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Optical response of a superfluid state in dilute atomic Fermi-Dirac gases
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We theoretically study the propagation of light in a Fermi-Dirac gas in the presence of a superfluid state.
BCS pairing between atoms in different spin levels increases the optical linewidth and line shift of a quantum
degenerate Fermi-Dirac gas already at very low densities and introduces a collisional local-field shift that may
dramatically dominate the Lorentz-Lorenz shift. These optical properties could possibly signal the presence of
the superfluid state and determine the value of the BCS order paraf&t660-294709)50509-X]

PACS numbes): 03.75.Fi, 42.50.Vk, 05.30.Fk

After the first observations of atomic Bose-Einstein con- The driving light field introduces additional terms for the
densate$l] there has been an increasing interest in studiesystem Hamiltonian. The electric displacem@ft) inter-
of Fermi-Dirac(FD) gaseqg2-10]. One especially fascinat- acts with the atomic polarizatioB(r),
ing property of FD gases is that with effectively attractive
interaction between different particles the ground state of the Ho=—P(r)-D(r)/ &. (2
system may become unstable with respect to the formation
bound pairs of quasiparticles or Cooper p4itd]. This ef-
fect is analogous to the BCS transition in superconductors.

In this paper we study the optical response of a superfluid
state in a zero-temperature FD gas, at low atom densities, P+(r)=2 dgvenngy(r)(pe,,(r)zz Pjﬂ(r), ©)
and for low-intensity light. We show that the BCS pairing v ki
between atoms in different sublevels may dramaticalty
hanceoptical interactions and the scattering of light in FD
gas.

One particularly promising candidate to undergo the BC%n
transition is spin-polarized atom®Li. Atoms in two differ-
ent internal levels can interact véawave scattering and the
SLi atom has an anomalously large and negatiweave
scattering lengtla= —2160,, wherea, is the Bohr radius.
A nuclear spin mixture ofLi has been predicted to undergo
a superfluid transition at I¢ K with a density of
102 cm 3 [3.,4]. HSZE l//l,,(Hng_‘i‘ﬁwo—,u,ev)l/fe,,-i-ﬁ/Zz ue'/’l'r/’lwewe

We study the propagation of light in the dipole approxi- ! spns
mation for atoms by performing the Power-Zienau-Woolley P
transformation[12,13. FD gas is assumed to occupy two + 2 Algelhl, Wby ey - 4
different subleveldg,T) and|g,|) of the same atom with "o

electronically excited levelg, v). In the absence of the driv- Here Uge=4mhag/m and u=4mha./m represent the

ing ||ght fleld, atoms in the electronic grOUnd State are de'strength of the tWO_bodﬁwave Scattering between the at-
scribed in second quantization by the Hamiltonian densityoms. For simplicity, the frequency of the optical transition
Hy [11): wq and the scattering lengty, are assumed to be indepen-
dent of the sublevel. For typical values of the optical line-

3 - + ot width the c.m. motion for the excited atoms may be omitted
H1= 2 Pl (HEn = mgn) gt hugihy bl g g1 (D [2],
' The electric field may be expressed in terms of the driving

. ] . electric displacement, with the wave numiierand the di-
whereyg,(r) is the atom field operator for levéd, v) in the pole radiation field 15]

Heisenberg pictureyg, is the corresponding chemical po-
tential, andHZ”, denotes the center-of-magsm, Hamil-
tonian. We have approximated the finite-range interparticle
potential by a contact interaction with the strength given by
ug=4mayfi/m, wherea, is thes-wave scattering length and _ 5
mis the mass of the atom. The atoms in different sublevels Gij(r)=(aridrj—&;V )m_ 5ij 6(r). (5b)

can interact viss-wave scattering. On the other hand, there

only is a very wealp-wave scattering between two atoms in In the limit of low light intensity we have derived from the
the same sublevel, which is ignored in E). Heisenberg equations of motion a hierarchy of equations for

cifn the dipole approximation the positive frequency compo-
nent of the polarization is given by

wheredg,,, denotes the dipole matrix element for the tran-
sition |e, 7)—|g, v).

The polarization self-energy was shown in Hé#] to be
consequential for dipole atoms. Moreover, we assume that
to leading order all remaining interactions between the atoms
and the light field, which cannot be accounted for when the
atoms are modeled as point dipoles, are governed by the
following interactiong13]:

eOE*(r)=D,§(r)+fd3r’G(r—r’)P*(r’), (5a)

ikr
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correlation functions involving atomic polarization and atomthe number of atoms repeatedly exchanging a photon by in-
density[15,14]. In the case of the present system we maycluding the pair correlations between the ground-state atoms.
proceed similarly. As far as the optical response is concernedlthough the lowest-order density correction to the suscep-
it is again assumed that we can concentrate on the dynamitibility of a T=0 FD gas may be obtained analytica]ii0],
of internal degrees of freedom for the atoms and the lightin the presence of nontrivial statistical position correlations a
Hence, in the equation of motion for the atomic polarizationrigorous density expansion is in most cases a very challeng-
the kinetic energy of the atoms is neglected. ing task. In this paper we consider low atom densities

We consider the low-intensity limit for the driving light. terms of p/k®) and approximate Eq6) by the decoupling
This is done by retaining only those products of operatorghat is analogous to the lowest-order correction in RE],
that involve at most one excited-state field operator or the
driving electric displacementl5]. Then, e.g., the term pro- Pa(rivniro07)=py(r1vn,1200)P1,(r2)/ps,  (9)
portional tou, in Eq. (4) makes no contribution to the equa-
tion of motion forP™ (r).

We introduce the projection operator P.7 by
=d,,0,desq./D? to include the dependence of the scattered _/t T
|igh9[ on the polarizations and on the atomic level structure. P21y 7,120 1) =(1hg,(11) ¥go(r2) %T(rzwg”(rl»'(l
Here D is the (rea) reduced dipole matrix element that
would pertain to a transition with the unit Clebsch-Gordan The decorrelation approximatior(9) introduces the

where the ground-state pair correlation functigns defined

coefficient. We define the expectation ValBQV,,E(PL), lowest-order correction to the optical response in terms the
with » and » denoting the atomic sublevels. The steady-stattnumber of microscopic optical interaction processes between
solution ofP,,, is given by the atoms by ignoring the repeated scattering of a photon
between the same atorik7]. As shown in Ref[10], in the
P (1) =ap, P 7-Di(r)+ > F, Pytioeiry gbsence of the BCS state, it also corye_ctly generates the [ead—
1lF2)=ap, Py De (1) 2 M 17) ing low-density correction. The predictions of the expansion

by Ref.[16] were tested in Refl9] for a zero-temperature
3, prr. . . FD gas in one dimension. The agreement with the exact so-
" agg 1Py G (1) Po(ravoirard). lution obtained by the numerical simulations was found to be
©) semiquantitative and in the low-density limit excellent.
Before the light is switched on, the system is described by
Here a=—D2/[fey(5+i7)] is the polarizability of an iso- the Hamiltonian densityt="H; [Eq. (1)]. The assumption
lated atom,y=D2k3/(67fi€,) the spontaneous linewidth, that the driving light only weakly disturbs the system allows

p, the atom density in level, ands the atom-light detuning. US to evaluate the pair correlation functions for the ground-
We have also defined state atom$Eq. (10)] from H,, even in the presence of the

driving light. We assume a homogeneous sample and intro-
Pz(rlvn;rzar)E(wgp(rl)P;T(rz)ng,,(rl)}, (7) duce a plane-wave basis for the field operatapg;(r)
=V~ 123, b,, exp(k-r). The Hamiltonian(1) is diagonal-

F =[Uge— (1= 8,,)Ugll(6+i7y). (8) ized by the standard canonical transformation to the Bogo-

liubov quasiparticle$11]
The normally ordered expectation valBeg(r,v#n;r,or) de-

scribes correlations between an atomic dipole aand a akzukbkl—vkbim, B,k=ukb,kT+vkbL, (12)
ground-state atom at,. The tensorF ., generates the colli-
sionally induced level shifts. whereu, andv, are real, depend only only di&|, and sat-

Due to the hard-core interatomic potential we remove thasfy u§+v§= 1. The requirement tha&t, in Eq. (1) be diag-
contact dipole-dipole interactions between different atomsonal in the quasiparticle representation sets an additional
In Eqg. (6) this is done by introducing the propaga®f,(r)  constraint, and we obtain
=G;jj(r)+ 6;6(r)/3. The purpose of this definition is to
yield a vanishing integral folG’(r) over an infinitesimal 1+§
volume enclosing the origifil4]. Ey

So far, we have obtained a steady-state solution for the o
atomic po_larizatior(G) that acts as a source for the secondarywhere E, = JAZ+ gkz, &= ex—pthug(p;+p))/2, and the
ragi|at|on in Eq.(59). Equatlon(6) involves ulnknown CoITe-  energy gaph = —ﬁUgV_lkuka(l—nak—ngk)- In equilib-
lation functionP,. Basically, we could continue the deriva-
tion and obtain the equations of motion 8 and for the - T ) o )
higher-order correlation functions. This would eventually re-2nd Enﬁ(kf<ﬂk,8li> satisfy FD statistics withn gy =ng
sult in an infinite hierarchy of equations analogous to the=(€7*® +1)"". The dispersion relation for free particles
equations in Ref.15]. However, even in the case of a simple IS given bye,=7#2k?/(2m) and the average of the chemical
level structure and in the absence of tiaave interactions potentials isu=(u;+ w)/2. For simplicity, we assumg,;
the solution for the whole system by stochastic simulations is= u | .
demanding on computer tinf8]. In the studies of the refrac- In the superfluid phase transition the atoms in the differ-
tive index of a quantum degenerate Bose-Einstein gas Morent sublevels and | form quasiparticle pairs resulting in a
ice et al.[16,17] considered a density expansion in terms ofnonvanishing anomalous correlatiof, (r1) #,(r,)). The ef-

1
2—_
Uc=3

, vﬁ=§(1—E—k), (12)

rium, the quasiparticle occupation numbeT§kE<alak)
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fect of this macroscopic two-particle coherence on the paiand FD statistics forces a regular spacing between the atoms.
correlation function(10) can be clearly seen by considering The optical interactions are dominantly generated at small
the ground state of{; [Eq. (1)] that is the vacuum of the interatomic distances and the corrections to the susceptibility
Bogoliubov quasiparticlefEg. (11)]. Then(for v# o) due to the second term in E¢L5) correspond tdnhibited
light scattering. In the absence of a superfluid state FD gas
pa(r1vv,1200)=p,p,+|{thg(r1) g, (r2))]? (138 exhibits a dramatic line narrowing,10].
The first term in Eq.(15 represents the quantum-
pa(r1vw,rovv)=p5—= (4} (r)¥g,(r2))%. (13D statistical corrections to the reabsorption process between at-
oms in different spin levels due to the two-particle coher-
The optical response may now be evaluated by eliminatence. This term is nonzero only in the presence of a
ing D¢ and P, from Egs.(5a), (6), and(9). As an example superfluid state. Because the total spin of an interacting atom
we calculate the vector components Bf for the j=1/2  pair in Eq.(1) is an integer, the pairs behave as boddrig.
—3/2 transition having the electronically excited sublevelsAccording to the Bose-Einstein statistics two bosons attract
m;=*1/2,+3/2. The pair correlation function in E¢9) is  each other and the BCS pairing favors small interatomic
nonvanishing only withv= 7. Because we are dealing with a spacing, hencesnhancingthe optical interactions and the
linear theory, the electric field and the polarization are redight scattering.
lated by the susceptibility aB™ =e,yE". We consider a The line shift induced b¥., [Eq. (16)] is generated by the
situation where FD gas fills the half-infinite space0. For  s-wave interactions. As far as they can be considered local
simplicity, we assume equal and constant atom densities fayn the scale of the optical wavelength in Ed), the colli-
the spin statep=p,=p, . The incoming free field is written  sions induce a local-field shifi.8] analogous to the Lorentz-

De(r)=Dre exp(kz), and we assume that it is linearly po- Lore_nz shift. The optical line shift of the atomic sample is

larized withe parallel todgy/pe1,. ThenPy,,=0 for v# 7. obtained from Eq(14),

With the ansatzP,,,(r)=P e exp(k'2) for Im(k’)>0, by A T — —

using Eq.(13), and by ignoring the effects of the surface of Sly=4mpC:+ (Ug = Ugelpa(T, 1)/ p— 6 Re(Ella),(ﬂ)

the atomic gag9], we obtain a spatially constant suscepti-

bility for the sample as where we have dropped the equal position coordinatgs,in
usedp,(rv,rv)=0, and defined the dimensionless variables

ﬁ_l_ 2Cap (4 P=PIK po=polK®, 5=5ly, a=—6ml(5+i), and u

K2~ 1-2Capl3+3,+3,’ =ugk®/y. The first two terms form the local-field shift. For
SLi the local-field shift due to theswave scattering in Eq.

with (17) is larger than the Lorentz-Lorenz shift, <211

+(Alfiugp)?l(ag—age)/(aph®) um®s™t,where\ is the op-

X:

Ca . tical wavelength. Because\(Augp)? is expected to be of
_ 3 k ’ 2 g
== 7f d°r e "G (1) [|(4g1 () ¢, (0))] the order of 14], the local-field shift could strikingly depend
+ ) on the BCS order parametar.
— (g, (1) b (0))71, (15) If the the effective range, of the triplets-wave potential

in Eq. (4) is very short,r,<1/k, the resonant dipole-dipole
1 interactions may suppress the effect of th@ave scattering
2= P ; Fropa(r].ro). (16 on the line shift just as they cancel the effect of the polariza-
tion self-energy[14]. However, for a metastable statg,*
Here we have used the obvious relatipp(r,vv,r,oa) may be large on the time sc_ale of the atomic interactions. In
=po(r100,1,wv)=p,(ryo,r,v) and the Clebsch-Gordan that case the collisional shift could be observable even for
coefficientC=(1/21/2,0)|?= 2/3. very smallr,,. o _ _

In an uncorrelated atomic sample the atomic positions are T0 calculate the nonlocal linewidth and line shift from
statistically independent and the pair correlation functionintegral(15) we need to evaluate the spatial correlation func-
(10) satisfiesp,(rv,r'a)=p,p,. For uncorrelated atoms, tions by using Eqs(11) and(12). For instance, the anoma-
and in the absence of tisawave scattering, we would obtain 0us expectation value reads
Eq. (14) with %,=3%,=0. This is the standard column den- 1 A
sity result stating that susceptibility equals polarizability of _= ikr = a4 o
an atom times atom density. Equatiti#) also contains the (91(1)¥1(0) \ ; ® 2E (17N = Ngi)- (18
Lorentz-Lorenz local-field correction in the denominator. o

The quantum-statistical corrections to the column densityThe chemical potential is solved from,=p, (). Here
result are introduced bY ;. It describes the modifications of (4(0)¢/(0))=—A/(%uy) is ultraviolet-divergent, resulting
the optical interactions between neighboring atoms due térom the assumption of the contact two-body interaction in
the position correlations. The second term in Ep) repre-  Eq. (1). This contact interaction is momentum independent
sents the quantum-statistical contribution to the scatteringnd it is not valid at high energies. To estimate the pairing
process in which a photon emitted by an atom in spin level we remove the high-energy divergence by introducing a
at positionr is reabsorbed by another atom in spin level high-momentum cutofk,. We may also replackug by the
and located at the origin. According to FD statistics twotwo-body T matrix obtained from the Lippmann-Schwinger
fermions with the same quantum numbers repel each otherquation[4]. This is done by subtracting from Edq18)
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Sexplk-r)A/(2&.V). Nevertheless, as argued in R@d),
the use of th&@ matrix may seriously underestimate the over-
lap in the case of large scattering lengéy|>r,.

We plot the line shift from Eq(17) and the linewidth
I'l'y=1-67Im(X,/«a) without the collisional shifti.e., for
Ug=Uge) for A=900 nm, anday= —216Q,. For the gap
parameter al =0 we use the weak-coupling approximation
A=1.76&gT. [11,4], where

, (19

k T 8€|: y—2 s
e s VR PY
with y=0.5772 anckg = (67%p) >,
In Fig. 1(a) the solid line represents the linewidth in the
absence of the superfluid statk=0). The line narrows as a
function of the density already at very low densitid<].

The presence of the superfluid state broadens the line. The

linewidth is finite even without the regularization in the
anomalous correlatiofthe dashed line This is because the
dipole radiation already involves a high-frequency cutoff
[15] that regularizes smatl behavior. We also plot the line-
width with the cutoff k.=1/r, and the realistic value
=100g, of the triplets-wave potential4]. We found that the
linewidth is almost independent of the cutoff fram=0 to
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FIG. 1. The opticala) linewidth and(b) line shift as a function

5008, indicating that the exact short-range behavior of theof the atom density per cubic optical wave number of the driving

two-body potential is not very crucial for the linewidth. The

light in the absence of the collisional shift. The dashed-dotted line

line shift from the unregularized anomalous correlation incorresponds to the regularization by the two-bdtynatrix, the

integral (15) diverges logarithmically for smal. Although
the radiation kerne(5b) involves a cutoff, the Lamb shift is

not treated rigorously. However, for the present purposes w

may at least obtain an estimate for the shift by using th
cutoff k.=1/r,, as in the case of the linewidth. For the BCS

state, even Witth=uge, also the line shift is increased.
We studied the interaction of light with a two-species

atomic superfluid gas. The analysis of the quasiparticles fol

lowed the standard BCS theof¥1]. We assumed a transla-

tionally invariant system. Atoms in a harmonic trap may be

considered as locally homogeneoul, provided that the
trap length scalé= (4/mw)*? is much larger than the cor-

dotted by the cutofk.= 0.0lagl, and the dashed line is the unregu-
larized case. The solid line has=0.

Felation length, which for intraspecies &,~ 1/kg and for

Ghe interspecieg; | ~ ex/(Akg) [11]. Other notable assump-

tions were zero temperature and low atom density. The

present work could be extended to larger value{agfand;
by going beyond the BCS weak-coupling limit and by in-

cluding the cooperative optical linewidths and line shifts
[15].
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