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Exterior complex scaling enables one to compute the outgoing wave portion of the wave function for three
charged particles without explicitly imposing the asymptotic boundary condition for three-body breakup. This
technique is used in connection with a high-order finite difference scheme to provide numerically accurate
single-differential ionization cross sections for the Temkin-P@avave model of e-H scattering. These
benchmark values are compared with results obtained from several recent close-coupling approaches that
employ pseudostates to discretize the ionization continuum, but use a strictly two-body scattering formalism.
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Over the past five years, remarkable success has beeh detecting an electron with energy Since both the pri-
achieved in combining the use of pseudostates with convermary (scatteregland secondaryejected electrons can con-
tional close-coupling methodology to demonstrate “conver-tribute to this process and since they are experimentally in-
gence” of the close-coupling expansion in computing exci-distinguishable, it has been argueffl0] that the
tation and total ionization cross sections for simple atomic‘observable” SDCS in close-coupling methods should be
systems. Of particular note in this regard are the converger@omputed as
close-couplingCCC) method of Bray and Stelbovi¢4] and
the R-matrix plus pseudostat®kMPS method of Bartschat dogde) do(e) N do(E—e¢) @
and co-worker$2]. More recently, these methods have been de  de de
extended to the calculation of differential ionization cross
sectiond 3,4], but this extension has met with some difficul- wheredo(g)/de anddo(E—¢)/de are related to the exci-
ties and has raised some fundamental questions about aspel@on cross sections corresponding to target pseudostates
of the formalism[5,6]. While initial applications of the CCC with energiess andE—&, respectively. The total ionization
method to helium yielded tripl€FDCS), doubleDDCS),  cross section is then given as
and single(SDCS differential ionization cross sections in
remarkable agreement with experiment for energies above ol = fE/ZdUobis)
100 eV [7], it was found that as the total energy was de- ot Jo de
creased convergence of the SDCS could not be achieved,
although theelative shapesf the TDCS and DDCS profiles as is the formal theor{8].
appear to remain accurafé]. Calculations of differential Bray[5] has commented recently on the way the SDCS is
ionization cross sections fa-H in the Temkin-Poet model, evaluated in close-coupling theory, and in particular on the
in which only the spherical average of the electron-electrorfact that the ionization cross section is computed as the in-
repulsion is retained, computed using the CCC and RMP$oherent sum of two cross sections corresponding to two
methods, revealed similar problems with both methiets physically indistinguishable processes. He argues that, in the

Pseudostate close-coupling methods employ a strictlyimit of a complete basis of pseudostates, the excitation am-
two-body formalism, since the target eigenstates, includinglitudes will vanish for pseudostates whose energies are
those with positive eigenvalues, are square-integrable. In tha@reater thanE/2, and hence eithedo(g)/de or do(E
sense, close coupling, when extended to ionization, is a “dis—¢)/de will be zero—at convergence. He argues that this
tinguishable electron model” in the sense that only one elec-step function hypothesis™ explains the lack of convergence
tron can escape the target: the total wave function will tendn the SDCS in the case of singlet scattering, since no finite
asymptotically to zero if two electron coordinates are takeranalytic basis-set calculation could produce an amplitude
to infinity. This distinguishability should not be confused that drops discontinuously to zeroBf2. (The triplet ampli-
with a lack of exchange symmetry in the computed wavetude, on the other hand, is less problematic, since it must
functions, since the close-coupling methods generally emvanish atE/2.) Bray offers only numerical evidence to sup-
ploy properly antisymmetrized expansions. It does, howeverport his step function hypothesis; no mathematical proof is
lead to certain incompatibilities with formal ionization given.
theory[6,8], notably the symmetrization postulate that guar- The fact that the close-coupling approach does not yield
antees symmetry in the SDCS ab@ii2, whereE is the total  ionization amplitudes that obey the symmetrization postulate
energy, under interchange of the energies of the scattered anfl formal ionization theory does not necessarily mean they
ejected electrongd]. The SDCS s related to the probability are incorrect. Unfortunately, no one to date has succeeded in

de, (2)
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using the formal theory to carry out accurate numerical or TABLE |. Single-differential ionization sectionslo/de (in
variational calculations of ionization and perhaps no oneinits of rag/hartreg for the Temkin-Poet model cé-H scattering
ever will. Calculations employing three-body Coulomb atE=1.0and 1.5 hartrees. The cross sections, which are symmetric
boundary conditions have been limited to a distorted-wavéboute =E/2, are given as a function of the energy fractiofi.
ansat411,17 and so cannot be used to answer fundamentafs noteq in thg text, they are normalized such that the total cross
questions about convergence of othbrinitio methods. This ~ Section is obtained by integrating from=0 to E/2. The total cross
situation has prompted us to provide an independent calcpections for singlets and triplets at these energies are 0.0350 36(
lation of the SDCS fore-H ionization in the Temkin-Poet ~09). 0.002706=1) and 0.0153&=0), 0.003 39=1)may,
model. To address this problem unambiguously, we havéespectively.

devised a methofl 3,14 that does not employ the two-body

formalism of close coupling, yet avoids the intractable pros- E=10 E=15

pect of trying to explicitly incorporate the three-body Cou- ¢/E S=0 S=1 S=0 S=1
lomb boundary condition into the numerical solution of the

time-independent Schdinger equation. 0.0 0.06406  0.02548  0.03772  0.02466

The Temkin-Poet moddl15,16 of e-H scattering pro- 0025~ 0.05685 ~ 0.01823 ~ 0.03126  0.01631
vides a nontrivial test of any method proposed to study the 0.050 0.05379 0.01501 0.028 52 0.01282
problem of ionization. It retains much of the complexity of a 0.075 0.05114 0.01248 0.026 62 0.01042
three-body Coulomb problem, yet it simplifies the true prob- 0.100 0.048 96 0.01038 0.02514 0.008 52
lem by treating only states of zero angular momentum, re- 0.125 0.04710 0.008 61 0.023 88 0.006 96
placing the true electron-electron repulsiofr 1+ r,| by its 0.150 0.045 42 0.007 11 0.02278 0.005 67
spherical average i/ . It has thus become something of a 0.175 0.043 87 0.005 82 0.021 80 0.004 59
testing ground for any new approach to the ionization prob- 0.200 0.042 42 0.004 72 0.02090 0.003 68
lem and there is now good agreement on total excitation and 0.225 0.04103 0.00377 0.020 08 0.002 92
ionization cross sections for this problem among a variety of 0.250 0.03969 0.002 97 0.01932 0.002 29
numerical methods. 0.275  0.03838  0.00223  0.01861  0.00176

Our approach to the electron-impact ionization problem 300 0.037 09 0.001 73 0.017 93 0.001 32
was outlined in two previous papef$3,14 and so the es- 0325 003581  0.00126  0.01728  0.00096
sential ideas are only summarized here. In essence, ourg 3s5q 0.03453 0.000 89 0.016 65 0.000 67
method consists of two steps. The first is showing that the ( 375 0.033 23 0.000 59 0.016 03 0.000 45
wave function, or more precisely the scattered wave part of 44 0.03192 0.000 36 0.015 43 0.000 27
the total wave function, can be computed without recourse to _ 0.030 63 0.000 19 0.014 84 0.000 15
the explicit asymptotic form. The scattered wave function is 0.450 0.029 40 0.000 08 001428 0.00006

defined as 0.475 002838  0.00002  0.01383  0.00002
P =G*(E)(H-E)®, 3) 0500  0.02792 0.0 0.01362 0.0

or, equivalently, by the differential equation using a high-order finite difference scheme. With the bound-

(E-H)¥ /. =(H-E)®,, (4)  ary conditions that? /. vanish atr;=r,=0 andR(r,,) and
R(r2n), EQ.(4) reduces to a large sehxn?) of complex

where G*(E) is the full Green’s function corresponding linear equations. These equations were solved using Su-
to the HamiltonianH and ®, is the (antisymmetrizefl perLU[18], a parallelized direct solver for sparse linear sys-
unperturbed initial state, ®y=sinkr)er,)  tems.
+(—1)Ssin(kry)@14r;), whereS is the total spin. To solve Exterior scaling can only be applied when the interaction
this equation, we introduce an exterior complex scalingootentials are of finite range or fall off exponentially at large
transformation17] on the radial portion of each electron’s distances. The reason is that the unperturbed wave function
coordinatesy —R(r), which scales those coordinates by a®, that appears on the right-hand side of E4). contains

complex phase factdreyond a radius R plane-wave termfor, for the Temkin-Poet model, terms in-
volving sinkr)] that diverge exponentially when the coordi-
R(r)= r, r<Ro _ 5) nates are made complex. To assure convergence, we thgre-
Ro+(r—Rg)e'?®, r=R,. fore zero the potential on the complex portions of the grid

beyondr ,,r,=R, and solve the scattered wave equation for
Because¥ ¢, contains only outgoing waves, it decays expo-this finite-range potential. Although the method will con-
nentially on the complex part of the radial contours like anverge for any finite value oR,, obtaining the correct physi-
ordinary bound state, thus obviating the need for asymptotigal result requires an extrapolation of the scattering param-
scattering boundary conditions, but in the region where theters extracted from finite values Bf, to Ry= .
coordinates are real_, is just the outgoing part of the The second step consists in showing how the desired scat-
physical wave function. To solve for this scattered wavetering information can be extracted from the computed wave
function, we introduce a two-dimension@D) grid of radial ~ function without recourse to the explicit asymptotic form. To
points, {R(rq;),R(r»;),i=1, ... n}, but, unlike in our pre- compute the total (elasticexcitationtionization) cross sec-
vious work where we used a basis of finite elements, here thigon, we started with the optical theorem and derived the
scattering equations are solved directly at the grid pointgexpressior13]
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FIG. 1. Single-differential ionization cross section, FIG. 2. As in Fig. 1, forE=1.0 hartrees.
do/de(mad), for the Temkin-Poet model oé-H scattering at a

total energy of 1.5 hartrees. Solid curve, present results; ﬁ”ecberspherical coordinates p=(r§+r§)1/2 and a
circles, CCC resultgRef. [5]); open circles, RMPS resuliRef.

[4) =tan }(r,/r,). We need to compute the flux due ., at
' po, anda:
8w + + 1 +\* + + +\*
Utot:_F|m<\Psc|H0|lPsc> F(po,a)Zz[(\I’S(_) VU~ W V(¥ ]p=Po' ®

As pg—, a also determines the ratio of the two momenta
ky,k, of the outgoing electronsy=tan (k; /k,). The differ-
ential cross sectionpo(a) is defined in terms of the flux in

8 Lo .
=— Fm—] f \If;cHOq’;cdrldrz, (6) the direction ofp,

4
ZF'(‘I’QHO—HJW&)

4
Tpol @)= 12 F(po.@) - po €)

whereH, is the many-body kinetic-energy operator for the 0
system(not the unperturbed HamiltonianThere are two

: ; k , and the total ionization cross section is given as
things to note about Eg6). In evaluating this matrix ele-

ment, the integration must be confined to the finite volume , _ wl2 E2do(e)
where both electron coordinates are real, siige (which is Otor= lim f UPO(a)dLY:f gz de- (10
the complex conjugate o¥Z, only for realr) is not well o=

behaved under coordinate rotation. The other key point abOLWe note that sinca :(r1,r,)=(—1)SWi(r,.ry), the flux
Eq+. ©) ‘.S th_at it qnly depends on the asymptotic form of is symmetric about:uszC /4, i.e., the syr?;:metrization postu-
Wsc, which is easily seen by using Green's theorem to CONy,e'js qutomatically satisfied. Sinces(’2=K cosa, where

vert the volume integral to a surface integral. This fact al-2/5_ E, a simple change of variable establishes the desired
lows a generalization of Ed6) in the form of a “projected

) . - _ ) relationshi
optical theorem,” which gives an expression for the integral P
cross section for the inelastic process>@: do(e) 2 _
de  K®sina COSap(I)ITm Tpol¥): (3
87 + + . .
T0-a= " 2 IM(P W ¢ HolP, Vo), (7 We determined the flux from the exterior scaled scattered

wave function, letting the hyperradiyg, coincide with the

parameteR,. Since the flux approaches its asymptotic limit
where P, projects asymptotically onto target state The  as 1p[14], excepineara=0 anda=7/2, it easy to deduce
total ionization cross section can be obtained by subtractinghe limiting values ofo, (a) away from these regions from
the discrete inelastic cross sections from the total cross seealculations carried out at several valuesRyf. The SDCS
tion. We emphasize again that the cross sections so congannot be calculated near=0 anda= /2 directly, since
puted will have an implicit dependence Bg and have to be the flux is contaminated by contributions from discrete two-
extrapolated tdR,— to obtain physically correct results.  body channels over an angular range near the end points that

We use flux operators to compute differential ionizationonly vanishes in the limipy— . For Ry=200 a.u., which

cross sections directly fronlf £, without the use of projection represents the largest grid we employed in these calculations
operatorq 14]. The essential quantities are expressed in hy{the total number of grid points, and hence the dimension of
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the complex linear equations we had to solve in that case weaappear to be oscillating about the correct answer suggests
~750000, the ionized flux could be calculated to within that Bray and Stelbovic’'s step-function hypothesis may in-
approximately 8° ofa=0. To obtain the SDCS for smaller deed be correct, although it by no means proves it.

values of o, we used the fact that the quantity There are two questions that remain to be answered about
o,,(a)/(sinacosa), which limits to a finite value atr  the close-coupling approach to ionization. First, does the
=0° (anda=90°), has such a smooth behavior that it could wave function itself converge to the correct answer for finite
simply be extrapolated linearly to that limit from the smallestvalues of the electron coordinates? And if it does, would a
values of @ at which a'po(a) could be computed directly. method such as we have employed for extracting the scatter-

[Note that in Ref. [14] we erroneously stated that ing information from the wave function provide a more reli-
(rpo(a)/(sinacos()z)2 limited to a finite value. This is only ~able and stable way of computing the SDCS for singlets and
true for short-range potentia]s. remove the troubling inconsistencies with formal ionization
We have carried out calculations Bt=1.0 and 1.5 a.u., theory? The recent work of Miyashitt al.[19], who have
since these are the energies for which the CCC and RMP8Iso obtained SDCS results for the Temkin-Poet model by
results are available for comparison. Our results are reporte@aking use of an approximate asymptotic form in calculat-
in Table |1 and compared with the CCC and RMPS values iring the wave function for ionization, supports our specula-
Figs. 1 and 2. By comparing extrapolated results from calcution that the oscillations found in the CCC and RMPS meth-
lations that used different sized grids, we can estimate theds may be tied to the way the ionization information is
accuracy to be better than 1.5% for the singlets and 1.0% foextracted. We have presented a time-independent method
triplets for relative energies Osle/E<0.9. For energies out- that gives accurate differential ionization cross sections that
side this range, the errors are more difficult to estimate. Fogan be systematically converged and involves no appeal to
the triplet spin channel, there is very good agreement beapproximate asymptotic forms.
tween our results and both the CCC and RMPS single-
differential cross sections for ejected electron energies be- This work was performed under the auspices of the U.S.
tween zero andE/2. The singlet spin channel, however, is Department of Energy by the Lawrence Livermore National
more problematic. Our calculations clearly show that the sinLaboratory and the Lawrence Berkeley National Laboratory
glet SDCS is substantial at=E/2. The pronouncelf shape under Contract Nos. W-7405-Eng-48 and DE-ACXO03-
of the singlet SDCS is caused by the sharp ridge in thg 6F00098, respectively. The calculations were performed on
Temkin-Poet model potential alorig=r,, as noted in Ref. the SGI/Cray T3E computer at the National Energy Research
[14]. If one accepts the step-function hypothesis of Bray,Scientific Computing CentefNERSQ and the IBM Blue-
then a distinguishable electron close-coupling model wouldPacific computer at LLNL. The authors are especially in-
be trying to converge to a result that shows a marked discordebted to Xiaoye “Sherry” Li at NERSC who provided a
tinuity at e = E/2 where the cross section must drop abruptlypre-release version of her parallel LU factorization libraries
to zero. The fact that the CCC and RMPS cross sectionfor complex sparse matrices.
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