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Quantum analysis of the photonic blockade mechanism
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A recently proposed photonic blockade mechanism using four-level atoms inside an optical cavity is re-
viewed and analyzed. Various possible theoretical approaches are discussed, including adiabatic elimination of
atomic variables, linearization, and numerical calculations in the weak excitation regime.
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Introduction. Driving multilevel atoms with several co
herent light beams is a way to generate interesting nonlin
optical effects, either in the classical@1# or in the nonclassi-
cal regime of quantum optics@2#. Electromagnetically in-
duced transparency~EIT!, for instance, allows atoms irrad
ated by a laser beam to become transparent to a second
field on an otherwise optically thick transition@3# and can be
used to obtain enhanced laser gain@4#. Interesting quantum-
statistical properties have been predicted for light genera
by devices based on EIT, such as narrower laser linewid
@5# and reduction of intensity fluctuations@6–8#. Photon
turnstile devices have been recently realized in semicond
tors @9#. In a recent Letter@10,11# Imamoğlu et al. have pro-
posed an EIT-based scheme to create a giant Kerr nonlin
ity with negligible absorption. Their scheme assumes tha
large numberN of atoms isweaklycoupled to a single mode
of an optical resonator. The authors have claimed that
collective interaction between the atoms and the reson
mode implements a photonic blockade mechanism: due
largex (3) nonlinearity, a single photon inside the cavity cr
ates a detuning large enough to prevent other photons f
entering this cavity. This would implement a turnstile devi
for single photons, which could find application in the desi
of quantum logical gates for photonic quantum bits~qubits!
@12# or in controlling the quantum noise of very-low
intensity light beams@13#.

However, several of the assumptions made by Imamo
et al.have been contested, including an adiabatic elimina
procedure by which all atomic degrees of freedom@14,15#
are removed. A preliminary semiclassical analysis@14# of the
interaction, which does not employ adiabatic eliminatio
suggests that a dramatic reduction of available bandwidth
the light leaving the resonator should occur. Independen
Lukin et al. @16# have recently found that EIT within an op
tical cavity can give rise to a significant narrowing of th
linewidth of the cavity light field. In this paper we will show
that, beside a linewidth narrowing, the scheme also exhib
critical dependence on the amount of energy that is tem
rarily stored in the atomic medium.

Model. The scheme presented in Ref.@10# relies on the
interaction of an ensemble ofN four-level atoms with a
strong coherent driving field and a weakly coupled quanti
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single mode of the electromagnetic field inside a cavity~see
Fig. 1, inset!. The driving field is characterized by its Rab
frequencyV and its optical frequencyvp , taken equal to the
transition frequency between levelsu1& and u2&. The action
of the cavity field on the atoms is determined by the coupl
constantsg1 andg2 to the atomic transitions from levelsu0&
to u2& andu1& to u3&, respectively. For simplicity we assum
the empty cavity~resonance frequencyvc) to be resonant
with the transition between the atomic levelsu0& and u2&.
The cavity mode is driven by a coherent field with amplitu
a in /A2k and center frequencyv in , and losses through th
single port of the cavity are accounted for by a damping r
2k. Spontaneous emission takes place from levelu2& to lev-
els u0& and u1& at the respective rates 2G02 and 2G12, and
from level u3& to level u1& at a rate 2G3. The equations for
the evolution of this system can be written conveniently in
rotating frame with respect to the external field frequenc
v in and vp . The Hamiltonian describing theslow system
evolution is thus given by

H~ t !/\5 (
a51, . . . ,N

@H s
a1H ra

a ~ t !#1Hrc~ t !, ~1a!

H s
a5D3s33

a 1D2s22
a 1D1s11

a 1~Dc /N!a†a

1a in~a1a†!/N1~V* s12
a 1H.c.!

1~g1* a†s02
a 1g2* a†s13

a 1H.c.!, ~1b!

H ra
a ~ t !5A2G3b3

†~a,t !s13
a 1A2G02b1

†~a,t !s02
a

1A2G12b2
†~a,t !s12

a 1H.c., ~1c!

FIG. 1. Squeezing spectrum for the full~solid! and naive adia-
batic ~dashed! models demonstrating significant bandwidth narro
ing. The inset shows the energy-level diagram of the system.
rameters:V5D3530, g1as50.1, G j 25G351, k50.1, and m
5111.
R2673 ©1999 The American Physical Society



tio
,
-
he
th
th
g

ld
ic
on

a
is

n
ly

.
tiv
e.
er
n
th
h
o

a
in
th
p

e
is
th

tio

m,
ne
of

ode

th
ted

se
is-

EIT
orp-

is
any
x-
ust

nts
fre-
up-
f the

on
um
uch
tion

r of
ent

to
me
a-
of

ffi-
ase
The
n of

ow
ons

Ito
mi-

on-
ex-

he

ns
ons

RAPID COMMUNICATIONS

R2674 PRA 60KLAUS M. GHERI, WIELAND ALGE, AND PHILIPPE GRANGIER
Hrc~ t !5A2kb†~ t !a1H.c., ~1d!

where the following detunings have been defined:

Dc5vc2v in , D35v31vp22v in ,

D25v22v in , D15v11vp2v in ,

with v j being the energy differences between statesu j & and
u0&. In the remainder of this paper we will assume thatV
and the cavity field form a Raman resonance, i.e.,D12Dc
50.

The reservoir operators obey usual bosonic commuta
relations, and since the reservoirs are in a vacuum state
are in the limit ofquantum white noise, and the noise opera
tors ared correlated in time. This allows us to describe t
evolution of the atom-cavity system operators by using
usual damping and fluctuation terms. We note that
Hamiltonian ~1! couples all atoms with identical couplin
strength to the cavity modea and to the coherent driving
field V, respectively. This symmetry of the dynamics wou
allow us to restrict the time evolution to the fully symmetr
subspace of the atomic Hilbert space. However, fluctuati
of the coupling strength~due to atomic motion! and sponta-
neous emission will prevent the atoms from acting in
exclusively cooperative fashion. In order to account for th
we will adopt theindependent-atom approximation, which
assumes that atom-atom correlations are negligible. Spo
neous emission is supposed to take place independent
each atom. This is known as theprivate bath assumptionand
is consistent with the approximation of uncorrelated atoms
amounts to neglecting all collective spontaneous radia
events other than those mediated through the cavity mod
brute force solution of the system’s evolution remains v
difficult, due to both the nonlinear character of the Heise
berg equations of motions and the huge dimension of
system’s Hilbert space. We therefore have to adopt furt
simplifying assumptions as to the system’s effective size
to the nature of its time evolution.

Solution strategies.Adiabatic elimination of the atomic
degrees of freedom is the method chosen by Imamoglu
co-workers. Their basic assumption was that the atomic
ternal states evolve rapidly on the time scales relevant for
cavity mode. The mode evolution equation for the una
proximated model reads

da~ t !5dLa~ t !2 i (
a51, . . . ,N

@g1* s02
a ~ t !1g2* s13

a ~ t !#dt,

~2!

dLa~ t !52@~k1 iDc!a~ t !1 ia in#dt2 iA2k dB~ t !,

wheredB(t)5B(t1dt)2B(t)5b(t)dt. Adiabatic elimina-
tion of the atoms allows us to express the coherences app
ing in Eq. ~2! in terms of the mode operators. Formally th
is accomplished by neglecting the time derivatives of
atomic coherence operatorss i j

a . To obtain a Taylor series
expansion in powers of the mode creation and annihila
operators up to third order, one sets fori< j ,

s i j
a 'pi j ,a

(0) 1pi j ,a
(1) a1pi j ,a

(2) a†a1pi j ,a
(3) a†a2. ~3!
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Since the mode couples weakly to each individual ato
p00,a51 is a meaningful assumption to iteratively determi
the remaining coefficients of the expansion. Reinsertion
the appropriate terms into the evolution equation of the m
leaves us with a parametric model~Kerr effect! for the
intracavity interaction with a nonlinear coupling streng
proportional to the number of atoms. The approxima
mode equation then reads

da5dLa~ t !1 ix (3)a†a2dt22iAuIm x (3)ua†dBex~ t !,
~4!

with Im x (3).0 anddBex representing vacuum excess noi
due to two-photon absorption. This equation, however, d
regards two essential aspects of the problem. Since
causes the otherwise dominant linear dispersive and abs
tive contribution in the expansion ofs02

a to disappear, we are
left with a third-order nonlinearity as the leading term. Th
effect is, however, strongly frequency dependent, and
slightly mistuned frequency component of the mode will e
perience huge linear dispersion. Since the nonlinearity m
at least be comparable to the cavity damping constantk for
an appreciable nonlinear effect, all frequency compone
that are not extremely close to the cavity resonance
quency will be driven out of resonance and are strongly s
pressed. We thus conclude that the temporal response o
mode will be poorly described by Eq.~4!. Another problem-
atic aspect is that the field contains less than one photon
average, so that shelving of energy in the atomic medi
must be expected to degrade the statistics. Again all s
effects have been disregarded in the adiabatic elimina
procedure adopted in Ref.@10#.

In order to demonstrate the bandwidth narrowing@14#, we
assume that the mode contains a sufficiently large numbe
photons that a field with a reasonably well-defined coher
amplitude is established in the resonator. This allows us
test the validity of the adiabatic approximation, as the sa
physical mechanism is still at work, despite the different n
ture of the field statistics. Instead of a regular source
single photons this scheme offers the possibility of e
ciently suppressing the quantum fluctuations in a ph
quadrature component of the light leaving the resonator.
independent-atom assumption suggests the introductio
rescaled collective atomic operators:s i j 5(as i j

a /N. These
rescaled quantities, together with the field operators, n
form a set of 18 operators whose time evolution equati
are directly obtainable from Eq.~1!. A quantum noise analy-
sis of the system can be obtained by linearizing the 18ˆ
quantum stochastic differential equations around their se

classical mean values, i.e., by writingX(t)'X̄1dX(t) for
any system operatorX with dX being small@17–19,22,23#.
We thus obtain two sets of equations. The first one is n
linear and comprises only the semiclassical steady-state

pectation valuesX̄. For instance, the equation describing t
macroscopic behavior of the cavity light fieldā5a reads

] ta52~k1 iDc!a2 iN~g1* s̄021g2* s̄13!2 ia in . ~5!

The fluctuation termsdX(t), whereX can be any of the 18
system operators, form a linear set of differential equatio
that describe the atom-cavity response to small deviati
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from the semiclassical steady state. The equation for the
viations from the steady-state expectation valueas of a is
given by

dda5dLda~ t !2 iN„g1* ds02~ t !1g2* ds13~ t !…dt. ~6!

The way to deal with such linearized equations is stand
and will not be detailed here. With three-level systems@24#,
the utility of such an analysis has been underpinned by
excellent agreement between theoretical prediction and
perimental result in a recent quantum nondemolition exp
ment @13#.

Discussion.In order to get dispersive effects with neg
gible absorption, one expects that the atoms should rema
the ground stateu0& with a probability close to unity. To
obtain the semiclassical steady-state solution, we thus fo
the logic used in Eq.~3!. Up to third-order perturbation
theory in the field-coupling constantsg1 andg2, the coher-
ences are given by the following expressions (D250):

s̄01'2
g1asV*

uVu2
, s̄11'

ug1asu2

uVu2
, ~7a!

s̄03' i
g1g2as

2V*

uVu2~G31 iD3!
, ~7b!

F s̄02

s̄13
G'2 iasFg1

g2
G ug2asu2

~G31 iD3!uVu2
. ~7c!

We realize that the average collective interaction term ex
rienced by the mode amplitude is given by

2 iN~g1* s̄021g2* s̄13!52asuasu22m~Gad1 iDad!, ~8!

with (Gad,Dad)5(G3 ,2D3)ug2u2/(G3
21D3

2) and m
5ug1u2N/uVu2. In the limit of G3 /uD3u!1, this term is pre-
dominantly dispersive in nature. Note that, as claimed
Imamoglu and co-workers, there is no contribution linear
the field amplitude due to EIT.

Further calculations are now best carried out in the f
quency domain; we thus define Fourier transforms accord
to da(v)5*dt exp(ivt)da(t)/A2p. Then the Taylor series
expansion outlined above also carries over to the fluctuat
in the atomic coherences. Here we only wish to consider
two relevant atomic fluctuation termsds02(v) andds13(v).
The notable difference from the previous case is that
already obtain a contribution tods02(v) that is linear in
da(v):

2g1* Nds02~v!'vda~v!m/@12~ ivG21v2!/uVu2#. ~9!

with G25G021G12. Note that this term vanishes at zer
frequency. The zero-frequency limit reproduces exactly
result from an adiabatic elimination by simply neglecti
any frequency dependence of the atomic coherences.
term can, however, become extremely large, as we m
gather from its linear dependence on the number of ato
For it to remain negligible, one requiresm5ug1u2N/uVu2

!1. This was the main result obtained in Refs.@14,15#. The
main effect of the linear dispersive term is to narrow t
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available frequency window. The narrowing becomes app
ent from Fig. 1, where we plot a squeezing spectrum
tained for parameters close to the ones used in Ref.@10#. The
noise reduction bandwidth is drastically smaller than the c
ity bandwidth (m5111).

To account for energy storage effects and bandwidth
duction on the single-photon level, we adopt an alternat
description based on dark dressed states. In a first step
describe the presence ofN atoms by a single effective atom
with rescaled coupling constantg1→g1AN. Preliminary re-
sults from genuine many-atom calculation indicate that s
a description is meaningful in the parameter regime con
ered by Imamogluet al. Next we make he following ansat
for the wave function of the atom-cavity system:

uC&5Fg1AN

V
au1&2u0&G S L

m D 21/2

uC8&, ~10!

with u0& andu1& denoting the two ground states of the effe
tive atom, andL5m/(11ma†a). Equation~10! assumes tha
the coupled atom-cavity systems remains in a state tha
commonly known as a ‘‘noncoupled’’ or dark state@21#. By
allowing only such superposition states we automatica
eliminate the exited atomic stateu2& from our description.
This implies that the auxiliary normalized wave function
the cavity field stateuC8& satisfies

duC8&5@2~k1 iDc!a
†a~12L!2~Gad1 iDad!a

†2a2L

2 ia in~L21/2aL1/21L1/2a†L21/2!#uC8&dt

2 i ~A2kL21/2adB†1A2Gada
2dBex

† !L1/2uC8&.

~11!

Imamoglu’s adiabatic model, cf. Eq.~4!, can be recovered a
the limit wherem→0 and (iGad2Dad)m→x (3)/2. This de-
scription is valid in the adiabatic limit; i.e., the interna
atomic evolution is much faster than that of the mo
(k, a in). We also assume thatD150 and that Dad

FIG. 2. Normalized waiting time distributions obtained from E
~11! for ~a! Dadm52.16k, a in50.5k, m50 ~this reproduces the
naive adiabatic model withuRex (3)u52.16k), ~b! m50.108, and
~d! m50.5. Curve~c! is obtained from a 30-atom quantum–Mon
Carlo simulation for parameters that are expected to yield the s
effective parameters as those for curve~b!. Clearly curve~b! with
m50.108 provides a better fit than curve~a! with m50. The inset
shows the dependence ofg(2)(0) on m as obtained from a full
one-atom model~four internal levels! with Dadm52.16k kept con-
stant andm being adjusted by varyingg1.
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!max(V,ANg1). Our model now takes into account that
small fraction of the atoms can be pumped into their inter
statesu1&. This is an important effect if the field contain
only a small number of photons. The extent to which t
takes place is given by the size ofm. We found a strong
dependence ofg(2)(t) @25# on m, with already small values
of m'0.5 giving rise to a significant degradation of th
achievable antibunching; cf. Fig. 2. Only form!1 is the
effect slight. In this limit we have also been able to show t
the time evolution of the average photon number is slow
down @ t→t/(11m)#, as also predicted by the previous
discussed semiclassical model~bandwidth narrowing!. A
comparison with a density-matrix solution for a full~all
states taken into account! rescaled one-atom model yield
excellent agreement~we have tested this for values ofm up
to 2!. Consequently, for the scheme to work the followi
minimum constraints have to be satisfied:

m!1, uDadum/k.1. ~12!
tt

re

s.
l

s

t
d

The second condition impliesuDadu/k@1 and thusug2u@k.
The optimal choice ofD35G3 still requires ug2u@A2G3k
@26,27#. This clearly undermines the attractiveness of t
original proposal, whose appeal was confounded in
seeming absence of a need for strong coupling. Yet
present proposal could work in the limit of strong couplin
with a mesoscopic number of atoms. Werner and Imamo
have come to a similar conclusion in a recent manusc
@28# on the same system in an off-resonant configurat
(D12DcÞ0). Our description assumes that the behavior o
single atom does not significantly change the properties
the cavity field. Since the field considered here compri
only a few photons, the interaction of all atoms with th
mode may depend on whether or not a photon is lost to
environment in a spontaneous-emission event. This issue
requires further work@27#.
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