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By introducing the shape-invariant Lie algebra spanned by the supersymmetric ladder operators plus the
identity operator, we generate a discrete complete orthonormal basis for the quantum treatment of the one-
dimensional Morse potential. In this basis, which we call the pseudo-number-states, the Morse Hamiltonian is
tridiagonal. Then we construct algebraically the continuous overcomplete set of coherent states for the Morse
potential in close analogy with the harmonic oscillator. These states coincide with a class of states constructed
earlier by Nieto and Simmori®hys. Rev. D20, 1342(1979] by using the coordinate representation. We also
give the unitary displacement operator creating these coherent states from the ground state.
[S1050-294{@9)50109-1

PACS numbd(s): 03.65.Fd, 02.20.Sv, 42.50p

[. INTRODUCTION and the identity, we will introduce an orthonormal basis in
the state space called pseudo-number-states. In contrast to

Coherent statefl] for systems other than the harmonic the set of energy eigenstates, this basis is a complete discrete
oscillator (HO) have attracted much attention for the pastset of normalizable states that tridiagonalizes the Morse
several yeariz_g]_ There are a number of different ap- Hamiltonian. With the help of the pseudo-number-states we
proaches to this problem and the one presented here is basi@éfoduce the coherent states, in analogy with those of the
on the methods of supersymmetric quantum mechanicdarmonic oscillator. They are labeled with a complex num-
(SUSY QM) [9-12). Since the SUSY description combined ber 8, and they ;atlsfy the minimal requirements established
with the concept of shape invariance is a generalization oPY Klauder(see in Ref[4]) to be termed as coherent: they
the ladder operator method of the harmonic oscillator, e continuous functions of the labgl and form an(oven
seems straightforward to use the SUSY ladder operators tgPMplete set in Hilbert space. We also show that a unitary
construct coherent states for other, nonharmonic potential§lisplacement operator exists in a quite similar form, as in the
too. Based on this idea, an algebraic construction of cohere$@Se of the harmgmc oscillator, so that the coherent states are
states was proposed by Fukui and Aizd@hfor the class of ~9enerated by this operator from the ground state| &s
shape-invariant potentials having an infinite number of=D(8)|0). We note that the coordinate representation wave
bound-energy eigenstates. Their definition, however, doefinctions corresponding to our coherent states have been ob-
not work for potentials, where the number of normalizabletained earlier by Nieto and Simmoig] in an entirely dif-
energy eigenstates is finite. Among these latter problems th€rent way.
Morse potential deserves particular attention, because it
plays an important role in treating molecular vibrations and
in |aser Chemistry' Il. PSEUDO-NUMBER-STATES

In this paper we present an alternative algebraic method
by using the SUSY ladder operators to obtain coherent states
for the one-dimensional Morse potential. Using the shape- ) R )
invariant Lie algebra spanned by the SUSY ladder operators H(s)= P?/2m +V0[ S+ 3 —exp— yX):lz, (D]

In this work we consider the Morse Hamiltonian
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wheres, V,, andy are real parameters determining the shape [A(s+m),A(s+n)]=0,
of the potential. Using dimensionless operatirs yX and + +

N A'(s+m),A'(s+n)]=0, 9
P=1/\/2mV,P, and choosing the units so thafi/\2mV, [ T( )AL )] R ©
=1, we have X,P]=i andH(s)=V,H(s) with [A(s+m),Al(s+n)]=2sI—[A(s)+A(S)].

H(s)= P2+[S+ %—GXK—X)]Z- (2)  Equations(8) and (9) are valid for any complex, but we

. . . shall exploit this property only for real integar

From now on we consider this latt¢f(s) as the Hamil- Using the commutation relatiort8) and the fact thai(s)

tonian. Ifs>0, there then exists a normalizable ground stateninilates the ground stae(s)| ¥ o(s))=0, one can verify

|Wo(s)) with energy Eq(s). According to the theory of ihat the states defined in E€f) are mutually orthogonal:
SUSY QM, one can introduce the ladder operata(s),
<m|n>:5m,n- (10

A'(s), so thatA(s) annihilates the ground state, and the
Hamiltonian can be factorized:

We are going to call these states the pseudo-number-states of
AS)|Wo($))=0, H(s)=AT(S)A(S)+Eo(s). (3) o P

the Morse potential, and we give here the corresponding
wave functions in terms of the variabje= 2 exp(x). With

the help of Eqs(3) and(7) we find that the wave functions

in question obey the following recursion relation:

In the case of the Morse potential the ladder operaAds
andA'(s) can be written a§10]

A(s)=s—exp(—X)+iP,
AT(s)=s—exp(— X)—iP. @ oY) =(y|0)=

1
Sexp(—Vy/2),
o | T2s) y>exp—y
Considering the partner Hamilton operatord®(s) (11)
=A(s)AT(s)+Ey(s), one finds that the Morse potential is _ 1 9 Y
shape invarianf9,10], which means that en(y):=(ylm=C, yay +(stn=1) 2 n-1(y)-
HP(s)=H(f(s))+R(f(s)), (5
Comparing Eq.(11) with the Rodrigues’s formula for the
with f(s)=s—1 andR(s)=2(s+1). Due to this property generalized Laguerre polynomidl$(y) [13], one finds that
one can determine the energy eigenstates, as well as the @ie normalized wave functions of the pseudo-number-states
genvalues in the following way: are

|W(s))xAT(s) - AT(s—n+1)[¥y(s—n)), n+23—1”‘1’2

" ©6) ¢n(y>=[r<2s>( N y*exp—y/2)LE H(y).
En(s)=Eq(s)+ gl R(s—k). (12)

Due to the completeness of the Laguerre polynomials with

The Morse potential has only a finite number of boundrespect to the weight function expg)y * [13], the func-

states(the integer part o+ 1), which cannot form a com- tions (12) form a complete orthonormal set in the space

plete set of states in the Hilbert space. Hence the full quanl:z[(Ow) dy/y] [the square integrable functions on (B-)

tum description of the Morse potential is impossible when. .
restricting oneself to only these bound states. One can of terval, with respect of the meastag/y], and therefore the

course use the continuous part of the spectrunHpbut set of pseudo-number-states is a complete, orthonormal basis

) . . P - in Hilbert space.
instead we consider here the following infinite series of Calculating the matrices of the SUSY ladder operators

states: shifted by an arbitrary integés;, one finds the following ma-
0)=|¥(s)) trix elements:
—-1at
[1)=C1 AT(5)[0) (MIA(s+K)|ny= (25 M) Sy 10— (M=K) S,
: (7)
_1pt (M[AT(s+K)[n)=Vm(25+n) S ni1—(N—K)Spn,  (13)
[ny=C, *A"(s+n—1)|n—1) .
: (m|H(s)|n)=|2n n+s5= 5| +Eo(S)| o
where n is a positive integer {eN*) and C, —(n=1)yn(2s+n=1)
=.n(2s+n—1) is a normalization coefficient. Note the dif- (N=1)Vn(2s+n=1)0m: 1n
ference between the parameter shifts in Egsand (7). —(M=1)Jn(2s+Nn—1)8p s1.

A key observation from our point of view is that the

SUSY ladder operatorA(s), A'(s) and the identity spana e see that the Hamiltonian is not diagonal: it has, however,
Lie algebra. Since for any numberwe have nonvanishing elements only in, above, and below the main
A(s+n)=A(s)+nl, (8) diagonal.

the Lie algebra is invariant with respect to a shift of the
shape parametes;, and an easy calculation shows that the
parameter-dependent SUSY ladder operators satisfy the fol- We use now the SUSY operator analogy with the HO, and
lowing commutation relations: define the coherent states of the Morse potential as

Ill. COHERENT STATES
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o B - B
= I+ 2, —AT(s+n-1)---A'(s) 1]0), 14 = =(1-18%°>, —=(y|n
BY=g(B){ 1+ X 1 AT(s+n-1) AT >]| ) as oY) =18)= (1= 1B")°Z, o tyim)
where g is ac number andy(3) is a normalization function (1-|8l%° - _
to be determined below. The expressionQ@f implies the " T2y ysexp(—y/Z)ngo B H(Y).
introduction of a generalized factorig@}! with the definition
n! n+2s—1\1 (21)
{0}!=1, {n}!=—=( ) . : :
2s-+(2s+n—1) n Using the generating function formula for the Laguerre poly-
(15  nomials[13], one obtains that the corresponding wave func-
(n>0). . . .
tions in they coordinate are
Then the coherent states in Ed4) can be written by the (y)= (1-18/%)° sexd - Y 1+ (22
help of Eq.(7) as PplY)= F(Zs)(l—B)zsy 21-B8)°
*© n
18)=g(B) > [n). (16)  These wave functions are essentially the same as those dis-
n=0 \{n}! covered in another way by Nieto and Simmdrg, who

) o called them generalized minimal uncertainty coherent states
To obtain the explicit form ofy(B) (chosen to be repland  (MUCS) of the Morse potential. They introduced certain spe-
to find the label spacéhe set of allowedS's) we set cial coordinates in the classical phase space, transforming the
o 182" trajectories of the bound motions into ellipses. According to
1=(B|B)=0%B) > | [2], the MUCS-type coherent states are those that minimize
i=o {n}! the uncertainty relation of the quantum operators correspond-
ing to these new classical coordinates called “natural classi-
|ﬁ|2n]_ (17)  cal variables” in Ref[2]. It is interesting that our algebraic
approach has led to the same states. Often the eigenvalue
. o ] equation that defines the MUCS amounts to the ladder op-
The sum in the above expression is convergent if and only igrator coherent states, if the ground state is a member of the
|8l<1, i.e., the label space is the complex open unit diskminimum-uncertainty set. Here we have found that to be the
and then the sum in the braces in E@Q7) yields (1  case. Otherwise, the minimum-uncertainty defining equation
—[B|?) ~?°. So we finally have for the coherent states of theoften yields the defining equation for lowering operator
Morse potential, squeezed statd44].

n+2s—1
|&7in

1B)=(1-181°2, ( o
n=0
In this section we present another interpretation of the
(BeC.|Bl<1). (18 state|8) by giving the physical meaning of its parameter. We

The various sets of coherent states that have been intrd€Cast the wave fu_ncti0|(122) into the original coordinate
duced in the past for an arbitrary system have two fundamentariablex. Substltut|ngy=2 exp(-x), one has
tal common properties established in Ref]: strong conti- Tlezs
nuity in the label space and completeness in the sense that ~ $8(¥)=(X|8)= I7%2s) ©
there exists a positive measure on the label space such that
the identity operator admits the resolution of unity. The
first property follows from the definition: if3—pg’,
(18],18'|<1), then||B)—|B")||>—0. To verify the second ,
property, valid fors>1/2, we consider the measu@3  Wheree '¢=[(|1- B)|/1- B]**is a phase term arklandp

2s-+(2s+n—1)
n!

=g%ﬂ>1+2;

IV. DISPLACEMENT OPERATOR GENERATING |B)

—5s(x—X)

X expl — e‘““;)}exp[ _?I“f)e‘("_;‘)] , (23

=(2s—1)/(1-|B|»?d RepdIm B(|8/<1) and find are real numbers depending gn
o iny(m| . i::ln(Reﬂ | ﬁ::slm(HB)/(l_B)- (24)
fﬁqIB)(ﬂlﬁﬁ—(Zs 1)n;:0—r}!{m}! P 1-8 Re(1+8)/(1-p)

Calculating the expectation values of the operad@nd P

XBU(1=|BH* *dRepdImB. (19 in the statg/8) one obtains

Introducing polar coordinates in the label space, the integral (BIX|B)=%+(0[X|0), (B|P|B)=TP. (25
above can be calculated easily, and we find the resolution of N )
unity as We see that, apart from an additive const@né expectation

value of the position in the ground staf& andp are just the
position and momentum operator expectation values, respec-
tively. Hence we can introduce a new labeling for the coher-
ent states with the help of the real numbgrandp instead

We also present here the wave functions corresponding tof the original complexs. In these coordinate$) can be
the statesg). From Eqgs.(12) and(16) we have written as|X,p), and the appropriate label spaceR$ with

[ 1sxelsp==S Imnl=m. 0
|Bl<1 n=0
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the measuraxdp on it. Then the resolution of unit{20) of pseudo-number-states and the set of the coherent states for

has a form similar to that in the case of the HO: the Morse potential. We have shown how the parameter of
2s—1 (= (= B |8) is connected with the expectation values of the coordinate
ams ﬁwfiwlx,pXX,p}d?dp:I. (260 and the momentum, and have determined the unitary dis-

placement operator generating this state from the ground

It is not hard to see that the square of the modulus of thé&tate. .
wave function in Eq(23) is equal to that of the ground-state  In our construction of the Stat¢,3}, the fundamental role
function shifted along the axis. Equation(23) also implies has been played by the shape-invariant Lie alget®a

that our coherent states can be written as spanned by the SUSY ladder operators plus the identity. The
_ i pseudo-number-states have been generated by their elements
IX,p)=e"'¢exp —iX P)exp{ - §~pex> |0) A'(s+n), while the displacement operatdd(X,p) that

yields the coherent states is the element of the corresponding
_ e I % iy n Lie group obtained by exponentiating the SUSY ladder alge-
=e "Yexg — JPe” |exg — Pe " |exp(—iXP)[0)  pra. This indicates that the statgg are coherent also in the
Perelomov senggb]. The algebra defined by E¢P) is solv-
=D(%,p)[0), (27)  able, but not nilpotent, and it is not isomorphic to the
Heisenberg-Weyl algebra of the harmonic oscillator. More-
over, this ladder algebra is not isomorphic either to the class
of sa2,)=su1,)=sp(1R), which has been applied to the
various recent treatments of the Morse potenfia/15].
- Therefore the SUSY ladder operator algebra and the coherent
D(%,p)=e '®exp —ipl )eX;{i[AT(S)—A(s)]) states preser_lted here can be_ re_garded as an alt_ernatiye alge-
2 braic viewpoint for the description of the one-dimensional
Morse potential. We also think that our construction will be
) (2g)  useful in describing molecular interactions with the electro-
magnetic field.

where|0):=|8=0)=[X=0, p=0) is identical to the ground
state, itself being a coherent state, &&,p) is a displace-
ment operator. Using Ed4) for A(s) andA'(s), the latter
can be rewritten as

i
X exr{E PLA(sS)+AT(s)]

We see thaD(X,p) is unitary for arbitraryx andp, and it
also proves that our states belong to the category of displace-

ment operator coherent states accordinfio ACKNOWLEDGMENTS
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