusted by varying;.
|02 |02
available frequency window. The narrowing becomes appar-
- 9192a§9* ent from Fig. 1, where we plot a squeezing spectrum ob-
To3~! |Q|2(T5+iAs) ' (7B tained for parameters close to the ones used in[R6f. The
3 3 noise reduction bandwidth is drastically smaller than the cav-
— 5 ity bandwidth (w=111).
g02| —ia 91 & (70 To account for energy storage effects and bandwidth re-
O3 192/ (Ta+ing)|Q)2 duction on the single-photon level, we adopt an alternative

description based on dark dressed states. In a first step we
We realize that the average collective interaction term expedescribe the presence Nfatoms by a single effective atom

~172
W), (10)

rienced by the mode amplitude is given by with rescaled coupling constagg— g;+/N. Preliminary re-
o o sults from genuine many-atom calculation indicate that such
—iN(g} 0t 05 019) = —aglad 22u(TagtiA,y), (8)  a description is meaningful in the parameter regime consid-
ered by Imamogliet al. Next we make he following ansatz

with  (Taq,Aad=(T3,—A3)|g,|%(T5+A%) and w  for the wave function of the atom-cavity system:
=|g4/?N/|Q|2. In the limit of I'3/|A5|<1, this term is pre-
dominantly dispersive in nature. Note that, as claimed by gl\/ﬁ A
Imamoglu and co-workers, there is no contribution linear in W)= Q a|1)—1[0) (;
the field amplitude due to EIT.

Further calculations are now best carried out in the freith |0) and|1) denoting the two ground states of the effec-
quency domain; we thus define Fourier transforms accordingye atom, and\ = u/(1+ ra'a). Equation(10) assumes that
to sa(w)=fdtexp(wt)da(t)/\27. Then the Taylor series the coupled atom-cavity systems remains in a state that is
expansion outlined above also carries over to the fluctuationsommonly known as a “noncoupled” or dark std@il]. By
in the atomic coherences. Here we only wish to consider thallowing only such superposition states we automatically
two relevant atomic fluctuation terndroy(w) anddoif ).  eliminate the exited atomic staf@) from our description.
The notable difference from the previous case is that werhis implies that the auxiliary normalized wave function of
already obtain a contribution téo(w) that is linear in  the cavity field stat¢W’) satisfies
da(w):
dW'y=[—(x+iAc)ata(l—A)—(Fqt+idga?aA

—g¥Nbogw)~wda(w)ul/[1— (1wl ,+w?)/|Q?]. (9
gl 02( r [ 2 | | ] _iain(A_l/ZaA1/2+Al/ZaTA_l/Z):||‘P,>dt

with I';=I"p,+1';,. Note that this term vanishes at zero- . - e )
frequer21cy. qlghe ézero-frequency limit reproduces exactly the —i(\2xA"adB"+ 2T @%d ng)Al’2|\If )-
result from an adiabatic elimination by simply neglecting (12)
any frequency dependence of the atomic coherences. This

term can, however, become extremely large, as we majmamoglu’s adiabatic model, cf. E), can be recovered as
gather from its linear dependence on the number of atomshe limit whereu—0 and (I aq— A 59 w— x/2. This de-
For it to remain negligible, one requirgs=|g;|>N/|Q2|?>  scription is valid in the adiabatic limit; i.e., the internal
<1. This was the main result obtained in Rgfs4,15. The  atomic evolution is much faster than that of the mode
main effect of the linear dispersive term is to narrow the(x, «;,). We also assume that\;=0 and that A,



RAPID COMMUNICATIONS

R2676 KLAUS M. GHERI, WIELAND ALGE, AND PHILIPPE GRANGIER PRA 60

<max(Q,VNg;). Our model now takes into account that a The second condition impligg ./ «x>1 and thugg,|> «.
small fraction of the atoms can be pumped into their internalfhe optimal choice ofA;=T still requires|g,|> 2T 3«
states|1). This is an important effect if the field contains [26,27. This clearly undermines the attractiveness of the
only a small number of photons. The extent to which thisoriginal proposal, whose appeal was confounded in the
takes place is given by the size pf. We found a strong seeming absence of a need for strong coupling. Yet the
dependence a§‘®)(7) [25] on w, with already small values present proposal could work in the limit of strong coupling
of u~0.5 giving rise to a significant degradation of the With a mesoscopic number of atoms. Werner and Imamoglu
achievable antibunching; cf. Fig. 2. Only far<1 is the have come to a similar conclusion in a recent manuscript
effect slight. In this limit we have also been able to show tha{28] on the same system in an off-resonant configuration
the time evolution of the average photon number is slowedA1—A¢#0). Our description assumes that the behavior of a
down [t—t/(1+ )], as also predicted by the previously single atom does not significantly change the properties of
discussed semiclassical mod@andwidth narrowing A  the cavity field. Since the field considered here comprises
comparison with a density-matrix solution for a fulll only a few photons, the interaction of all atoms with the
states taken into accoyntescaled one-atom model yields mode may depend on whether or not a photon is lost to the
excellent agreemeritve have tested this for values pfup ~ €nvironmentin a spontaneous-emission event. This issue still
to 2). Consequently, for the scheme to work the following requires further work27].
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