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Dissipative dynamics of a vortex state in a trapped Bose-condensed gas
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We discuss dissipative dynamics of a vortex state in a trapped Bose-condensed gas at finite temperature and
draw a scenario of decay of this state in a static trap. The interaction of the vortex with the thermal cloud
transfers energy from the vortex to the cloud and induces the motion of the vortex core to the border of the
condensate. Once the vortex reaches the border, it immediately decays through the creation of excitations. We
calculate the characteristic lifetime of a vortex state and address the question of how the dissipative dynamics
of vortices can be studied experimentally.@S1050-2947~99!50609-4#

PACS number~s!: 03.75.Fi
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The recent successful experiments on Bose-Einstein
densation~BEC! in trapped clouds of alkali-metal atom
@1–3# have stimulated a great interest in the field of ultrac
gases@4#. One of the goals of ongoing studies is to inves
gate the nature of a superfluid phase transition in ultrac
gases and to make a link to more complicated quantum
tems, such as superfluid helium. Of particular interest is
relation between Bose-Einstein condensation and superfl
ity. However, being the most spectacular manifestation
the phase transition in4He, superfluidity has not yet bee
observed in trapped gases. A promising way of studying
perfluidity in trapped gases is the creation of quantum vo
ces, as quantization of circulation and the related phen
enon of persistent currents are the most striking propertie
superfluids.

A widely discussed option of creating vortices in trapp
gases assumes the rotation of a slight asymmetry of a c
drical trap after achieving BEC, or cooling down the g
sample below the Bose-condensation temperature in an
ready rotating trap@5,6#. Another possibility is a rapid
quench of a gas sample near the critical temperature, w
should lead to creation of vortices, even in a nonrotating t
@7#. It is worth mentioning the ideas of creating the vort
state in a Bose-condensed gas by optical means@8,9#, and the
idea of forming vortex rings in the regime of developed tu
bulence @10#. The spatial size of the vortex core in th
Thomas-Fermi regime is too small to be observed, and
visualizing the vortex state it is suggested to switch off
trap and let the cloud ballistically expand. Then the size
the vortex core will be magnified approximately by the sa
factor as the size of the expanding condensate@11#.

Similar to the recently studied kinkwise condensa
@8,12,13#, vortices are examples of macroscopically excit
Bose-condensed states. In a nonrotating trap the vortex
has a higher energy than the ground-state Bose conden
i.e., the vortex is thermodynamically unstable@14–16#. On
the other hand, a quantum vortex with the lowest poss
circulation ~the vortex ‘‘charge’’ equal to 1! is dynamically

*LKB is a unitéde recherche de l’Ecole Normale Supe´riere et de
l’Université Pierre et Marie Curie, associe´e au CNRS.
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stable~small perturbations do not develop exponentially w
time; see@17,11# and references therein!. Therefore, the vor-
tex state can only decay in the presence of dissipative
cesses.

In this Rapid Communication we discuss dissipative d
namics of a vortex state in a trapped Bose-condensed g
finite temperatures and show how the interaction of the v
tex with the thermal cloud leads to decay of the vortex st
in a static trap. According to our scenario, the scattering
thermal excitations by a vortex provides the energy trans
from the vortex to the thermal cloud and induces the mot
of the vortex core to the border of the condensate, where
vortex decays by creating elementary excitations. We ca
late the characteristic lifetime of the vortex state and disc
how the dissipative dynamics of vortices can be studied
perimentally.

We first briefly outline the main features of the vorte
behavior in a superfluid, known from the studies of liqu
helium. The motion of a vortex in a superfluid of densityrs
satisfies the Magnus law~see @18–20# and references
therein!

rs~vL2vS!3k5F. ~1!

HerevL is the velocity of the vortex line andvS the velocity
of superfluid at the vortex line. The vectork is parallel to the
vortex line and is equal to the circulation carried by the v
tex. The forceF acting on the vortex originates from th
mutual friction between the normal component and the m
ing vortex line, and is usually small. Assuming the absen
of friction (F50), the vortex moves together with the supe
fluid component (vL5vS). The superfluid velocityvS(r ) in
the presence of a vortex at the pointr0 satisfies the equation

rotvS52pkd~r2r0!, divvS50 ~2!

and is related to the phasef of the condensate wave functio
as vS5“f. This leads to quantization of the circulation,k
5Z\/m @21#, whereZ is an integer~the charge of the vortex!
andm is the mass of the condensate particle. Below we w
consider vortex states withZ51, which are dynamically
stable~ @17,11# and references therein!.
R1779 ©1999 The American Physical Society
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Equations~2! are similar to the equations of the magn
tostatic problem, with the magnetic field replaced by the
locity vS and the electric current replaced byk. The velocity
field around an infinitely long straight vortex line is anal
gous to the magnetic field of a straight current:

vS~r !5@k3r #/r 2. ~3!

The vortex itself can experience small oscillations of its fi
ment, characterized by the dispersion lawuv(k)u
5kk2 ln(1/ak)/2 @22#, where k is the wave vector of the
oscillations, anda the radius of the vortex core. In a weak
interacting Bose-condensed gas the core radius is of the
der of the healing lengtha5(\2/mm)1/2, where m is the
chemical potential.

We will see that the dissipative dynamics of a vortex st
is insensitive to the details of the density distribution in
gas. The spatial size of the Thomas-Fermi conden
trapped in a harmonic potential of frequencyv is R
5(2m/mv2)1/2. Therefore, for finding the superfluid veloc
ity vS in this case, we may consider a vortex in a spatia
homogeneous condensate in a cylindrical vessel of radiuR,
with the vortex line parallel to the axis of the cylinder. F
the vortex line at distancex0 from the axis, the velocity field
can be found by using the ‘‘reflection’’ method@18#. In a
nonrotating trap, in order to compensate the normal com
nent of the velocity field~3! everywhere on the surface of th
cylinder, we introduce a fictitious vortex with opposite c
culation on the other side of the vessel wall, i.e., at dista
R2/x0 from the cylinder axis. At the position of the vorte
the ‘‘reflection’’ induces the velocity

vS5
@k3x0#

R22x0
2

. ~4!

As vS'vL , the vortex line will slowly drift around the axis
of the trap. A characteristic time responsible for the form
tion of the velocity field~4! is tR;R/cs , wherecs5Am/m
is the velocity of sound. Sufficiently far from the border
the Thomas-Fermi condensate, i.e., outside the spatial re
whereR2x0!R, the drift period istdr;x0 /vS;R2/k and
greatly exceeds the timetR :

tR

tdr
;

R

cstdr
;

a

R
!1.

This means that we can neglect the retardation effects an
particular, the emission of phonons by the moving vortex
other words, the ‘‘cyclotron’’ radiation is prohibited, sinc
the wavelengthcstdr of sound that would be emitted excee
the sizeR of the condensate.

According to the above-mentioned magnetostatic analo
in a nonrotating trap the potential energy of the system~vor-
tex plus its reflection! can be thought of as the energy of tw
counterflowing currents. Since the currents attract each o
the energy is negative and decreases with displacemen
the vortex core towards the wall. In other words, it is en
getically favorable for the vortex to move to the border of t
vessel. Near the border the velocity of the vortex exceeds
Landau critical velocity, and in a homogeneous superfl
the vortex decays through the creation of phonons@18#. In a
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trapped gas the condensate density strongly decreases
the border, and the vortex can decay by emitting both c
lective and single-particle excitations. The motion of the v
tex towards the wall requires the presence of dissipation
in the frictionless approach the velocity of the vortex co
coincides with the velocity~4!, which does not contain a
radial component. Thus, just the presence of dissipative
cesses provides a decay of the vortex state~see @15# and
related discussion@13# of the stability of a kink state!.

The dissipation originates from the scattering of elem
tary excitations by the vortex and is related to the fricti
force F in Eq. ~1!, which is nothing other than the momen
tum transferred from the excitations to the vortex per u
time. This force can be decomposed into longitudinal a
transverse components:

F52Du2D8u3k/k, ~5!

whereu5vL2vn , vn is the velocity of the normal compo
nent, andD,D8 are longitudinal and transverse friction co
efficients, respectively. In a static trap,u5vL , as the normal
component is at rest (vn50). The friction force has been
investigated in relation to the attenuation of the second so
in superfluid 4He, where the most important feature is th
transverse component@23–25# ~see also@19# for a review!.
For a straight infinite vortex line~parallel to thez axis!, a
general expression for the friction force in a homogene
superfluid is obtained in terms of the scattering amplitu
f (k,k8) @25#:

F5F E ]n

]Ek
\~ku!E ~k2k8!

d~Ek2Ek8!

d~kz2kz8!

3U f ~k,k8!U2
d3k

~2p!3

d3k8

~2p!3G2@u3k#rn . ~6!

Herern is the local mass density of the normal compone
k,k8 are the wave vectors of the incident and scattered e
tations, n(Ek)5@exp(Ek /T)21#21 are the Bose occupatio
numbers for the excitations,Ek is the excitation energy, and
T the gas temperature. Comparing the second terms of
~5! and~6!, one immediately arrives at the universal expre
sion for the transverse friction coefficient,D85krn , assum-
ing that the first term of Eq.~6! does not contribute toD8
@19,25#.

We now turn to our analysis of the dissipative dynam
of the vortex state in a nonrotating trap, which is related
the motion of the vortex core~line! to the border of the
condensate. This motion occurs on top of small oscillatio
of the vortex filament and a slow drift~4! of the vortex core.
The radial component of the velocity of the vortex core
determined by the longitudinal friction coefficientD. For
finding these quantities in dilute Bose-condensed gases
analysis of@23–25,19# can only be used at very low temper
tures (T!m), where the number of thermal excitations
very small and, hence, the longitudinal friction force is e
tremely weak.

The situation is drastically different in the temperatu
rangeT*m, which is the most interesting for trapped Bos
condensed gases. We will consider the limitT@m and first
analyze how the vortex scatters excitations with energ
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Ek*m. These excitations are single particles, and their
Broglie wave length is much smaller than the spatial sizR
of the condensate. Most important is the interaction of
excitations with the vortex at distances from the vortex l
r;a!R. Therefore, the corresponding friction force in
trapped condensate can be found in the local-density
proximation: We may use Eq.~6!, derived for a homoge-
neous superfluid, and then replace the condensate densin0
by the Thomas-Fermi density profile of the trapped cond
sate.

The Hamiltonian of the single-particle excitations
\2k̂2/2m12n0(r )g2m, where the second term originate
from the mean-field interparticle interaction, wheren0(r ) is
the density of the vortex state,g54p\2asc /m, asc is the
scattering length, andm5n0(`)g@n0(`)[n0#. For r˜`

we have Ĥ( k̂,r )5\2k̂2/2m1m. Hence, the interaction
Hamiltonian responsible for the scattering of excitatio
from the vortex can be written as

Ĥ int52@n0~r !g2m#.

For the vortex chargeZ51, at distancesr !a, the interaction
Hamiltonian Ĥ int'22m. For r @a we have n0(r )'(m
2\2/2mr2)/g and Ĥ int'2\2/mr2. The scattering ampli-
tude in Eq. ~6! can be written as f (k,k8)52pd(kz

2kz8) f̃ (k,k8), where the two-dimensional scattering amp
tude in the Born approximation is given by

f̃ ~k,k8!5E d2rH int~r !eiq•r. ~7!

Hereq5k2k8 is the momentum transferred from the exc
tation to the vortex. As the amplitudef̃ only depends onuqu,
the first term in Eq.~6! is purely longitudinal.

For qa!1, which corresponds to small-angle scatterin
from Eq. ~7! we obtain f̃ ;(\2/m)ln(1/qa). For qa@1 we
find u f̃ (q)u2;(\2/m)2 sin2(qa2p/4)/(aq)3. Using these re-
sults in Eq. ~6!, we see that the main contribution to th
integral over momenta comes from energiesEk satisfying the
inequalitym&Ek!T. A direct calculation of the longitudina
friction coefficient gives

D'krn~T!~n0g/T!1/2, ~8!

where the density of the normal component

rn52
1

3E ]n

]Ep
p2

d3p

~2p\!3
'0.1

m5/2T3/2

\3
.

A collective character of excitations with energiesEk;m
can influence the numerical coefficient in Eq.~8!, and for
this reason we did not present the exact value of this co
cient in the single-particle approximation. In cylindrical tra
the behavior of excitations with energiesE;m ~and some-
what larger! is stochastic@26#, and hence the discrete stru
ture of the spectrum is not important@27#.

The coefficientD}T, and Eq.~8! can be rewritten asD
}\n0j, where the quantity

j5~n0asc
3 !1/2~T/m!!1 ~9!
e

e

p-

-

s

,

fi-

is a small parameter of the finite-temperature perturba
theory atT@m. The inequalityj!1 remains valid even nea
the BEC transition temperature, except in the region of cr
cal fluctuations@27#.

Relying on Eq.~8! for the longitudinal friction force, we
consider the motion of the vortex line to the border of t
condensate in a static trap, where the normal component
rest. Assuming a small friction in Eqs.~1! and ~5!, for find-
ing a friction-induced small quantityvL2vS , we only retain
the terms linear in the dissipation coefficientsD and D8.
Then we obtain the equation

rs@~vL2vS!3k#52DvS2D8@vS3k#/k,

which has a solution of the formvL5vL
(r ) r̂ 1vL

(f)@k3r #/kr .
For the radial (v (r )) and tangential (v (f)) components of the
velocity of the vortex line we find

vL
(r )5DvS /rsk, vL

(f)5vS~12D8/rsk. ~10!

From Eqs.~10! it is clear that the radial motion of the vorte
is governed by the value of the longitudinal friction coef
cient, whereas the transverse friction~Iordanskii force! sim-
ply slows down the drift velocity~4! of the vortex. The radial
velocity vL

(r )!vS , which is guaranteed by the inequality~9!.
The time dependence of the distancex0 of the vortex line

from the axis of a cylindrical trap follows from the equatio
of radial motion for the vortex,dx0 /dt5vL

(r ) . With Eq. ~10!
for vL

(r ) and Eq.~4! for vS , for the characteristic time o
motion of the vortex from the center of the trap to the bord
we obtain

t'E
xmin

R dx0m~R22x0
2!rs

\x0rn
S n0g

T D 1/2

, ~11!

wherexmin is the initial displacement of the vortex line from
the axis of the trap. The vortex velocity is the smallest n
the axis, and the main contribution to the integral in Eq.~11!
comes from distancesx0!R. Therefore, we can neglectx0 in
the numerator of the integrand and putrs5rS(0), n0
5n0(0). Then, Eq.~11! yields

t'
mR2rs

\rn
S n0g

T D 1/2

ln~R/xmin!. ~12!

This result is only logarithmically sensitive to the exact val
of xmin , and we can putxmin;a.

Once the vortex reaches the border of the condensat
immediately decays. Hence, the timet can be regarded as
characteristic lifetime of the vortex state in a static trap.
terestingly, the decay rate can be written as

t21;
E0

\
~n0masc

3 !1/2S T

m D , ~13!

where n0m is the maximum condensate density, andE0
;\2/mR2 is the energy of excitation corresponding to t
motion of the vortex core with respect to the rest of t
condensate~excitation with negative energy, found in th
recent calculations@28,29,17,14,16#!. Equation~13! is simi-
lar to the damping rate of low-energy excitations of a trapp
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condensate, found beyond the mean-field approach@27,4#.
Both rates are proportional to the small parameterj @Eq.
~9!#.

For Rb and Na condensates at densitiesn0;1014 cm23

and temperatures 100&T&500 nK, in the static traps with
frequencies 10&v&100 Hz, the lifetimet of the vortex
state ranges from 0.1 to 10 s. This range of times is relev
for experimental studies of the dissipative vortex dynami

A proposed way of identifying the presence of a vort
state in a trapped Bose-condensed gas assumes switchin
the trap and observing a ballistically expanding gas sam
@11#. As follows from the numerical simulations@11#, at zero
temperature the expansion of a condensate with a vortex
curs along the lines of the scaling theory@30,31#. The shape
of the Bose-condensed state is nearly preserved and its
tial size is increasing. Due to expansion, the density of
condensate decreases, and the size of the vortex cor
creases to match the instantaneous value of the hea
length. This should allow one to detect the vortex throu
the observation of a hole in the density profile of the co
densate.

It is important to emphasize that at temperaturesT@m the
thermal cloud will expand with the thermal velocityvT

;AT/m, which is much larger than the expansion velocity
the condensate~the latter is of order the sound velocitycs).
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Therefore, after a short timeR/vT the thermal componen
flies away, and the dissipation-induced motion of the vor
core ceases. Accordingly, the expansion of the Bo
condensed state will be essentially the same as that at
temperature. This means that the relative displacement o
vortex core from the trap center practically remains the sa
as before switching off the trap. Therefore, the dissipat
motion of the vortex towards the border in the initial sta
trap can be studied by switching off the trap at differe
times and visualizing the position of the vortex core in
ballistically expanding condensate.

In conclusion, we have developed a theory of dissipat
dynamics of a vortex state in a trapped Bose-condensed
at finite temperatures and calculated the decay time of
vortex with charge equal to 1 in a static trap. Our theory c
be further developed to analyze the motion of vortices
rotating traps and, in particular, to calculate a characteri
time of the formation of the vortex state in a trap rotati
with supercritical frequency.
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