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Wave-function monopoles in Bose-Einstein condensates
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Experimental preparation of multispecies Bose-Einstein condensates should permit the creation of topologi-
cally stable defects beyond the superfluid vortex. But the coldness and isolation of condensates should also
permit the survival for observable durations of “pseudodefects,” such as the one-dimensional dark soliton:
localized structures related to a defect but not topologically stable. In this paper we investigate the viability of
pseudodefects beyond one dimension, by examining “wave-function monopoles” in two-species condensates
in two dimensions. We identify interesting instabilities, including a “dancing mode” for monopoles of higher
winding number, andin a one-dimensional limjt“superfluid roulette.”[S1050-294{@9)51510-2

PACS numbsd(s): 03.75.Fi, 03.65.Ge

A new natural goal for state engineering has appearedpproaches to creating wave-function monopoles, and on the
with the advent of multicomponent Bose-Einstein condendimitations of our zero-temperature mean-field calculations.
sateq1,2]: topological defects, in which the order parameter A monopole is a configuration of an order-parameter field
field forms a localized “knot.” The superfluid vortex is an having as many components as there are spatial dimensions,
example that is well known in liquid helium. Other defectsin Which the order parameter considered as a vector field
also exist, however, such as the “textures” found in super-Points outwards all around a defect core. In the two-
fluid helium-3[3]; and skyrmiong§4] and spin monopolds$] dimensional case we Wi|| consider, the fi_eld will be the tw_o-
have been suggested for dilute gas condensates. Since th&Sgnponent wave function of a two-species condensate, in a
condensates are weakly interacting and very well isolatedconfiguration in which both components happen to be real:
however, it is not obviously necessary to restrict one’s atten{¥1,¥2) =f(r)(cosd, sin¢), wherer, ¢ are the usual polar

tion to defects that are truly topologically stable; one Cancoordinates. Since the modulus of the order parameter is the

also consider particlelike “pseudo defects,” in which topo- total density OT b.Oth component;,.the partlcleh.ke. core of
) ) . . the monopole is in fact a local minimum of density: a void or
logically stable configurations are embedded in the large

q i forded by theifd dent real [)ubble, maintained by destructive interference of matter
oraer-parameter spaces atforded by tenddependent real oy a5 our “wave-function monopoles” resemble both vor-

components of tr“‘e mz’;}croscopm. wave function. The largefices and dark solitons in this respect; but since continuously
space allows the “knot” to be untied, and so such objects arQleforming g, into the complex plane can eliminate these

topologically trivial; but their physical time evolution need monopoles, they are not true defects like the vortex but
not be trivial at all. The example of the one-dimensional darkyseydodefects like the dark soliton.

soliton, a “kink”” defect in a real¥ that can be untwisted by It is instructive first to avoid the core— 0 of the mono-

complex deformation$6], indicates that pseudodefects canpole, and consider only its behavior at largewhere the
inherit particlelike robustness from their topological “par- radial dimension becomes unimportant, leaving the effec-
ents,” but exhibit greater motional freedom than true defectsively one-dimensional problem of a two-species condensate
(a larger effective phase spacé&o test the viability of the on a circle of fixed radiufk. So we replace(r)—1, and
pseudodefect concept beyond one dimenéld), we exam-  examine the “ring monopole” ¢, ,¢,) as a stationary solu-
ine some more complex pseudodefects: 2D monopoles ention to the one-dimensional GPE

bedded in the 4D wave-function space of a two-component

condensate. Our results indicate interesting phenomena that o 1 5_2 N E 2 1

may be observable in future experiments, and also illustrate Y=~ 2RZ 562 ¥i ] 91l "=y | 05 (1)
some useful general principles concerning multicomponent

condensates. where at first we assuntg; = g (all scattering lengths equal

Our paper is organized as follows. After presenting ourg thatujzl—(Zng)’l provides; =0.

For the ring monopole we can obtain analytically the Bo-
oliubov spectrum of perturbationsy;— i;+ep(6,t).
orking to linear order ire yields the modes

concept of a “wave-function monopole,” we examine an
analytically tractable one-dimensional limit of large radius.
In this context we briefly discuss the consequences of havin
different scattering lengths among the two atomic species,

indicating why neglecting these differences is a good first + NE 2205 Y2
approximation. We then return to two dimensions and b1k _| Ik cosOEt— 2IR% | Yik sinO=t
present numerical solutions of the two-component Gross- o Xok K k(k+2) | Y5, k*
Pitaevskii equation(GPE), which describes the very-low-

temperature behavior of condensates. We identify some in- X [ (k—2)cogk—1)0+C;: cogk+1)60
triguing effects, including vortex production and “dancing L= ] . )
modes” of multiple monopoles. We remark on experimental Xo) | —(k=2)sin(k—=1)6+Cy sink+1)6
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FIG. 1. Dynamical instability of the ring monopole, fgrR? 3
=300/r. Five times are shown, the configurations at the last two
times being precise revivals of those at the first two. The top three

plots show| ;|2 (broken and|,|? (solid); the middle three show -6 -3 0 3,6 % 3 0 36
|.)% and|y_|? for the same configuration@in the left middle plot
the small initial perturbation can just be seefihe rings at the FIG. 2. |4|? (top) and|4,|? for a monopole initially displaced
bottom are overhead views of the, |+ | ,|2, with darker shading  in the directiond= 1, at early and late timesy( d®x|¢;|*>=2000).
for lower total density. Note the “throttle” formed by]i,|%.
Yfk (k+2)cogk—1)6+ Cki cogk+1)6 plitude the instabilities produce a density depression at some

point around the trap: the virtual monopole “touches the
ring.” Small perturbations of the unstable uniform density

The + index distinguishes acoustic and optical branches, i$t&(€, due to noise or even to quantum corrections to mean-

which the two species’ density perturbations are respectivel{€!d theory, make successive density minima appear at ran-
in and out of phase: dom points, and might thus be studied by observing this

“superfluid roulette.”

Yol | —(k+2)sin(k—1)6+Cy sink+1)6]|

cf =2+2k*(gR?) "1+ kyy, ®) Before going on to examine nonvirtual monopoles in two
dimensions, we remark here that the simple solution we have
(2R2Q) 2=k K?+ 4+ 2gR%(1+ x) 1, examined can be generalized to encompass diffe(mgi-
tive) scattering lengthgy;; . When phase separation is fa-
yi=1+8(gR%) +4k%(gR?) 2. vored (deg;;<1) [8], one can obtain solutions in which our

cosine and sine are replaced by Jacobi elliptic functions.
Rotating these modes Iy ( 6+ 7/2) produces a second set When mixing of the two components is favored (dgt
of independent modes, with the same frequencies. >1), one can also generalize monopoles, but in a somewhat

The modek=0 (for which the= branches coincideand  surprising way. As in changing from rectangular to circular

k+ =2 provide the four zero modes due to the model(®U polarization bases in fiber opti¢9], one can change basis
symmetry(which already includes spatial rotatiorAll the  for the two condensate components, by definigg
other modes are positive frequency excitations, except fo:t(l/\/ﬁ)(wltiwz)=ei”’/\/§. Thus our monopole can also
the twok= =1 modes; and fogR?>>3/4, these becomdy-  be described as two interpenetrating, counterpropagating cur-
namical instabilities (See[5] for a detailed example of this rents. Changing scattering lengths so as to favor mixing of
type of stability analysis.Infinitesimal excitation of these the two specieg/ .. will then stabilize this configuratio{Of
modes then grows exponentially until it becomes finite, and

the Bogoliubov theory is inadequate. To follow the evolution t=1.5 1=9.6 =105 t=11.5 1=19.6
into this regime, we solve the GPE numerically, using the v f\ h

split operator method as described M. As shown in Fig. 1, 0 S ) S |
the finite perturbation does not mix with other modes to pro- e F\'

duce irreversiblglong revival timg decay, but grows to a

. : . 3 0y 3- 3 0 3- -
maximum size, then shrinks back; and the cycle repeats. Fur- yss o 3 8 0 838 0 3

ther investigation confirms that the two unstable modes form 5 3 Superfiuid velocity component,;=Im(d, In ), at

an isolated subsystem of two degrees of freedom, resemblingyious times in the same simulation illustrated in Fig. 4. Plots are

a two-dimensional particle in a “Mexican hat” potential. “edge-on” views of the velocity fieldr;(x,y), looking in the posi-
This 1D model could in fact be realized in a tight toroidal tive x direction: the velocity is very small everywhere except near

trap. One could then visualize the unstable subsystem astfe arc on whichy,|? vanishes, so the edge-on view is convenient.

“virtual monopole” moving about inside the 1D ring to |Initial fluid velocity is negative as the monopole moves in the posi-

which the actual condensate is confined. At maximum amtive (=0) direction.
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FIG. 4. Monopole instability in the SCV ba-
sis. Top figures show total density=|y |
+|y_|? at early and late times; bottom figures
show| |2 (| _|? being the mirror image in the
x axis) No new vortices form; instead, the ini-
tially superimposed vortices slip apart, and each
is pinned.

5
LR
oassestees
S5
W,

%

course, if the scattering lengths are not exactly equal the The instability, when infinitesimal, is a self-amplifying
transformation between monopole and countercurrents isscillation of the monopole back and forth across the trap.
only an approximate symmetry of the systgriirom these As can be seen from Fig. 2, the motion of the monopole
exact generalizations one sees that the behavior for slightlywvolves the pouring of one of the two species through a
unequalg;;, as in the experimental case, is indeed onlynarrow channel formed by the other spediesich is com-
slightly different from what is seen witly;; =g. We have  paratively passive throughoutAs shown in Fig. 3, very
also'investigated such perturbations in two dimensions, anpjapid flow develops along the sides of this channel, until
confirmed that equal scattering lengths are a very close aRyprtex pairs suddenly nucleate at the maxima of the passive
proximation to slightly unequal, and even qualitatively simi- ghacies’ density. Each pair then separates into an inner vor-
lar to greatly unequaly;; . This is not surprising, since one ey ninned by the passive species, and an outer vortex,
expects qualitative sensitivity to small dgf to appear only  hich drifts away. This vortex formation spoils the nonlinear
over large space or time scales. Turning to the monopole iR.yals seen on the 1D ring, and indicates that instabilities
two dimensions, we therefore leg;=g and note that 4 nseydodefects in higher dimensions can be qualitatively
(1,42) =1(r)(cosh, sing) is a stationary solution to the e severe.
GPE, Although the 2D monopole never fully revives from its
instability, neither does it rapidly die. Despite spawning vor-
it Erzw- @ tices, an initially displaced monopole continues its fall to-
2 Y wards the center of the trap with little apparent impediment.
As (or just beforg it reaches the center, however, its motion
é:hanges. In most cases we have investigated, it abruptly
slows (though in some cases, and for reasons that are not
clear to us, it seems instead to accelerate, and then does
2 decay rather violently Thereafter, the minimum in total
— —z)f=29(f2—,u)f- (5) densn.y at the core gradually f|||5: in, until only a slight de-
2 pression remains. But even at this late stage, a double-lobed
pattern of the two densitie@s in Fig. 2 remains; and in
We have studied these two-dimensional monopoles by nueach species a phase difference mfpersists across the
merically solving Eq.(4); we report representative results monopole, although the sharp jump in phase has been
from investigations over a wide range of parameters. If asmoothed out. The instability appears to have saturated, leav-
monopole is displaced from the center of the trap, it begingng a “smeared” monopole that appears to be dynamically
to fall back towards the centefA displaced vortex, in con- (although not energeticallystable. This eventual stability is
trast, precesses around the trap cefi€f.) But the mono- much easier to understand in the. basis, in which the
pole motion is unstable, as can be deduced by diagonalizinigitial monopole appears as a pair of superimposed, counter-
the linearized energy functional. More importantly, the insta-rotating vorticeSCV’s). In this basis no new vortices form.
bility is dynamical (self-driving without external dissipa- The instability is simply that the two initial SCV's slip apart,
tion): in numerical solutions the amplitude of small oscilla- becoming a pair of reciprocally pinned vortices: each con-
tions grows exponentially. densate species has one vortex, and each also fills a strong

".—_EVZ )
Ilvbj_ 2 2¢/]+

Z |2 —

as long asf(r) satisfies the same nonlinear equation as th
modulus of the two-dimensional vortex in the trap:

1
fre i
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We conclude by assessing the realism of the prospects we
have raised. First, the Gross-Pitaevskii mean-field theory on
which we rely should be an excellent first approximation for
the extremely cold condensates that are already feasible
(though in the case of a dynamical instability quantum cor-
rections will be required after a logarithmically short time
[12]). Second, very tightly confining traps in which effective
two or one dimensionality is realized are already under de-
velopment and are widely believed to be realistic prospects
for the near future. Third, various methods of condensate
state engineering should indeed be capable of creating the
states we have proposed, or at least reasonable facsimiles of
them. For instance, we have simulated the adiabatic transfer
technique of13], and achieved over 95% population transfer
into the 2D monopole state, using realistic but unoptimized
parameterd.The remaining population resides as a third con-
Top figures show total density; bottom figures sHaw|? and| ,|? densate compqnent n the monopole coFaurth, d_etectlon
separately. Sincéy,|? essentially does not change, it is merely _of monopoles is stralg_htforward if the two species can _be
indicated as uniformly shaded lobes. imaged separatelfl], since the pattern of density lobes is
large and obvious, an@dn 2D) clearly indicates the presence
of a monopole core.

Obviously the structures we have presented are examples

FIG. 5. Two aligned monopoles scattering in a harmonic trap

potential well formed by the other species’ vortéEompare
the countercurrent picture of the ring instability, in Fig) 1.

Once this separation has occurred, the stability of two pinne@ @ Wide range of conceivable pseudo- or true defects real-
vortices is unsurprising. See Fig. 4. izable in multicomponent condensates. Elementary but

Using the monopole basis can be more illuminating ofSOmewhat surprising charlges of basis like th'e one we have
other phenomena, especially a particularly intriguing one: £hown should be useful in general, both for interpreting or
pair of directly aligned monopoles perform a curious dancePredicting behavior and for relating apparently distinct con-
in a trap. They attract each other, merging into a singldigurations to each other. One should also expect vortex pair
monopole of winding numbern=2 [ie., (J;,4,)  Nucleation to be a common instability. Although such vorti-
«(cosnéd, sinnd)]; this then separates again, but in the per-ces may be hard to detect directly, their appearance in flow
pendicular direction; and the cycle repeats. In the SCV basighrough a narrow channel vividly illustrates a potentially
this is a rather confusing system of orbiting vortices, anduseful fact on which advanced multicondensate engineering
pinning peaks that form and dissolve, but in the monopoleamight be based: finely detailed potentials are much more
basis, it is an obvious mode of excitation of the2 mono-  easily formed with matter waves than with light waves. If
pole, see Fig. 5. And the peculiar scattering of monopoles asne wishes to manipulate a condensate with high resolution,
right angles in a head-on collision is actually what is ex-therefore, the best tool may well be another condensate.
pected for monopoles in gauge theories as Wl]. We find ) ) ) )
analogous dances, witl/n scattering, for monopoles of We gratefully acknowledge discussions with J.I. Cirac, P.
higher winding numben. In fact, monopoles ofn|>1 de- ZoI.Ier, and W.H. Zurek, and the support of the European
cay by these dances, since their amplitudereasesover ~ Union under the TMR Network No. ERBFMRX-CT96-
several periods. 0002, as well as the support of the Austrian FWF.
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