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By introducing the shape-invariant Lie algebra spanned by the supersymmetric ladder operators plus the
identity operator, we generate a discrete complete orthonormal basis for the quantum treatment of the one-
dimensional Morse potential. In this basis, which we call the pseudo-number-states, the Morse Hamiltonian is
tridiagonal. Then we construct algebraically the continuous overcomplete set of coherent states for the Morse
potential in close analogy with the harmonic oscillator. These states coincide with a class of states constructed
earlier by Nieto and Simmons@Phys. Rev. D20, 1342~1979!# by using the coordinate representation. We also
give the unitary displacement operator creating these coherent states from the ground state.
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I. INTRODUCTION

Coherent states@1# for systems other than the harmon
oscillator ~HO! have attracted much attention for the pa
several years@2–8#. There are a number of different ap
proaches to this problem and the one presented here is b
on the methods of supersymmetric quantum mecha
~SUSY QM! @9–12#. Since the SUSY description combine
with the concept of shape invariance is a generalization
the ladder operator method of the harmonic oscillator
seems straightforward to use the SUSY ladder operator
construct coherent states for other, nonharmonic potent
too. Based on this idea, an algebraic construction of cohe
states was proposed by Fukui and Aizawa@3# for the class of
shape-invariant potentials having an infinite number
bound-energy eigenstates. Their definition, however, d
not work for potentials, where the number of normalizab
energy eigenstates is finite. Among these latter problems
Morse potential deserves particular attention, becaus
plays an important role in treating molecular vibrations a
in laser chemistry.

In this paper we present an alternative algebraic met
by using the SUSY ladder operators to obtain coherent st
for the one-dimensional Morse potential. Using the sha
invariant Lie algebra spanned by the SUSY ladder opera
PRA 601050-2947/99/60~3!/1737~4!/$15.00
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and the identity, we will introduce an orthonormal basis
the state space called pseudo-number-states. In contra
the set of energy eigenstates, this basis is a complete dis
set of normalizable states that tridiagonalizes the Mo
Hamiltonian. With the help of the pseudo-number-states
introduce the coherent states, in analogy with those of
harmonic oscillator. They are labeled with a complex nu
ber b, and they satisfy the minimal requirements establish
by Klauder~see in Ref.@4#! to be termed as coherent: the
are continuous functions of the labelb, and form an~over!
complete set in Hilbert space. We also show that a unit
displacement operator exists in a quite similar form, as in
case of the harmonic oscillator, so that the coherent state
generated by this operator from the ground state asub&
5D(b)u0&. We note that the coordinate representation wa
functions corresponding to our coherent states have been
tained earlier by Nieto and Simmons@2# in an entirely dif-
ferent way.

II. PSEUDO-NUMBER-STATES

In this work we consider the Morse Hamiltonian

Ĥ~s!5 P̂2/2m1V0@ s1 1
2 2exp~2gX̂!# 2, ~1!
R1737 ©1999 The American Physical Society
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wheres, V0 , andg are real parameters determining the sha
of the potential. Using dimensionless operatorsX5gX̂ and
P51/A2mV0P̂, and choosing the units so thatg\/A2mV0

51, we have@X,P#5 i and Ĥ(s)5V0H(s) with

H~s!5P21@ s1 1
2 2exp~2X!# 2. ~2!

From now on we consider this latterH(s) as the Hamil-
tonian. If s.0, there then exists a normalizable ground st
uC0(s)& with energy E0(s). According to the theory of
SUSY QM, one can introduce the ladder operatorsA(s),
A†(s), so thatA(s) annihilates the ground state, and t
Hamiltonian can be factorized:

A~s!uC0~s!&50, H~s!5A†~s!A~s!1E0~s!. ~3!

In the case of the Morse potential the ladder operatorsA(s)
andA†(s) can be written as@10#

A~s!5s2exp~2X!1 iP,
~4!A†~s!5s2exp~2X!2 iP.

Considering the partner Hamilton operator,Hp(s)
5A(s)A†(s)1E0(s), one finds that the Morse potential
shape invariant@9,10#, which means that

Hp~s!5H„f ~s!…1R„f ~s!…, ~5!

with f (s)5s21 andR(s)52(s11). Due to this property
one can determine the energy eigenstates, as well as th
genvalues in the following way:

uCn~s!&}A†~s!¯A†~s2n11!uC0~s2n!&,
~6!

En~s!5E0~s!1 (
k51

n

R~s2k!.

The Morse potential has only a finite number of bou
states~the integer part ofs11), which cannot form a com
plete set of states in the Hilbert space. Hence the full qu
tum description of the Morse potential is impossible wh
restricting oneself to only these bound states. One can
course use the continuous part of the spectrum ofH, but
instead we consider here the following infinite series
states:

u0&[uC0~s!&

u1&[C1
21A†~s!u0&

] ~7!

un&[Cn
21A†~s1n21!un21&

]

where n is a positive integer (nPN1) and Cn

5An(2s1n21) is a normalization coefficient. Note the di
ference between the parameter shifts in Eqs.~6! and ~7!.

A key observation from our point of view is that th
SUSY ladder operatorsA(s), A†(s) and the identityI span a
Lie algebra. Since for any numbern we have

A~s1n!5A~s!1nI, ~8!

the Lie algebra is invariant with respect to a shift of t
shape parameters, and an easy calculation shows that t
parameter-dependent SUSY ladder operators satisfy the
lowing commutation relations:
e

e

ei-

n-

of

f

ol-

@A~s1m!,A~s1n!#50,

@A†~s1m!,A†~s1n!#50, ~9!

@A~s1m!,A†~s1n!#52sI2@A~s!1A†~s!#.

Equations~8! and ~9! are valid for any complexn, but we
shall exploit this property only for real integern.

Using the commutation relations~9! and the fact thatA(s)
annihilates the ground stateA(s)uC0(s)&50, one can verify
that the states defined in Eq.~7! are mutually orthogonal:

^mun&5dm,n . ~10!

We are going to call these states the pseudo-number-stat
the Morse potential, and we give here the correspond
wave functions in terms of the variabley52 exp(2x). With
the help of Eqs.~3! and ~7! we find that the wave functions
in question obey the following recursion relation:

w0~y!ª^yu0&5
1

AG~2s!
ys exp~2y/2!,

~11!
wn~y!ª^yun&5Cn

21S y
]

]y
1~s1n21!2

y

2Dwn21~y!.

Comparing Eq.~11! with the Rodrigues’s formula for the
generalized Laguerre polynomialsLn

a(y) @13#, one finds that
the normalized wave functions of the pseudo-number-st
are

wn~y!5FG~2s!S n12s21
n D G21/2

ys exp~2y/2!Ln
2s21~y!.

~12!

Due to the completeness of the Laguerre polynomials w
respect to the weight function exp(2y)y2s21 @13#, the func-
tions ~12! form a complete orthonormal set in the spa
L2@(0,̀ ),dy/y# @the square integrable functions on the~0,̀ !
interval, with respect of the measuredy/y#, and therefore the
set of pseudo-number-states is a complete, orthonormal b
in Hilbert space.

Calculating the matrices of the SUSY ladder operat
shifted by an arbitrary integerk, one finds the following ma-
trix elements:

^muA~s1k!un&5An~2s1m!dm11,n2~m2k!dm,n ,

^muA†~s1k!un&5Am~2s1n!dm,n112~n2k!dm,n , ~13!

^muH~s!un&5F2nS n1s2
1

2D1E0~s!Gdm,n

2~n21!An~2s1n21!dm11,n

2~m21!An~2s1n21!dm,n11 .

We see that the Hamiltonian is not diagonal; it has, howev
nonvanishing elements only in, above, and below the m
diagonal.

III. COHERENT STATES

We use now the SUSY operator analogy with the HO, a
define the coherent states of the Morse potential as
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ub&5g~b!H I 1 (
n51

`
bn

n!
A†~s1n21!¯A†~s!J u0&, ~14!

whereb is a c number andg(b) is a normalization function
to be determined below. The expression ofCn implies the
introduction of a generalized factorial$n%! with the definition

$0%! 51, $n%! 5
n!

2s¯~2s1n21!
5S n12s21

n D 21

~15!~n.0!.

Then the coherent states in Eq.~14! can be written by the
help of Eq.~7! as

ub&5g~b! (
n50

`
bn

A$n%!
un&. ~16!

To obtain the explicit form ofg(b) ~chosen to be real!, and
to find the label space~the set of allowedb’s! we set

15^bub&5g2~b! (
n50

` ubu2n

$n%!

5g2~b!H 11 (
n51

`
2s¯~2s1n21!

n!
ubu2nJ . ~17!

The sum in the above expression is convergent if and on
ubu,1, i.e., the label space is the complex open unit di
and then the sum in the braces in Eq.~17! yields (1
2ubu2)22s. So we finally have for the coherent states of t
Morse potential,

ub&5~12ubu2!s(
n50

` AS n12s21
n Dbnun&

~bPC,ubu,1!. ~18!

The various sets of coherent states that have been in
duced in the past for an arbitrary system have two fundam
tal common properties established in Ref.@4#: strong conti-
nuity in the label space and completeness in the sense
there exists a positive measure on the label space such
the identity operator admits the resolution of unity. T
first property follows from the definition: ifb˜b8,
(ubu,ub8u,1), theniub&2ub8&i2

˜0. To verify the second
property, valid for s.1/2, we consider the measuredb
5(2s21)/(12ubu2)2d Rebd Im b(ubu,1) and find

E
ubu,1

ub&^budb5~2s21! (
n,m50

` un&^mu

A$n%! $m%!
E

ubu,1
~b* !m

3bn~12ubu2!2s22d Rebd Im b. ~19!

Introducing polar coordinates in the label space, the inte
above can be calculated easily, and we find the resolutio
unity as

E
ubu,1

ub&^budb5p (
n50

`

un&^nu5pI . ~20!

We also present here the wave functions correspondin
the statesub&. From Eqs.~12! and ~16! we have
if
,

o-
n-

at
hat

al
of

to

wb~y!ª^yub&5~12ubu2!s(
n50

`
bn

A$n%!
^yun&

5
~12ubu2!s

AG~2s!
ys exp~2y/2! (

n50

`

bnLn
2s21~y!.

~21!

Using the generating function formula for the Laguerre po
nomials@13#, one obtains that the corresponding wave fun
tions in they coordinate are

wb~y!5
~12ubu2!s

AG~2s!~12b!2s
ys expS 2

y

2

11b

12b D . ~22!

These wave functions are essentially the same as those
covered in another way by Nieto and Simmons@2#, who
called them generalized minimal uncertainty coherent sta
~MUCS! of the Morse potential. They introduced certain sp
cial coordinates in the classical phase space, transforming
trajectories of the bound motions into ellipses. According
@2#, the MUCS-type coherent states are those that minim
the uncertainty relation of the quantum operators correspo
ing to these new classical coordinates called ‘‘natural cla
cal variables’’ in Ref.@2#. It is interesting that our algebrai
approach has led to the same states. Often the eigenv
equation that defines the MUCS amounts to the ladder
erator coherent states, if the ground state is a member o
minimum-uncertainty set. Here we have found that to be
case. Otherwise, the minimum-uncertainty defining equa
often yields the defining equation for lowering operat
squeezed states@14#.

IV. DISPLACEMENT OPERATOR GENERATING zb‹

In this section we present another interpretation of
stateub& by giving the physical meaning of its parameter. W
recast the wave function~22! into the original coordinate
variablex. Substitutingy52 exp(2x), one has

wb~x!ª^xub&5
e2 iw2s

G1/2~2s!
e2s~x2 x̃!

3exp$2e2~x2 x̃!%expH 2 i

s
p̃e2~x2 x̃!J , ~23!

wheree2 iw5@(u12b)u/12b#2s is a phase term andx̃ andp̃
are real numbers depending onb:

x̃ª lnS Re
11b

12b D , p̃ªs
Im ~11b!/~12b!

Re~11b!/~12b!
. ~24!

Calculating the expectation values of the operatorsX andP
in the stateub& one obtains

^buXub&5 x̃1^0uXu0&, ^buPub&5 p̃. ~25!

We see that, apart from an additive constant~the expectation
value of the position in the ground state!, x̃ andp̃ are just the
position and momentum operator expectation values, res
tively. Hence we can introduce a new labeling for the coh
ent states with the help of the real numbersx̃ and p̃ instead
of the original complexb. In these coordinates,ub& can be
written asux̃,p̃&, and the appropriate label space isR2 with



th
te

ac

io
l s

s for
r of
ate
dis-
und

The
ents

ding
ge-

e
re-
ass
e

rent
alge-
al
e

ro-

rk
un-

RAPID COMMUNICATIONS

R1740 PRA 60MIHÁ LY G. BENEDICT AND BALÁZS MOLNÁR
the measuredx̃ dp̃ on it. Then the resolution of unity~20!
has a form similar to that in the case of the HO:

2s21

4ps E
2`

` E
2`

`

ux̃,p̃&^x̃,p̃&dx̃dp̃5I . ~26!

It is not hard to see that the square of the modulus of
wave function in Eq.~23! is equal to that of the ground-sta
function shifted along thex axis. Equation~23! also implies
that our coherent states can be written as

ux̃,p̃&5e2 iw exp~2 i x̃P!expS 2
i

s
p̃e2XD u0&

5e2 iw expS 2
i

s
p̃ex̃I DexpS 2

i

s
p̃e2XDexp~2 i x̃P!u0&

5D~ x̃,p̃!u0&, ~27!

whereu0&ªub50&5ux̃50, p̃50& is identical to the ground
state, itself being a coherent state, andD( x̃,p̃) is a displace-
ment operator. Using Eq.~4! for A(s) andA†(s), the latter
can be rewritten as

D~ x̃,p̃!5e2 iw exp~2 i p̃ I !expS x̃

2
@A†~s!2A~s!# D

3expS i

2s
p̃@A~s!1A†~s!# D . ~28!

We see thatD( x̃,p̃) is unitary for arbitraryx̃ and p̃, and it
also proves that our states belong to the category of displ
ment operator coherent states according to@2#.

V. CONCLUSIONS AND FINAL REMARKS

By using the set of generalized creation and annihilat
operators we have introduced the complete orthonorma
p-

s

.

5

e

e-

n
et

of pseudo-number-states and the set of the coherent state
the Morse potential. We have shown how the paramete
ub& is connected with the expectation values of the coordin
and the momentum, and have determined the unitary
placement operator generating this state from the gro
state.

In our construction of the statesub&, the fundamental role
has been played by the shape-invariant Lie algebra~9!
spanned by the SUSY ladder operators plus the identity.
pseudo-number-states have been generated by their elem
A†(s1n), while the displacement operatorD( x̃,p̃) that
yields the coherent states is the element of the correspon
Lie group obtained by exponentiating the SUSY ladder al
bra. This indicates that the statesub& are coherent also in the
Perelomov sense@5#. The algebra defined by Eq.~9! is solv-
able, but not nilpotent, and it is not isomorphic to th
Heisenberg-Weyl algebra of the harmonic oscillator. Mo
over, this ladder algebra is not isomorphic either to the cl
of so~2,1!>su~1,1!>sp(1,R), which has been applied to th
various recent treatments of the Morse potential@7,15#.
Therefore the SUSY ladder operator algebra and the cohe
states presented here can be regarded as an alternative
braic viewpoint for the description of the one-dimension
Morse potential. We also think that our construction will b
useful in describing molecular interactions with the elect
magnetic field.
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