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Benchmark single-differential ionization cross section results for thes-wave model
of electron-hydrogen scattering

M. Baertschy,1 T. N. Rescigno,2 W. A. Isaacs,3 and C. W. McCurdy3
1Department of Applied Science, University of California–Davis, Livermore, California 94550

2Lawrence Livermore National Laboratory, Livermore, California 94550
3Lawrence Berkeley National Laboratory, Berkeley, California 94720

~Received 19 January 1999!

Exterior complex scaling enables one to compute the outgoing wave portion of the wave function for three
charged particles without explicitly imposing the asymptotic boundary condition for three-body breakup. This
technique is used in connection with a high-order finite difference scheme to provide numerically accurate
single-differential ionization cross sections for the Temkin-Poet~s-wave! model of e-H scattering. These
benchmark values are compared with results obtained from several recent close-coupling approaches that
employ pseudostates to discretize the ionization continuum, but use a strictly two-body scattering formalism.
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Over the past five years, remarkable success has
achieved in combining the use of pseudostates with conv
tional close-coupling methodology to demonstrate ‘‘conv
gence’’ of the close-coupling expansion in computing ex
tation and total ionization cross sections for simple atom
systems. Of particular note in this regard are the converg
close-coupling~CCC! method of Bray and Stelbovics@1# and
the R-matrix plus pseudostate~RMPS! method of Bartscha
and co-workers@2#. More recently, these methods have be
extended to the calculation of differential ionization cro
sections@3,4#, but this extension has met with some difficu
ties and has raised some fundamental questions about as
of the formalism@5,6#. While initial applications of the CCC
method to helium yielded triple-~TDCS!, double-~DDCS!,
and single-~SDCS! differential ionization cross sections i
remarkable agreement with experiment for energies ab
100 eV @7#, it was found that as the total energy was d
creased convergence of the SDCS could not be achie
although therelative shapesof the TDCS and DDCS profiles
appear to remain accurate@5#. Calculations of differential
ionization cross sections fore-H in the Temkin-Poet model
in which only the spherical average of the electron-elect
repulsion is retained, computed using the CCC and RM
methods, revealed similar problems with both methods@4#.

Pseudostate close-coupling methods employ a stri
two-body formalism, since the target eigenstates, includ
those with positive eigenvalues, are square-integrable. In
sense, close coupling, when extended to ionization, is a ‘‘
tinguishable electron model’’ in the sense that only one e
tron can escape the target: the total wave function will te
asymptotically to zero if two electron coordinates are tak
to infinity. This distinguishability should not be confuse
with a lack of exchange symmetry in the computed wa
functions, since the close-coupling methods generally e
ploy properly antisymmetrized expansions. It does, howe
lead to certain incompatibilities with formal ionizatio
theory@6,8#, notably the symmetrization postulate that gu
antees symmetry in the SDCS aboutE/2, whereE is the total
energy, under interchange of the energies of the scattered
ejected electrons@9#. The SDCS is related to the probabilit
PRA 601050-2947/99/60~1!/13~4!/$15.00
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of detecting an electron with energy«. Since both the pri-
mary ~scattered! and secondary~ejected! electrons can con-
tribute to this process and since they are experimentally
distinguishable, it has been argued@10# that the
‘‘observable’’ SDCS in close-coupling methods should
computed as

dsobs~«!

d«
5

ds~«!

d«
1

ds~E2«!

d«
, ~1!

whereds(«)/d« andds(E2«)/d« are related to the exci
tation cross sections corresponding to target pseudos
with energies« andE2«, respectively. The total ionization
cross section is then given as

s tot
i 5E

0

E/2 dsobs~«!

d«
d«, ~2!

as is the formal theory@8#.
Bray @5# has commented recently on the way the SDCS

evaluated in close-coupling theory, and in particular on
fact that the ionization cross section is computed as the
coherent sum of two cross sections corresponding to
physically indistinguishable processes. He argues that, in
limit of a complete basis of pseudostates, the excitation a
plitudes will vanish for pseudostates whose energies
greater thanE/2, and hence eitherds(«)/d« or ds(E
2«)/d« will be zero—at convergence. He argues that t
‘‘step function hypothesis’’ explains the lack of convergen
in the SDCS in the case of singlet scattering, since no fin
analytic basis-set calculation could produce an amplitu
that drops discontinuously to zero atE/2. ~The triplet ampli-
tude, on the other hand, is less problematic, since it m
vanish atE/2.! Bray offers only numerical evidence to sup
port his step function hypothesis; no mathematical proo
given.

The fact that the close-coupling approach does not y
ionization amplitudes that obey the symmetrization postu
of formal ionization theory does not necessarily mean th
are incorrect. Unfortunately, no one to date has succeede
R13 ©1999 The American Physical Society
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using the formal theory to carry out accurate numerical
variational calculations of ionization and perhaps no o
ever will. Calculations employing three-body Coulom
boundary conditions have been limited to a distorted-w
ansatz@11,12# and so cannot be used to answer fundame
questions about convergence of otherab initio methods. This
situation has prompted us to provide an independent ca
lation of the SDCS fore-H ionization in the Temkin-Poe
model. To address this problem unambiguously, we h
devised a method@13,14# that does not employ the two-bod
formalism of close coupling, yet avoids the intractable pr
pect of trying to explicitly incorporate the three-body Co
lomb boundary condition into the numerical solution of t
time-independent Schro¨dinger equation.

The Temkin-Poet model@15,16# of e-H scattering pro-
vides a nontrivial test of any method proposed to study
problem of ionization. It retains much of the complexity of
three-body Coulomb problem, yet it simplifies the true pro
lem by treating only states of zero angular momentum,
placing the true electron-electron repulsion 1/ur 12r 2u by its
spherical average 1/r . . It has thus become something of
testing ground for any new approach to the ionization pr
lem and there is now good agreement on total excitation
ionization cross sections for this problem among a variety
numerical methods.

Our approach to the electron-impact ionization probl
was outlined in two previous papers@13,14# and so the es-
sential ideas are only summarized here. In essence,
method consists of two steps. The first is showing that
wave function, or more precisely the scattered wave par
the total wave function, can be computed without recours
the explicit asymptotic form. The scattered wave function
defined as

Csc
15G1~E!~H2E!F0 ~3!

or, equivalently, by the differential equation

~E2H !Csc
15~H2E!F0 , ~4!

where G1(E) is the full Green’s function correspondin
to the HamiltonianH and F0 is the ~antisymmetrized!
unperturbed initial state, F05sin(kr1)w1s(r2)
1(21)Ssin(kr2)w1s(r1), where S is the total spin. To solve
this equation, we introduce an exterior complex scal
transformation@17# on the radial portion of each electron
coordinates,r→R(r ), which scales those coordinates by
complex phase factorbeyond a radius R0 :

R~r !5 H r , r ,R0

R01~r 2R0!eif, r>R0 . ~5!

BecauseCsc
1 contains only outgoing waves, it decays exp

nentially on the complex part of the radial contours like
ordinary bound state, thus obviating the need for asympt
scattering boundary conditions, but in the region where
coordinates are real,Csc

1 is just the outgoing part of the
physical wave function. To solve for this scattered wa
function, we introduce a two-dimensional~2D! grid of radial
points, $R(r 1,i),R(r 2,i),i 51, . . . ,n%, but, unlike in our pre-
vious work where we used a basis of finite elements, here
scattering equations are solved directly at the grid po
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using a high-order finite difference scheme. With the bou
ary conditions thatCsc

1 vanish atr 15r 250 andR(r 1,n) and
R(r 2,n), Eq. ~4! reduces to a large set (n23n2) of complex
linear equations. These equations were solved using
perLU @18#, a parallelized direct solver for sparse linear sy
tems.

Exterior scaling can only be applied when the interact
potentials are of finite range or fall off exponentially at lar
distances. The reason is that the unperturbed wave func
F0 that appears on the right-hand side of Eq.~4! contains
plane-wave terms@or, for the Temkin-Poet model, terms in
volving sin(kr)# that diverge exponentially when the coord
nates are made complex. To assure convergence, we t
fore zero the potential on the complex portions of the g
beyondr 1 ,r 25R0 and solve the scattered wave equation
this finite-range potential. Although the method will co
verge for any finite value ofR0 , obtaining the correct physi
cal result requires an extrapolation of the scattering par
eters extracted from finite values ofR0 to R05`.

The second step consists in showing how the desired s
tering information can be extracted from the computed wa
function without recourse to the explicit asymptotic form. T
compute the total (elastic1excitation1ionization) cross sec-
tion, we started with the optical theorem and derived
expression@13#

TABLE I. Single-differential ionization sectionsds/d« ~in
units of pa0

2/hartree! for the Temkin-Poet model ofe-H scattering
at E51.0 and 1.5 hartrees. The cross sections, which are symm
about«5E/2, are given as a function of the energy fraction«/E.
As noted in the text, they are normalized such that the total cr
section is obtained by integrating from«50 to E/2. The total cross
sections for singlets and triplets at these energies are 0.020S
50), 0.002 70(S51) and 0.015 36(S50), 0.003 39(S51)pa0

2,
respectively.

«/E

E51.0 E51.5

S50 S51 S50 S51

0.0 0.064 06 0.025 48 0.037 72 0.024 66
0.025 0.056 85 0.018 23 0.031 26 0.016 31
0.050 0.053 79 0.015 01 0.028 52 0.012 82
0.075 0.051 14 0.012 48 0.026 62 0.010 42
0.100 0.048 96 0.010 38 0.025 14 0.008 52
0.125 0.047 10 0.008 61 0.023 88 0.006 96
0.150 0.045 42 0.007 11 0.022 78 0.005 67
0.175 0.043 87 0.005 82 0.021 80 0.004 59
0.200 0.042 42 0.004 72 0.020 90 0.003 68
0.225 0.041 03 0.003 77 0.020 08 0.002 92
0.250 0.039 69 0.002 97 0.019 32 0.002 29
0.275 0.038 38 0.002 23 0.018 61 0.001 76
0.300 0.037 09 0.001 73 0.017 93 0.001 32
0.325 0.035 81 0.001 26 0.017 28 0.000 96
0.350 0.034 53 0.000 89 0.016 65 0.000 67
0.375 0.033 23 0.000 59 0.016 03 0.000 45
0.400 0.031 92 0.000 36 0.015 43 0.000 27
0.425 0.030 63 0.000 19 0.014 84 0.000 15
0.450 0.029 40 0.000 08 0.014 28 0.000 06
0.475 0.028 38 0.000 02 0.013 83 0.000 02
0.500 0.027 92 0.0 0.013 62 0.0
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s tot52
8p

k2 Im^Csc
1uH0uCsc

1&

5
4p

k2 i ^Csc
1uH02H0

1uCsc
1&

52
8p

k2 Im E Csc
2H0Csc

1dr1dr2 , ~6!

whereH0 is the many-body kinetic-energy operator for t
system ~not the unperturbed Hamiltonian!. There are two
things to note about Eq.~6!. In evaluating this matrix ele-
ment, the integration must be confined to the finite volu
where both electron coordinates are real, sinceCsc

2 ~which is
the complex conjugate ofCsc

1 only for real r! is not well
behaved under coordinate rotation. The other key point ab
Eq. ~6! is that it only depends on the asymptotic form
Csc

1 , which is easily seen by using Green’s theorem to c
vert the volume integral to a surface integral. This fact
lows a generalization of Eq.~6! in the form of a ‘‘projected
optical theorem,’’ which gives an expression for the integ
cross section for the inelastic process 0→a:

s0→a52
8p

k2 Im^PaCsc
1uH0uPaCsc

1&, ~7!

where Pa projects asymptotically onto target statea. The
total ionization cross section can be obtained by subtrac
the discrete inelastic cross sections from the total cross
tion. We emphasize again that the cross sections so c
puted will have an implicit dependence onR0 and have to be
extrapolated toR0→` to obtain physically correct results.

We use flux operators to compute differential ionizati
cross sections directly fromCsc

1 without the use of projection
operators@14#. The essential quantities are expressed in

FIG. 1. Single-differential ionization cross sectio
ds/d«(pa0

2), for the Temkin-Poet model ofe-H scattering at a
total energy of 1.5 hartrees. Solid curve, present results; fi
circles, CCC results~Ref. @5#!; open circles, RMPS results~Ref.
@4#!.
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perspherical coordinates r5(r 1
21r 2

2)1/2 and a

5tan21(r1 /r2). We need to compute the flux due toCsc
1 at

r0 , anda:

F~r0 ,a!5
1

2i
@~Csc

1!* ¹Csc
12Csc

1¹~Csc
1!* #r5r0

. ~8!

As r0→`, a also determines the ratio of the two momen
k1 ,k2 of the outgoing electrons,a5tan21(k1 /k2). The differ-
ential cross sectionsr0

(a) is defined in terms of the flux in

the direction ofr̂,

sr0
~a!5

4p

k0
2 F~r0 ,a!•r0 ~9!

and the total ionization cross section is given as

s tot
i 5 lim

r0→`
E

0

p/2

sr0
~a!da5E

0

E/2 ds~«!

d«
d«. ~10!

We note that sinceCsc
1(r 1 ,r 2)5(21)SCsc

1(r 2 ,r 1), the flux
is symmetric abouta5p/4, i.e., the symmetrization postu
late is automatically satisfied. Since (2«)1/25K cosa, where
K2/25E, a simple change of variable establishes the des
relationship

ds~«!

d«
5

2

K2 sina cosa
lim

r0→`

sr0
~a!. ~11!

We determined the flux from the exterior scaled scatte
wave function, letting the hyperradiusr0 coincide with the
parameterR0 . Since the flux approaches its asymptotic lim
as 1/r @14#, exceptneara50 anda5p/2, it easy to deduce
the limiting values ofsr0

(a) away from these regions from

calculations carried out at several values ofR0 . The SDCS
cannot be calculated neara50 anda5p/2 directly, since
the flux is contaminated by contributions from discrete tw
body channels over an angular range near the end points
only vanishes in the limitr0→`. For R05200 a.u., which
represents the largest grid we employed in these calculat
~the total number of grid points, and hence the dimension

d

FIG. 2. As in Fig. 1, forE51.0 hartrees.
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the complex linear equations we had to solve in that case
;750 000!, the ionized flux could be calculated to withi
approximately 8° ofa50. To obtain the SDCS for smalle
values of a, we used the fact that the quanti
sr0

(a)/(sina cosa), which limits to a finite value ata

50° ~anda590°!, has such a smooth behavior that it cou
simply be extrapolated linearly to that limit from the smalle
values ofa at which sr0

(a) could be computed directly
@Note that in Ref. @14# we erroneously stated tha
sr0

(a)/(sina cosa)2 limited to a finite value. This is only
true for short-range potentials.#

We have carried out calculations atE51.0 and 1.5 a.u.,
since these are the energies for which the CCC and RM
results are available for comparison. Our results are repo
in Table I and compared with the CCC and RMPS values
Figs. 1 and 2. By comparing extrapolated results from ca
lations that used different sized grids, we can estimate
accuracy to be better than 1.5% for the singlets and 1.0%
triplets for relative energies 0.1<«/E<0.9. For energies out
side this range, the errors are more difficult to estimate.
the triplet spin channel, there is very good agreement
tween our results and both the CCC and RMPS sing
differential cross sections for ejected electron energies
tween zero andE/2. The singlet spin channel, however,
more problematic. Our calculations clearly show that the s
glet SDCS is substantial at«5E/2. The pronouncedV shape
of the singlet SDCS is caused by the sharp ridge in
Temkin-Poet model potential alongr 15r 2 , as noted in Ref.
@14#. If one accepts the step-function hypothesis of Br
then a distinguishable electron close-coupling model wo
be trying to converge to a result that shows a marked disc
tinuity at «5E/2 where the cross section must drop abrup
to zero. The fact that the CCC and RMPS cross secti
, J
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appear to be oscillating about the correct answer sugg
that Bray and Stelbovic’s step-function hypothesis may
deed be correct, although it by no means proves it.

There are two questions that remain to be answered a
the close-coupling approach to ionization. First, does
wave function itself converge to the correct answer for fin
values of the electron coordinates? And if it does, would
method such as we have employed for extracting the sca
ing information from the wave function provide a more re
able and stable way of computing the SDCS for singlets
remove the troubling inconsistencies with formal ionizati
theory? The recent work of Miyashitaet al. @19#, who have
also obtained SDCS results for the Temkin-Poet model
making use of an approximate asymptotic form in calcul
ing the wave function for ionization, supports our specu
tion that the oscillations found in the CCC and RMPS me
ods may be tied to the way the ionization information
extracted. We have presented a time-independent me
that gives accurate differential ionization cross sections
can be systematically converged and involves no appea
approximate asymptotic forms.

This work was performed under the auspices of the U
Department of Energy by the Lawrence Livermore Nation
Laboratory and the Lawrence Berkeley National Laborat
under Contract Nos. W-7405-Eng-48 and DE-ACX0
76F00098, respectively. The calculations were performed
the SGI/Cray T3E computer at the National Energy Resea
Scientific Computing Center~NERSC! and the IBM Blue-
Pacific computer at LLNL. The authors are especially
debted to Xiaoye ‘‘Sherry’’ Li at NERSC who provided
pre-release version of her parallel LU factorization librar
for complex sparse matrices.
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