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Optical response of a superfluid state in dilute atomic Fermi-Dirac gases

J. Ruostekoski
Abteilung für Quantenphysik, Universita¨t Ulm, D-89069 Ulm, Germany

~Received 28 January 1999!

We theoretically study the propagation of light in a Fermi-Dirac gas in the presence of a superfluid state.
BCS pairing between atoms in different spin levels increases the optical linewidth and line shift of a quantum
degenerate Fermi-Dirac gas already at very low densities and introduces a collisional local-field shift that may
dramatically dominate the Lorentz-Lorenz shift. These optical properties could possibly signal the presence of
the superfluid state and determine the value of the BCS order parameter.@S1050-2947~99!50509-X#

PACS number~s!: 03.75.Fi, 42.50.Vk, 05.30.Fk
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After the first observations of atomic Bose-Einstein co
densates@1# there has been an increasing interest in stud
of Fermi-Dirac~FD! gases@2–10#. One especially fascinat
ing property of FD gases is that with effectively attracti
interaction between different particles the ground state of
system may become unstable with respect to the formatio
bound pairs of quasiparticles or Cooper pairs@11#. This ef-
fect is analogous to the BCS transition in superconducto

In this paper we study the optical response of a superfl
state in a zero-temperature FD gas, at low atom densi
and for low-intensity light. We show that the BCS pairin
between atoms in different sublevels may dramaticallyen-
hanceoptical interactions and the scattering of light in F
gas.

One particularly promising candidate to undergo the B
transition is spin-polarized atomic6Li. Atoms in two differ-
ent internal levels can interact vias-wave scattering and th
6Li atom has an anomalously large and negatives-wave
scattering lengtha.22160a0, wherea0 is the Bohr radius.
A nuclear spin mixture of6Li has been predicted to underg
a superfluid transition at 1028 K with a density of
1012 cm23 @3,4#.

We study the propagation of light in the dipole appro
mation for atoms by performing the Power-Zienau-Wooll
transformation@12,13#. FD gas is assumed to occupy tw
different sublevelsug,↑& and ug,↓& of the same atom with
electronically excited levelsue,n&. In the absence of the driv
ing light field, atoms in the electronic ground state are
scribed in second quantization by the Hamiltonian den
H1 @11#:

H15(
n

cgn
† ~Hc.m.

gn 2mgn!cgn1\ugcg↑
† cg↓

† cg↓cg↑ , ~1!

wherecgn(r ) is the atom field operator for levelug,n& in the
Heisenberg picture,mgn is the corresponding chemical po
tential, andHc.m.

gn denotes the center-of-mass~c.m.! Hamil-
tonian. We have approximated the finite-range interpart
potential by a contact interaction with the strength given
ug54pag\/m, whereag is thes-wave scattering length an
m is the mass of the atom. The atoms in different sublev
can interact vias-wave scattering. On the other hand, the
only is a very weakp-wave scattering between two atoms
the same sublevel, which is ignored in Eq.~1!.
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The driving light field introduces additional terms for th
system Hamiltonian. The electric displacementD(r ) inter-
acts with the atomic polarizationP(r ),

H252P~r !•D~r !/e0 . ~2!

In the dipole approximation the positive frequency comp
nent of the polarization is given by

P1~r !5(
n,h

dgnehcgn
† ~r !ceh~r ![(

n,h
Pnh

1 ~r !, ~3!

wheredgneh denotes the dipole matrix element for the tra
sition ue,h&˜ug,n&.

The polarization self-energy was shown in Ref.@14# to be
inconsequential for dipole atoms. Moreover, we assume
to leading order all remaining interactions between the ato
and the light field, which cannot be accounted for when
atoms are modeled as point dipoles, are governed by
following interactions@13#:

H35(
n

cen
† ~Hc.m.

en 1\v02men!cen1\/2(
spins

uece
†ce

†cece

1(
n,s

\ugecgn
† ces

† cescgn . ~4!

Here uge54p\age /m and ue54p\ae /m represent the
strength of the two-bodys-wave scattering between the a
oms. For simplicity, the frequency of the optical transitio
v0 and the scattering lengthage are assumed to be indepe
dent of the sublevel. For typical values of the optical lin
width the c.m. motion for the excited atoms may be omitt
@2#.

The electric field may be expressed in terms of the driv
electric displacement, with the wave numberk, and the di-
pole radiation field@15#

e0E1~r !5DF
1~r !1E d3r 8G~r2r 8!P1~r 8!, ~5a!

Gi j ~r !5~]r i]r j2d i j“
2!

eikr

4pr
2d i j d~r !. ~5b!

In the limit of low light intensity we have derived from th
Heisenberg equations of motion a hierarchy of equations
R1775 ©1999 The American Physical Society
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correlation functions involving atomic polarization and ato
density @15,14#. In the case of the present system we m
proceed similarly. As far as the optical response is concer
it is again assumed that we can concentrate on the dyna
of internal degrees of freedom for the atoms and the lig
Hence, in the equation of motion for the atomic polarizati
the kinetic energy of the atoms is neglected.

We consider the low-intensity limit for the driving light
This is done by retaining only those products of operat
that involve at most one excited-state field operator or
driving electric displacement@15#. Then, e.g., the term pro
portional toue in Eq. ~4! makes no contribution to the equa
tion of motion forP1(r ).

We introduce the projection operator Pst
nh

[dgnehdesgt /D 2 to include the dependence of the scatte
light on the polarizations and on the atomic level structu
Here D is the ~real! reduced dipole matrix element tha
would pertain to a transition with the unit Clebsch-Gord
coefficient. We define the expectation valueP1nh[^Pnh

1 &,
with n andh denoting the atomic sublevels. The steady-st
solution ofP1nh is given by

P1nh~r1!5arnPhn
nh
•DF

1~r1!1(
s
F snP2~r1ss;r1nh!

1a(
stj

E d3r 2Phs
nh
•G8~r12r2!P2~r1ns;r2tj!.

~6!

Herea52D 2/@\e0(d1 ig)# is the polarizability of an iso-
lated atom,g5D 2k3/(6p\e0) the spontaneous linewidth
rn the atom density in leveln, andd the atom-light detuning.
We have also defined

P2~r1nh;r2st![^cgn
† ~r1!Pst

1 ~r2!cgh~r1!&, ~7!

F tn[@uge2~12dtn!ug#/~d1 ig!. ~8!

The normally ordered expectation valueP2(r1nh;r2st) de-
scribes correlations between an atomic dipole atr2 and a
ground-state atom atr1. The tensorF tn generates the colli-
sionally induced level shifts.

Due to the hard-core interatomic potential we remove
contact dipole-dipole interactions between different atom
In Eq. ~6! this is done by introducing the propagatorGi j8 (r )
5Gi j (r )1d i j d(r )/3. The purpose of this definition is t
yield a vanishing integral forG8(r ) over an infinitesimal
volume enclosing the origin@14#.

So far, we have obtained a steady-state solution for
atomic polarization~6! that acts as a source for the second
radiation in Eq.~5a!. Equation~6! involves unknown corre-
lation functionP2. Basically, we could continue the deriva
tion and obtain the equations of motion forP2 and for the
higher-order correlation functions. This would eventually
sult in an infinite hierarchy of equations analogous to
equations in Ref.@15#. However, even in the case of a simp
level structure and in the absence of thes-wave interactions
the solution for the whole system by stochastic simulation
demanding on computer time@9#. In the studies of the refrac
tive index of a quantum degenerate Bose-Einstein gas M
ice et al. @16,17# considered a density expansion in terms
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the number of atoms repeatedly exchanging a photon by
cluding the pair correlations between the ground-state ato
Although the lowest-order density correction to the susc
tibility of a T50 FD gas may be obtained analytically@10#,
in the presence of nontrivial statistical position correlation
rigorous density expansion is in most cases a very challe
ing task. In this paper we consider low atom densities~in
terms ofr/k3) and approximate Eq.~6! by the decoupling
that is analogous to the lowest-order correction in Ref.@16#,

P2~r1nh;r2st!.r2~r1nh,r2ss!P1st~r2!/rs , ~9!

where the ground-state pair correlation functionr2 is defined
by

r2~r1nh,r2st!5^cgn
† ~r1!cgs

† ~r2!cgt~r2!cgh~r1!&.
~10!

The decorrelation approximation~9! introduces the
lowest-order correction to the optical response in terms
number of microscopic optical interaction processes betw
the atoms by ignoring the repeated scattering of a pho
between the same atoms@17#. As shown in Ref.@10#, in the
absence of the BCS state, it also correctly generates the l
ing low-density correction. The predictions of the expans
by Ref. @16# were tested in Ref.@9# for a zero-temperature
FD gas in one dimension. The agreement with the exact
lution obtained by the numerical simulations was found to
semiquantitative and in the low-density limit excellent.

Before the light is switched on, the system is described
the Hamiltonian densityH5H1 @Eq. ~1!#. The assumption
that the driving light only weakly disturbs the system allow
us to evaluate the pair correlation functions for the grou
state atoms@Eq. ~10!# from H1, even in the presence of th
driving light. We assume a homogeneous sample and in
duce a plane-wave basis for the field operators:cgn(r )
5V21/2(kbkn exp(ik•r ). The Hamiltonian~1! is diagonal-
ized by the standard canonical transformation to the Bo
liubov quasiparticles@11#

ak5ukbk↓2vkb2k↑
† , b2k5ukb2k↑1vkbk↓

† , ~11!

whereuk andvk are real, depend only only onuku, and sat-
isfy uk

21vk
251. The requirement thatH1 in Eq. ~1! be diag-

onal in the quasiparticle representation sets an additio
constraint, and we obtain

uk
25

1

2 S 11
jk

Ek
D , vk

25
1

2 S 12
jk

Ek
D , ~12!

where Ek5AD21jk
2, jk5ek2m̄1\ug(r↑1r↓)/2, and the

energy gapD52\ugV21(kukvk(12n̄ak2n̄bk). In equilib-
rium, the quasiparticle occupation numbersn̄ak[^ak

†ak&
and n̄bk[^bk

†bk& satisfy FD statistics with n̄ak5n̄bk
5(eEk /kBT11)21. The dispersion relation for free particle
is given byek5\2k2/(2m) and the average of the chemic
potentials ism̄5(m↑1m↓)/2. For simplicity, we assumem↑
5m↓ .

In the superfluid phase transition the atoms in the diff
ent sublevels↑ and↓ form quasiparticle pairs resulting in
nonvanishing anomalous correlation^c↑(r1)c↓(r2)&. The ef-
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fect of this macroscopic two-particle coherence on the p
correlation function~10! can be clearly seen by considerin
the ground state ofH1 @Eq. ~1!# that is the vacuum of the
Bogoliubov quasiparticles@Eq. ~11!#. Then~for nÞs)

r2~r1nn,r2ss!5rnrs1u^cgn~r1!cgs~r2!&u2, ~13a!

r2~r1nn,r2nn!5rn
22u^cgn

† ~r1!cgn~r2!&u2. ~13b!

The optical response may now be evaluated by elimin
ing DF

1 andP2 from Eqs.~5a!, ~6!, and ~9!. As an example
we calculate the vector components ofP1 for the j 51/2
˜3/2 transition having the electronically excited sublev
mj561/2,63/2. The pair correlation function in Eq.~9! is
nonvanishing only withn5h. Because we are dealing with
linear theory, the electric field and the polarization are
lated by the susceptibility asP15e0xE1. We consider a
situation where FD gas fills the half-infinite spacez.0. For
simplicity, we assume equal and constant atom densities
the spin statesr[r↑5r↓ . The incoming free field is written
DF(r )5DFê exp(ikz), and we assume that it is linearly po
larized with ê parallel todg1/2e1/2. ThenP1nh50 for nÞh.
With the ansatzP1nn(r )5P ê exp(ik8z) for Im(k8).0, by
using Eq.~13!, and by ignoring the effects of the surface
the atomic gas@9#, we obtain a spatially constant suscep
bility for the sample as

x5
k82

k2
215

2Car

122Car/31S11S2
, ~14!

with

S152
Ca
r E d3r e2 ikzG8~r !@ u^cg↑~r !cg↓~0!&u2

2u^cg↓
† ~r !cg↓~0!&u2#, ~15!

S252
1

r (
s
F↑sr2~r↑,rs!. ~16!

Here we have used the obvious relationr2(r1nn,r2ss)
5r2(r1ss,r2nn)[r2(r1s,r2n) and the Clebsch-Gorda
coefficientC5u^1/2u1/2,0&u252/3.

In an uncorrelated atomic sample the atomic positions
statistically independent and the pair correlation funct
~10! satisfiesr2(rn,r 8s)5rnrs . For uncorrelated atoms
and in the absence of thes-wave scattering, we would obtai
Eq. ~14! with S15S250. This is the standard column den
sity result stating that susceptibility equals polarizability
an atom times atom density. Equation~14! also contains the
Lorentz-Lorenz local-field correction in the denominator.

The quantum-statistical corrections to the column den
result are introduced byS1. It describes the modifications o
the optical interactions between neighboring atoms due
the position correlations. The second term in Eq.~15! repre-
sents the quantum-statistical contribution to the scatte
process in which a photon emitted by an atom in spin leven
at positionr is reabsorbed by another atom in spin leveln
and located at the origin. According to FD statistics tw
fermions with the same quantum numbers repel each o
ir
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and FD statistics forces a regular spacing between the ato
The optical interactions are dominantly generated at sm
interatomic distances and the corrections to the susceptib
due to the second term in Eq.~15! correspond toinhibited
light scattering. In the absence of a superfluid state FD
exhibits a dramatic line narrowing@9,10#.

The first term in Eq. ~15! represents the quantum
statistical corrections to the reabsorption process betwee
oms in different spin levels due to the two-particle coh
ence. This term is nonzero only in the presence o
superfluid state. Because the total spin of an interacting a
pair in Eq.~1! is an integer, the pairs behave as bosons@11#.
According to the Bose-Einstein statistics two bosons attr
each other and the BCS pairing favors small interatom
spacing, henceenhancingthe optical interactions and th
light scattering.

The line shift induced byS2 @Eq. ~16!# is generated by the
s-wave interactions. As far as they can be considered lo
on the scale of the optical wavelength in Eq.~4!, the colli-
sions induce a local-field shift@18# analogous to the Lorentz
Lorenz shift. The optical line shift of the atomic sample
obtained from Eq.~14!,

S/g54pr̄C1~ ūg2ūge!r̄2~↑,↓ !/ r̄26p Re~S1 /ā !,
~17!

where we have dropped the equal position coordinates inr2,
usedr2(rn,rn)50, and defined the dimensionless variab
r̄5r/k3, r̄25r2 /k6, d̄5d/g, ā526p/( d̄1 i ), and ūj

5ujk
3/g. The first two terms form the local-field shift. Fo

6Li the local-field shift due to thes-wave scattering in Eq.
~17! is larger than the Lorentz-Lorenz shift, ifg&210@1
1(D/\ugr)2#(ag2age)/(a0l3) mm3s21,wherel is the op-
tical wavelength. Because (D/\ugr)2 is expected to be of
the order of 1@4#, the local-field shift could strikingly depend
on the BCS order parameterD.

If the the effective ranger u of the triplets-wave potential
in Eq. ~4! is very short,r u!1/k, the resonant dipole-dipole
interactions may suppress the effect of thes-wave scattering
on the line shift just as they cancel the effect of the polari
tion self-energy@14#. However, for a metastable state,g21

may be large on the time scale of the atomic interactions
that case the collisional shift could be observable even
very smallr u .

To calculate the nonlocal linewidth and line shift fro
integral~15! we need to evaluate the spatial correlation fun
tions by using Eqs.~11! and ~12!. For instance, the anoma
lous expectation value reads

^c↓~r !c↑~0!&5
1

V (
k

eik•r
D

2Ek
~12n̄ak2n̄bk!. ~18!

The chemical potential is solved fromrn5rn(m̄). Here
^c↓(0)c↑(0)&52D/(\ug) is ultraviolet-divergent, resulting
from the assumption of the contact two-body interaction
Eq. ~1!. This contact interaction is momentum independe
and it is not valid at high energies. To estimate the pair
we remove the high-energy divergence by introducing
high-momentum cutoffkc . We may also replace\ug by the
two-body T matrix obtained from the Lippmann-Schwinge
equation @4#. This is done by subtracting from Eq.~18!
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(exp(ik•r )D/(2jkV). Nevertheless, as argued in Ref.@4#,
the use of theT matrix may seriously underestimate the ove
lap in the case of large scattering lengthuagu@r u .

We plot the line shift from Eq.~17! and the linewidth
G/g5126p Im(S1 /ā) without the collisional shift~i.e., for
ūg5ūge) for l5900 nm, andag522160a0. For the gap
parameter atT50 we use the weak-coupling approximatio
D.1.76kBTc @11,4#, where

kBTc.
8eF

p
eg22 expS 2

p

2kFuau D , ~19!

with g.0.5772 andkF5(6p2r)1/3.
In Fig. 1~a! the solid line represents the linewidth in th

absence of the superfluid state (D50). The line narrows as a
function of the density already at very low densities@10#.
The presence of the superfluid state broadens the line.
linewidth is finite even without the regularization in th
anomalous correlation~the dashed line!. This is because the
dipole radiation already involves a high-frequency cut
@15# that regularizes smallr behavior. We also plot the line
width with the cutoff kc51/r u and the realistic valuer u
5100a0 of the triplets-wave potential@4#. We found that the
linewidth is almost independent of the cutoff fromr u50 to
500a0, indicating that the exact short-range behavior of
two-body potential is not very crucial for the linewidth. Th
line shift from the unregularized anomalous correlation
integral ~15! diverges logarithmically for smallr. Although
the radiation kernel~5b! involves a cutoff, the Lamb shift is
not treated rigorously. However, for the present purposes
may at least obtain an estimate for the shift by using
cutoff kc51/r u , as in the case of the linewidth. For the BC
state, even withūg5ūge , also the line shift is increased.

We studied the interaction of light with a two-speci
atomic superfluid gas. The analysis of the quasiparticles
lowed the standard BCS theory@11#. We assumed a transla
tionally invariant system. Atoms in a harmonic trap may
considered as locally homogeneous@4#, provided that the
trap length scalel 5(\/mv)1/2 is much larger than the cor
-

he

f

e

e
e

l-

relation length, which for intraspecies isjnn;1/kF and for
the interspeciesj↑↓;eF /(DkF) @11#. Other notable assump
tions were zero temperature and low atom density. T
present work could be extended to larger values ofuagu andr̄
by going beyond the BCS weak-coupling limit and by i
cluding the cooperative optical linewidths and line shi
@15#.

We acknowledge financial support from the EC throu
the TMR Network, No. ERBFMRXCT96-0066.

FIG. 1. The optical~a! linewidth and~b! line shift as a function
of the atom density per cubic optical wave number of the driv
light in the absence of the collisional shift. The dashed-dotted
corresponds to the regularization by the two-bodyT matrix, the
dotted by the cutoffkc50.01a0

21, and the dashed line is the unreg
larized case. The solid line hasD50.
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~1996! @JETP Lett.64, 301 ~1996!#; A.G.W. Modawi and A.J.
Leggett, J. Low Temp. Phys.109, 625 ~1998!.

@8# G. Bruunet al., e-print cond-mat/9810013.
@9# J. Javanainenet al., Phys. Rev. A59, 649 ~1999!.
@10# J. Ruostekoskiet al., Phys. Rev. Lett.82, 4741~1999!.
@11# E. M. Lifshitz and L. P. Pitaevskii,Statistical Physics~Perga-

mon, Oxford, 1980!, Pt. II.
@12# C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg,Pho-

tons and Atoms~Wiley, New York, 1989!.
@13# M. Lewensteinet al., Phys. Rev. A50, 2207~1994!.
@14# J. Ruostekoskiet al., Phys. Rev. A56, 2056~1997!.
@15# J. Ruostekoskiet al., Phys. Rev. A55, 513 ~1997!.
@16# O. Moriceet al., Phys. Rev. A51, 3896~1995!.
@17# For classical atoms: B.A. van Tiggelenet al., J. Phys. C2,

7653 ~1990!.
@18# T.C. Killian et al., Phys. Rev. Lett.81, 3807~1998!.


