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Wave-function monopoles in Bose-Einstein condensates
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Experimental preparation of multispecies Bose-Einstein condensates should permit the creation of topologi-
cally stable defects beyond the superfluid vortex. But the coldness and isolation of condensates should also
permit the survival for observable durations of ‘‘pseudodefects,’’ such as the one-dimensional dark soliton:
localized structures related to a defect but not topologically stable. In this paper we investigate the viability of
pseudodefects beyond one dimension, by examining ‘‘wave-function monopoles’’ in two-species condensates
in two dimensions. We identify interesting instabilities, including a ‘‘dancing mode’’ for monopoles of higher
winding number, and~in a one-dimensional limit! ‘‘superfluid roulette.’’ @S1050-2947~99!51510-2#

PACS number~s!: 03.75.Fi, 03.65.Ge
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A new natural goal for state engineering has appea
with the advent of multicomponent Bose-Einstein cond
sates@1,2#: topological defects, in which the order parame
field forms a localized ‘‘knot.’’ The superfluid vortex is a
example that is well known in liquid helium. Other defec
also exist, however, such as the ‘‘textures’’ found in sup
fluid helium-3@3#; and skyrmions@4# and spin monopoles@5#
have been suggested for dilute gas condensates. Since
condensates are weakly interacting and very well isola
however, it is not obviously necessary to restrict one’s att
tion to defects that are truly topologically stable; one c
also consider particlelike ‘‘pseudo defects,’’ in which top
logically stable configurations are embedded in the lar
order-parameter spaces afforded by the 2n independent rea
components of the macroscopic wave function. The lar
space allows the ‘‘knot’’ to be untied, and so such objects
topologically trivial; but their physical time evolution nee
not be trivial at all. The example of the one-dimensional d
soliton, a ‘‘kink’’ defect in a realC that can be untwisted by
complex deformations@6#, indicates that pseudodefects c
inherit particlelike robustness from their topological ‘‘pa
ents,’’ but exhibit greater motional freedom than true defe
~a larger effective phase space!. To test the viability of the
pseudodefect concept beyond one dimension~1D!, we exam-
ine some more complex pseudodefects: 2D monopoles
bedded in the 4D wave-function space of a two-compon
condensate. Our results indicate interesting phenomena
may be observable in future experiments, and also illust
some useful general principles concerning multicompon
condensates.

Our paper is organized as follows. After presenting o
concept of a ‘‘wave-function monopole,’’ we examine a
analytically tractable one-dimensional limit of large radiu
In this context we briefly discuss the consequences of ha
different scattering lengths among the two atomic spec
indicating why neglecting these differences is a good fi
approximation. We then return to two dimensions a
present numerical solutions of the two-component Gro
Pitaevskii equation~GPE!, which describes the very-low
temperature behavior of condensates. We identify some
triguing effects, including vortex production and ‘‘dancin
modes’’ of multiple monopoles. We remark on experimen
PRA 601050-2947/99/60~4!/2669~4!/$15.00
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approaches to creating wave-function monopoles, and on
limitations of our zero-temperature mean-field calculation

A monopole is a configuration of an order-parameter fi
having as many components as there are spatial dimens
in which the order parameter considered as a vector fi
points outwards all around a defect core. In the tw
dimensional case we will consider, the field will be the tw
component wave function of a two-species condensate,
configuration in which both components happen to be re
(c1 ,c2)5 f (r )(cosu, sinu), where r ,u are the usual polar
coordinates. Since the modulus of the order parameter is
total density of both components, the ‘‘particlelike’’ core o
the monopole is in fact a local minimum of density: a void
bubble, maintained by destructive interference of ma
waves. Our ‘‘wave-function monopoles’’ resemble both vo
tices and dark solitons in this respect; but since continuou
deforming c j into the complex plane can eliminate the
monopoles, they are not true defects like the vortex
pseudodefects like the dark soliton.

It is instructive first to avoid the corer→0 of the mono-
pole, and consider only its behavior at larger, where the
radial dimension becomes unimportant, leaving the eff
tively one-dimensional problem of a two-species condens
on a circle of fixed radiusR. So we replacef (r )→1, and
examine the ‘‘ring monopole’’ (c1 ,c2) as a stationary solu
tion to the one-dimensional GPE

i ċ j52
1

2R2

]2

]u2 c j1S (
j

gi j uc i u22m j Dc j , ~1!

where at first we assumegi j 5g ~all scattering lengths equal!,
so thatm j512(2gR2)21 providesċ j50.

For the ring monopole we can obtain analytically the B
goliubov spectrum of perturbations,c j→c j1ef(u,t).
Working to linear order ine yields the modes

Ff1k
6

f2k
6 G5FX1k

6

X2k
6 GcosVk

6t2
2iR2Vk

6

k~k12! FY1k
6

Y2k
6 GsinVk

6t,

FX1k
6

X2k
6 G5F ~k22!cos~k21!u1Ck

6 cos~k11!u

2~k22!sin~k21!u1Ck
6 sin~k11!u

G , ~2!
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FY1k
6

Y2k
6 G5F ~k12!cos~k21!u1Ck

6 cos~k11!u

2~k12!sin~k21!u1Ck
6 sin~k11!u

G .

The 6 index distinguishes acoustic and optical branches
which the two species’ density perturbations are respectiv
in and out of phase:

Ck
65212k2~gR2!216kxk , ~3!

~2R2Vk
6!25k2@k21412gR2~16xk!#,

xk[A118~gR2!2114k2~gR2!22.

Rotating these modes byu→(u1p/2) produces a second s
of independent modes, with the same frequencies.

The modesk50 ~for which the6 branches coincide! and
k652 provide the four zero modes due to the model’s U~2!
symmetry~which already includes spatial rotation!. All the
other modes are positive frequency excitations, except
the twok651 modes; and forgR2.3/4, these becomedy-
namical instabilities. ~See@5# for a detailed example of this
type of stability analysis.! Infinitesimal excitation of these
modes then grows exponentially until it becomes finite, a
the Bogoliubov theory is inadequate. To follow the evoluti
into this regime, we solve the GPE numerically, using
split operator method as described in@7#. As shown in Fig. 1,
the finite perturbation does not mix with other modes to p
duce irreversible~long revival time! decay, but grows to a
maximum size, then shrinks back; and the cycle repeats.
ther investigation confirms that the two unstable modes fo
an isolated subsystem of two degrees of freedom, resemb
a two-dimensional particle in a ‘‘Mexican hat’’ potential.

This 1D model could in fact be realized in a tight toroid
trap. One could then visualize the unstable subsystem
‘‘virtual monopole’’ moving about inside the 1D ring to
which the actual condensate is confined. At maximum a

FIG. 1. Dynamical instability of the ring monopole, forgR2

5300/p. Five times are shown, the configurations at the last t
times being precise revivals of those at the first two. The top th
plots showuc1u2 ~broken! and uc2u2 ~solid!; the middle three show
uc1u2 anduc2u2 for the same configurations.~In the left middle plot
the small initial perturbation can just be seen.! The rings at the
bottom are overhead views of theuc1u21uc2u2, with darker shading
for lower total density.
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plitude the instabilities produce a density depression at so
point around the trap: the virtual monopole ‘‘touches t
ring.’’ Small perturbations of the unstable uniform dens
state, due to noise or even to quantum corrections to me
field theory, make successive density minima appear at
dom points, and might thus be studied by observing t
‘‘superfluid roulette.’’

Before going on to examine nonvirtual monopoles in tw
dimensions, we remark here that the simple solution we h
examined can be generalized to encompass different~posi-
tive! scattering lengthsgi j . When phase separation is fa
vored (detgi j ,1) @8#, one can obtain solutions in which ou
cosine and sine are replaced by Jacobi elliptic functio
When mixing of the two components is favored (detgi j
.1), one can also generalize monopoles, but in a somew
surprising way. As in changing from rectangular to circu
polarization bases in fiber optics@9#, one can change basi
for the two condensate components, by definingc6

5(1/A2)(c16 ic2)5e6 iu/A2. Thus our monopole can als
be described as two interpenetrating, counterpropagating
rents. Changing scattering lengths so as to favor mixing
the two speciesc6 will then stabilize this configuration.~Of

FIG. 2. uc1u2 ~top! and uc2u2 for a monopole initially displaced
in the directionu5p, at early and late times (g*d2xuc j u252000).
Note the ‘‘throttle’’ formed byuc2u2.

FIG. 3. Superfluid velocity componentvx15Im(]x ln c1), at
various times in the same simulation illustrated in Fig. 4. Plots
‘‘edge-on’’ views of the velocity fieldvx1(x,y), looking in the posi-
tive x direction: the velocity is very small everywhere except ne
the arc on whichuc1u2 vanishes, so the edge-on view is convenie
Initial fluid velocity is negative as the monopole moves in the po
tive (u50) direction.
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FIG. 4. Monopole instability in the SCV ba
sis. Top figures show total densityr5uc1u2

1uc2u2 at early and late times; bottom figure
showuc1u2 (uc2u2 being the mirror image in the
x axis.! No new vortices form; instead, the ini
tially superimposed vortices slip apart, and ea
is pinned.
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trong
course, if the scattering lengths are not exactly equal
transformation between monopole and countercurrent
only an approximate symmetry of the system.! From these
exact generalizations one sees that the behavior for slig
unequalgi j , as in the experimental case, is indeed o
slightly different from what is seen withgi j 5g. We have
also investigated such perturbations in two dimensions,
confirmed that equal scattering lengths are a very close
proximation to slightly unequal, and even qualitatively sim
lar to greatly unequal,gi j . This is not surprising, since on
expects qualitative sensitivity to small detgi j to appear only
over large space or time scales. Turning to the monopol
two dimensions, we therefore letgi j 5g and note that
(c1 ,c2)5 f (r )(cosu, sinu) is a stationary solution to the
GPE,

i ċ j52
1

2
¹2

2c j1S (
i

uc i u22m j Dc j1
1

2
r 2c j , ~4!

as long asf (r ) satisfies the same nonlinear equation as
modulus of the two-dimensional vortex in the trap:

f 91
1

r
f 81S r 2

2
2

1

r 2D f 52g~ f 22m! f . ~5!

We have studied these two-dimensional monopoles by
merically solving Eq.~4!; we report representative resul
from investigations over a wide range of parameters. I
monopole is displaced from the center of the trap, it beg
to fall back towards the center.~A displaced vortex, in con-
trast, precesses around the trap center@10#.! But the mono-
pole motion is unstable, as can be deduced by diagonali
the linearized energy functional. More importantly, the ins
bility is dynamical ~self-driving without external dissipa
tion!: in numerical solutions the amplitude of small oscill
tions grows exponentially.
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The instability, when infinitesimal, is a self-amplifyin
oscillation of the monopole back and forth across the tr
As can be seen from Fig. 2, the motion of the monop
involves the pouring of one of the two species through
narrow channel formed by the other species~which is com-
paratively passive throughout!. As shown in Fig. 3, very
rapid flow develops along the sides of this channel, u
vortex pairs suddenly nucleate at the maxima of the pas
species’ density. Each pair then separates into an inner
tex, pinned by the passive species, and an outer vor
which drifts away. This vortex formation spoils the nonline
revivals seen on the 1D ring, and indicates that instabilit
of pseudodefects in higher dimensions can be qualitativ
more severe.

Although the 2D monopole never fully revives from i
instability, neither does it rapidly die. Despite spawning vo
tices, an initially displaced monopole continues its fall t
wards the center of the trap with little apparent impedime
As ~or just before! it reaches the center, however, its motio
changes. In most cases we have investigated, it abru
slows ~though in some cases, and for reasons that are
clear to us, it seems instead to accelerate, and then
decay rather violently!. Thereafter, the minimum in tota
density at the core gradually fills in, until only a slight d
pression remains. But even at this late stage, a double-lo
pattern of the two densities~as in Fig. 2! remains; and in
each species a phase difference ofp persists across the
monopole, although the sharp jump in phase has b
smoothed out. The instability appears to have saturated, l
ing a ‘‘smeared’’ monopole that appears to be dynamica
~although not energetically! stable. This eventual stability is
much easier to understand in thec6 basis, in which the
initial monopole appears as a pair of superimposed, coun
rotating vortices~SCV’s!. In this basis no new vortices form
The instability is simply that the two initial SCV’s slip apar
becoming a pair of reciprocally pinned vortices: each co
densate species has one vortex, and each also fills a s
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potential well formed by the other species’ vortex.~Compare
the countercurrent picture of the ring instability, in Fig. 1!
Once this separation has occurred, the stability of two pin
vortices is unsurprising. See Fig. 4.

Using the monopole basis can be more illuminating
other phenomena, especially a particularly intriguing one
pair of directly aligned monopoles perform a curious dan
in a trap. They attract each other, merging into a sin
monopole of winding number n52 @i.e., (c1 ,c2)
}(cosnu, sinnu)]; this then separates again, but in the p
pendicular direction; and the cycle repeats. In the SCV ba
this is a rather confusing system of orbiting vortices, a
pinning peaks that form and dissolve, but in the monop
basis, it is an obvious mode of excitation of then52 mono-
pole, see Fig. 5. And the peculiar scattering of monopole
right angles in a head-on collision is actually what is e
pected for monopoles in gauge theories as well@11#. We find
analogous dances, withp/n scattering, for monopoles o
higher winding numbern. In fact, monopoles ofunu.1 de-
cay by these dances, since their amplitudeincreasesover
several periods.

FIG. 5. Two aligned monopoles scattering in a harmonic tr
Top figures show total density; bottom figures showuc1u2 anduc2u2

separately. Sinceuc2u2 essentially does not change, it is mere
indicated as uniformly shaded lobes.
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We conclude by assessing the realism of the prospects
have raised. First, the Gross-Pitaevskii mean-field theory
which we rely should be an excellent first approximation
the extremely cold condensates that are already feas
~though in the case of a dynamical instability quantum c
rections will be required after a logarithmically short tim
@12#!. Second, very tightly confining traps in which effectiv
two or one dimensionality is realized are already under
velopment and are widely believed to be realistic prospe
for the near future. Third, various methods of condens
state engineering should indeed be capable of creating
states we have proposed, or at least reasonable facsimil
them. For instance, we have simulated the adiabatic tran
technique of@13#, and achieved over 95% population transf
into the 2D monopole state, using realistic but unoptimiz
parameters.~The remaining population resides as a third co
densate component in the monopole core.! Fourth, detection
of monopoles is straightforward if the two species can
imaged separately@1#, since the pattern of density lobes
large and obvious, and~in 2D! clearly indicates the presenc
of a monopole core.

Obviously the structures we have presented are exam
of a wide range of conceivable pseudo- or true defects r
izable in multicomponent condensates. Elementary
somewhat surprising changes of basis like the one we h
shown should be useful in general, both for interpreting
predicting behavior and for relating apparently distinct co
figurations to each other. One should also expect vortex
nucleation to be a common instability. Although such vor
ces may be hard to detect directly, their appearance in fl
through a narrow channel vividly illustrates a potentia
useful fact on which advanced multicondensate enginee
might be based: finely detailed potentials are much m
easily formed with matter waves than with light waves.
one wishes to manipulate a condensate with high resolut
therefore, the best tool may well be another condensate.
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