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Higher-order Stark effect on an excited helium atom
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Degenerate perturbation theory is used to study dipole susceptibilities of an excited helium atom in an
external electric field. The dependence of the perturbed energy of levels in atoms on fine-structure effects and
on the higher-order Stark effect is investigated. Numerical results have been obtained fos3pg 3R, and
(1s3p) 3P, states of helium. The magnitude of the electric field and the energy separation at X 0
anticrossing are calculated. Calculations of polarizabilities and hyperpolarizabilities are carried out using sums
of oscillator strengths and, alternatively, with the excited electron Green function. An estimate is given based
on the model potential method for the contribution of an infinite series over the bound states, including the
integral over the continuum, for second- and higher-order matrix elements. The relativistic approach for
evaluating reduced dipole matrix elements based on the relatimsgEair Hamiltonian and including both the
Coulomb and Breit interactiongonfiguration-interaction methopds analyzed[S1050-29479)06108-9

PACS numbgs): 32.10.Dk, 31.15.Ar, 31.30.Jv, 31.25.Eb

I. INTRODUCTION ~({1snl'L |[Hsd1snI®L,) can be accurately deduced from
these energy separations. So far, precision measurements of

Nonlinear susceptibilities of atoms determining higher-S-T anticrossing separations were performed on te8dl
order effects in their interaction with strong electromagneticconfiguration using laser spectroscddy} and on the %5l
fields have drawn significant attention in recent years. Thigonfigurations using level-crossing and radio-frequency
interest has been caused both by the development of expespectroscopy{2]. In combination with accurately known
mental techniques and by new theoretical approaches for deero-field fine-structure splittings, these results can be ex-
scribing higher-order amplitudes of elementary nonlineamploited to determine experimentally all of the relevant pa-
processes. The level of experimental accuracy in this field ofameters of the fine-structure multiplets, i.e., the exchange
study is sufficiently high to enable the unequivocal determi-integrals, the diagonal matrix elementstdgs and of Hgp,
nation of the numerical values for higher-order susceptibili-and the off-diagonal matrix element. Since there are more
ties and for a straightforward comparison between the exS-T anticrossings than off-diagonal matrix elements, even
perimental and theoretical data. higher-order effects may become apparent.

High-resolution spectroscopic measurements on Hel at- Another type of anticrossing can provide interesting data
oms in external electric fields may be considered as a newvith respect to relativistic and QED corrections isrip con-
impetus for a detailed theoretical analysis of the state vectorigurations. This opportunity has been demonstrated by laser
and matrix elements of this fundamental two-electron sysspectroscopic investigations of the &0~ anticrossing of
tem. Precision measurements at nonzero electric field can, iis3p) P levels. So far, the energy separation of this anti-
particular, be performed at an electric-field anticrossingcrossing has been measured only with an accuracy f
where the energy separation of a pair of sublevels has ®IHz [3]. However, one should bear in mind that here the
minimum and is independent of the electric-field strength inexperimental errors can be reduced by about two orders of
first order. In He |, anticrossings of singlet-tripléd-(T) sub-  magnitude by employing microwave techniques. Neverthe-
levels are found for all 4nllevels withl =2 at electric fields less, even at the present level of accuracy, the measurements
F=<100 kV/cm, which can easily be produced in experi- make obvious that a simple nonrelativistic approach is insuf-
ments. These anticrossings arise from the coupling of singldtcient for explaining the experimental result. The ratio of the
and triplet states by the spin-orbit interactiodgo. energy separation at the anticrossing to the zero-field energy
Therefore, the off-diagonal matrix elementsh,;  separation between the €3p) ®P, and (1s3p)°P, levels
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depends sensitively on relativistic and QED corrections tanalytical expressions for the Green function, together with
the scalar susceptibilities of the fine-structure levels. The exthe formulas used for the irreducible parts of the hyperpolar-
perimental results di3] indicate that these corrections are of izability tensor are presented in the Appendixes A and B.
the order of 1%. After increasing the experimental accuracy
by two orders of magnitude, an extremely sensitive test of Il. FORMULATION OF METHOD
relativistic and QED corrections will become possible. N o _
Therefore, the time has come for careful relativistic cal- 1h€ Polarizabilitya,,  and hyperpolarizabilityy,, , in
culations of the susceptibilities for excited states of heliumEQ. (1) are conveniently expressed in terms of the second-
which involve the most accurate matrix elements, and botfthrough fourth-order matrix elements of the atomic dipole
fine-structure and mixing effects. In view of the situation moment,
presented above, the goal of this paper is a theoretical analy-
sis of the terms up to the order &* in the fine-structure
splitting of the atomic multiplet (43p) *P; (J=0,2) in a
uniform electric field=. We shall show that the fine-structure
splitting in a field deviates from the quadratic law in rather

an,, = 2(nLyw|DGn DInLyw), 2

LUV 24(n LJM' DGnLJDGnLJDG”LJD|nLJM>

_1 _
weak fields, far from the ionizing one for a given level. Such 2a”LJMS”LJM( 31 &)
a deviation corresponds to the fourth-order termg iim the H

) . ; ere
power-series expansion of the energy shift
1 1 SiL,y,(—3)=(nLym|D(Gy,)?D|nL,w), (4)
CE_E. —__ 2_ — 4_ ...
AE_E EO_ 2anLJMF 4| 7nLJMF : ’ (1) and
whereE, is the zero-field energy, and,_ andy,,, are B [my(m|
the dipole polarizability and hyperpolarizability, respec- G(“LJ)_‘m# 2y Em—EnL, ®)

tively. Note that the odd-power terms disappear due to parity
conservation. It is well known that the main contribution tois the reduced Green function of the atom with the energy
the hyperpolarizabilityy,,,, for fine-structure sublevels is En,; the statenL;) being excluded from the sum over the

given by the off-diagonal transition matrix element betweencomplete sefm). The z component of the electric-dipole
sublevels, which can be expressed in terms of the tensanoment of the atom is given b =3;r; cos¢ where the
polarizability of the atomic multiplef4,5]. In order to take summation is carried out over all the atomic electrons.
into account the influence of relativistic effects on this quan- The structure ofanLJM and relativistic methods for the

tity, we use the relativistic configuration-interactid®l)  nymerical calculation of the second-order matrix element in

method, based on theo-pair Hamiltonian and including  gq, (2) were discussed in detail in our previous pafEz],

both the Coulomb and Breit interactiofé—8]. so we shall focus here on the calculation of the hyperpolar-
In Sec. Il, a brief account of our approach is given. Thej;apjjity given by Eq.(3).

key point is th_at_ it is consistent to use relativistic anq non-  After the angular integration, applying standard angular-

relativistic variational wave functions for the evaluation of ,,omentum theory13] allows the static hyperpolarizability

dipole matrix elements, together with experimental transitionensor to be resolved into irreducible paris(nLy) [4]
energies. A description of the Cl method and results of full

relativistic calculations of reduced dipole matrix elements L2
'YnLJMzg

(23+2);
| CiMoy(nLy).  (®)

are given in Sec. lll. These results are compared with the m
values obtained using the Fues model-potential method

[10,17 in Sec. IV. A new approach for determining the pa- The irreducible parts of the hyperpolarizability may be pre-
rameters of the Fues model potenfia?] is presented here. sented in terms of the fourth-, third-, and second-order re-

Numerical results and discussions are given in Sec. V. Soméuced matrix elements of the dipole moment,

(nLy[DlInyLy ap{nily J1||D||n2|-2 3,2l J2||D||n3|-3 3 (N3ls J3||D||nLJ>

ninyng (EnlL1 Jl_EnLJ)(EnZL2 JZ_EnLJ) (En3L3 33_ EnLJ)

5313233 _
Libols

(nLylDlInLy 5 ){niLy 5, [DlnLy) _ (nLy[DlnsLs 5 )(nsls 5 IDIINLy)

—63,30LL , @)
Z T2h EnlL1 Jl_EnLJ n3 (En3L3 33_ EnLJ)2

*Atomic units are used throughout the paper.
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as follows: It should be noted that the general expression for the hy-
_ perpolarizability (6) is similar to that of the polarizability,
_ > (2J+1-j); — 1)1 which can be written in terms of the scalaf and tensoxt)
Yi(nLy) =24 —s—————| (=D
(23+1-])j+1 parts

j10 ~jo0
XJ% H1112C1%10C1%10C110120 3M2—J(J+ 1)
_ S t
11 jl] 11 jz] B I N PAES TR ©

X

i d1 i " The irreducible parts of the hyperpolarizabili(§) are non-

O (8)  zeroforj=0,2,4, and, therefore, the fourth-order term in Eq.
J J J2 L1L2L3 1-2-3

(1) is in general determined by only three invariant atomic
Here the standard designations for Clebsch-Gordan coeparameters. The firsgo(nL,), corresponds to the scalar part

ficients, Pochhammer symbolg),, 6-j symbols, and re- Of hyperpolarizability, y,(nL,) corresponds to the rank-2

duced matrix elements of the atomic dipole moment are usetgnsor part of hyperpolarizabilityy,(nL;) determines the

[13], and 1‘[JlJ2 _____ JN:HhHiz' . JN =\2j+1. Ex- tenslor part of rank 4. -
pressiong7) and(8) can be simplified further for partlcular Finally, the hyperpolarizabilityy,_, can be represented
sets of atomic quantum numbeld.. in a general form 5]
|
3M?-J3(J+1) 3(5M?—J32-2J)(5M?+1—J%)— 10M?(4M?—1)

YnLy,, = Yo(NLy) + ya(nly) (10)

J(23-1) Tva(nLy) J(2J—1)(23—-2)(23-3)

This result may be used directly for determining the en-order inF, we have to calculate the matrix elements in this
ergy of a nondegenerate state of an atom. In the case @fguation to the same order. The second- and fourth-order
degenerate states the diagonalization procedure should lserrections to the diagonal matrix elements are determined
used for the atom-field interaction Hamiltonian. Then theby the polarizability and hyperpolarizability tensors given by
above expressions are valid for the diagonal matrix element&gs. (9) and (10). For the off-diagonal matrix elemei;;
of the atom-field interaction, but in this case all the sublevelsvhich is of second order iffr, it is sufficient to take into
of the degenerate state should be excluded from the sum faccount only the first nonvanishing term of the correspond-
the reduced Green functigb) (see, e.g.[14]). ing power series because it always appears in the secular

In view of the goal of this paper, let us consider the en-equation(11) in a product with another nondiagonal matrix
ergy separationsg,= Eg 3p,~ E, 3p, between fine-structure element.V;; can be expressed in terms of the tensor polar-
components with magnetlc quantum numbér=0. Since izability of the 1snp®P, state[4,12]
the zero-field separationl) between these components is

essentially less than the energy separations between states F2 .
with different principal and/or orbital quantum numbers, de- Voo=— Ta'n?’pz- (12)
generate perturbation theory should be used for determining 2

the energy shift.

Therefore, the energy shifE, =E—E is the so- We now substitute the expressions for the matrix elements

nL nL
lution of the secular equation ™ o into Eqg.(11) to obtain the corresponding power series for the
energy separatiody,(F) in a uniform electric field. Since
def|AE,,,, 830 — Vay[=0. (11)  the degenerate basis consists of only two states, this equation

is easily solved analytically, and it is possible to calculate the
When determining the energy corrections up to the fourtHeading terms in thé& power series:

1 1 2
S0 F) = \/[ 5(0)— _|:2( aﬂSP ‘;3P2) B ﬁF‘l( Yndp ™ 7“3'32) + 2F4( a:13P2)2 5(0)_ ) n3P0 a3 + an3P )

t 2
( n3p2)

1
__F4[70 N3Pg) — o(N3P2) + ¥2(N3P,) — 6 y4( 3P2)]+F4W+“'- (13
02
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The second expression here appears as a power-series
resolution for the square root in the first line. It coincides D=4 2 Cjimim aka|0). (15
with the field-dependent splitting of the fine-structure sublev- Mk
els as calculated in nondegenerate perturbation theory whighere 7,,= 1/\/5 if k=1 and 5,,=1, otherwise. The coeffi-
may be used when the field-dependent contribution is mucBients C|{™) are configuration weights for the initiafinal)
smaller than the field-free splittingyy . The last term deter- state determined variationally, seeking extrema of the expec-
mines the main contribution to the difference between theation value of theno-pair Hamiltonian including both the
sublevel hyperpolarizabilities due to the largest contributionCoulomb and Breit interactions. The wave function is subject
(with n,=n andL,=L, hence, with the smallest denomina- to the normalization condition
tor) in the sum oven, of Eq. (7). Evidently, as noted earlier
[4,5,17, this term (we shall call it “the resonant term” > |ICi{P|?=1. (16)
appears already in the second-order perturbation theory for 1=k

degenerate states. The previous term, also of fourth order Biscussions of the relativistic Cl problem for heliumlike ions

F, appears only in fourth-order perturbation theory and 8Cincluding extensive comparisons of Cl energies with experi-

cognts_for thg “nonresonant” contributions to the.hyperpo-ment have been given in Refd,8]. The electric-dipole op-

Iarlzablhty (with n2¢n and/orquﬁ L). However, this term eratorQ,, in second-quantized form is given by

may provide a contribution at the level of a few percent to

the total fourth-order correction, which amounts in the vicin- Oy = 2 (ry):ala 17)

ity of the anticrossing to a half of the total field-dependent M D MAE

part of the splitting(13). Thus, the contribution of the “non-

resonant” terms of the hyperpolarizability may be approxi-Wherery is a one-particle dipole matrix element of theth

mately equal to that caused by the relativistic corrections t¢omponent of the coordinate vector in a spherical basis. By

the polarizability and may be rather important when compar€@lculating the matrix element of the many-body electric-

ing the theoretical results with high-precision experimenta/diPole operator in the Cl basis and performing the angular

data. redugnon, one ob_tams an explicit expression fqr .the r(eé()juced
Accurate calculations of the reduced matrix elements fofMallix €lements in terms of the weight coefficierty)

the components of the polarizability and hyperpolarizability9'Ven by Ed.(44) of Ref. [6]. Of particular importance in
require reliable wave functions which should give correctc@lculating reduced matrix elements relativistically is the in-

values for both of the quantities. The calculations of theclusmn of cqntrlbutlons from the negative-energy states. As
. Lo . . -our calculations are performed using the-pair Hamil-
atomic susceptibilities were carried out using a sum of oscil;

) o tonian, contributions from these states are naturally not in-
lator strengths. To include relativistic effects, we used pre y

. ativisti f. - . loulati ¢ ‘cluded and must be added in separately. In Ré&f, the
cise relativistic configuration-interaction calculations o re'importance of these contributions was addressed in detail by

duced dipole matrix elementsee the next sectionTo 5ing second-order QED perturbation theory with the full
control the results we have also carried out similar calculaggmijltonian (rather than theno-pair Hamiltonian used for
tions with the Fues model-potential method. A simple anathe present calculationsWhile contributions from negative-
lytical presentation for the model-potential Green functionenergy states were found to play an important role in the
enables us to evaluate the contribution of the higterms  velocity gauge for electric-dipole matrix elements, such con-
(including continuum which are neglected in the finite-sum tributions in the length gauge were insignificant. As dis-
approach. Details of the calculations and numerical resultsussed in[9], the relative contribution of negative-energy
are presented in the following sections. states for allowed E1 transition amplitudes calculated in
length gauge is of ordew*Z3. As a result of such analysis,
our calculations are presented in the length gauge. As a first

IIl. RELATIVISTIC CONFIGURATION-INTERACTION step in our calculation, we obtain the Cl wave functions for
CALCULATIONS OF REDUCED DIPOLE MATRIX the initial and final states. The numerical methods used to
ELEMENTS evaluate the weight coefficien@{™) are described in Refs.

i L ) , 7,8]. The single-particle basis orbitals used in the Cl expan-
The configuration-interaction method has been previousl%ion consist of a subset of 20 out of 8aspline basis func-
used to obtain high-precision wave functions and matrix elyjons for each partial wave. The accuracy of matrix elements
ements of atoms with a few electrons, especially for heliumyyas tested by slightly changing the cavity radius and number
like ions. In this section we follow the techniques of R&  of included splines. The numerical accuracy achieved is at
to calculate the reduced matrix elements for resonant termge level of number of quoted figures in Table I. The con-
in the polarizability and hyperpolarizability expansions. Theventional approach to Cl calculations is to perform a se-
wave functions for the atomic states are obtained from relaguence of calculations with increasing number of partial
tivistic Cl calculations. For the initiaffinal) state, we write  waves included and then to extrapolate the sequence of val-
ues to a number corresponding to an infinite set. In the par-
ticular case of dipole matrix elements we find that this se-
v o= cEe (14) quence of v_alues saturates very early and, hen_ce, the results
IF)™ & okl ks for a set which includes thg, p, d, f, andg partial waves
are found to be sufficient.
Finally, in Table | we present the calculated values of
whered,, are configuration state functions coupled to givenreduced dipole matrix elements relevant to resonant contri-
values ofJ,M, and parity, defined by butions to the polarizabilities and hyperpolarizabilities for
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TABLE I. Reduced matrix elements of electric-dipole operator  The FMP method, similarly to the QDM, is based on the

(a.u) for He I. Rydberg formula for the relation between the energy and the
effective principal quantum number,, of an atomic level
Transition Value Inl, that is,
In"L3)—(nLy) (n'Ly[DInL;) ,
Z
1s3p °Py—1s3s°S; —6.4797 En=——5. (18)
1s3p 3P,—1s3s3S, —14.489 2vy)
1s3p ®Py—1s3d °D 8.2923 . . . :
p3 o a whereZ is the charge of the residual ion. Here, the notation
1s3p 3P,—1s3d 3D, 1.8542 : .
153p °P,—153d °D 71805 I is used for the valence-electron angular momentum, in con-
13 3P2 Le3d 3D2 16.994 trast with the total atomic angular momentum Therefore
1s4$3F 2_’1 s3d 3D3 _1'3 68 L=I if the angular momentum of the atomic core is zero.
S 2 Se0 P : The corresponding radial wave function of the state has the
1s4f F3—>1$3d D2 —16.66 hydrogenlike form,
1s4f 3F,—1s3d D, —5.887
1s4f °F;—1s3d °D, —5.886 2 Z% n,! 2Zr\M
3 3 _ R.=(—DKke—e\[m—— [ —
1s4f 3F,—153d D5 0.9953 n=(—1) z \ NS VT
1s4f 3F,—1s3d 3D, —20.03 n
27r
xe-Z”VmLﬁM”(—), (19
r Vni

the cases considered in this paper. The signs of the matrix
elements were set consistently with the phase conventioand depends on the choice of the radial quantum number
used in Fues model-potential calculations, discussed in th@hich in turn determines the effective angular-momentum
next section. quantum number),;= v, —n,—1 (a smooth dependence of
\; on energy of the level in most cases may be neglected

If we require the experimentally observed set of valence-
electron states with angular momentlino be complete, the
value ofn, =0 must be taken for the lowest of theit0,11],
consecutively increasing by unity for higher states. This defi-

The Fues model potenti@FMP) for describing the states hition caused substantial inaccuracy for the radial matrix el-
of a valence electron in a many-electron atom is a ratheements(nl|rtn’l") with L=1 (up to 50% in absolute value,
useful tool for simple and straightforward calculations of thewith an opposite sign in some cases, since the phase-factor
optical transition amplitudes in any order of interaction be-integer powerk was taken always to be zerdrhat is why
tween an atom and an external electromagnetic field. It wate nodeless ground-state radial wave functi¢t® were
proposed by Simong.0] as an analytically solvable example usually replaced by the one-node QDM wave functions
of an atomic pseudopotential which may be used in generat10,11. Such a replacement is equivalent to another defini-
ing valence and Rydberg orbitals for calculating oscillatortion of the radial quantum number, i.@,=1 for the ground
strengths and ionization amplitudes. Later on, an analyticastate and the effective angular momentumv,—2, instead
expression for an atomic Green’s functifirl] was derived 0of A=v,—1, wherev, is the effective principal quantum
with the help of the FMP which was quite effective in cal- number of the ground state. Such a modification of the defi-
culating numerous higher-order transition amplitudes andition for X implies the existence of an additional “imagi-
electromagnetic susceptibilities determining various pro-nary” state with the effective principal quantum number
cesses of interaction between atoms and intense figlds vim=vy—1, since the set of stat¢$9) should be complete.
Being of an asymptotic nature relative to the valence-But being of a very low energ)Eimz—ZZ/(Zvﬁn),and, con-
electron position vector, the FMP provided accurate nu- sequently, having a very short-ranged wave function, the
merical results for the matrix elements of positive powers of‘imaginary” state cannot provide significant contributions
the absolute value af, specifically for atoms with a single to the optical transition amplitudes in higher orders.
valence electron or the one-electron excited states of an atom The modified definition of the radial and effective
with a few valence electrons. angular-momentum quantum numbers seems preferable

However, it was noted that the method, while giving quitewhen using the FMP in numerical calculations involving the
accurate results for excited states, failed to do so for thground, metastable, and possibly some low-lying states with
transitions involving the ground-state wave functions, eversmall angular momenta. The value &=n—I1—-n,—1
in atoms with a single electron in the valence shell or forshould be taken in the phase factor 1), in accordance
those involving the metastable states of atoms with severalith the asymptotic phase of the corresponding hydrogenlike
valence electrons. In these cases the wave function of amvave function.
other asymptotic method—the quantum defect method Table Il lists the results of numerical calculations
(QDM)—was much more precise in numerical calculationsof the “oscillator strengths,”  f,s3p(—2)
[10,11. We propose here an approach for determining the=2|(n’ 3S,|d,|3 3Pg)|%(E, s— Esp) corresponding to the
parameters of the FMP providing accurate numerical resultdipole transitions from the first nine3S, states to the 3P,
in calculating static optical characteristics without resortingstate in helium which are required to determine the higher-
to any other kind of wave function for the states of atom. order matrix elements for the static polarizability and hyper-

IV. FUES’'S MODEL-POTENTIAL METHOD
IN CALCULATIONS OF OPTICAL TRANSITION
AMPLITUDES IN ATOMS
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TABLE II. The contributions of n’s %S, intermediate states on the polarizability a3 P, state of

He I [11].

n, fn’S,SP(_2)|)\O=0.698 fn’S,SP(_2)|)\O:70.302 fn’S,SP(_2)|CI,var.meth
2 ~0.34 ~1.67 ~1.57
3 —2377.93 —2682.56 —2638.45
4 451.87 319.37 312.17
5 25.38 18.27 17.92
6 6.36 4.60 472
7 2.59 1.88 1.85
8 1.34 0.97 0.96
9 0.79 0.57 0.57

10 0.51 0.37 0.34
S —1888.6 —-2337.7 —2301.50

polarizability of the 33P, state. The principal quantum num- Magnitude smaller than the nonresonant ones#(n), the
bers of the 3S states are given in the first column. The '€Sonance terms totally dominate the sum. For these transi-
second column presents the oscillator strengths as calculatignS: We used precise relativistic CI calculations of reduced

in the FMP approximation with the usual choice of the radialg;ggg 22:2)3( erim:a:}fm;;gg g]atlrjl.;(inelerr?o?wnrgaft?\;isttr;g \(/)gr]izr—
guantum numben, =0 for the lowest triplet state of the He y g

atom, 2 3S;, giving the value of the effective angular- g(r)engli:ﬁtg][ls]' The convergence of the method is consid-

momentum quantum number for thS statesho=0.698. Using this approach, we have calculated relativistically
The third CO'””;” corresponds to the modified definition ofihe scalar and tensor polarizabilities of helium excited states.
n =1 for the 2°S, state, with\o=—0.302. High-precision  for example, the resonant term for the scalar polarizability
variational values for the oscillator strengtfs3] and nu-  pad the form
RnJ’Lfl L J &
nJL JI L _ 1 1

merical data of the Cl methd®] for n’ =3 are presented for 5 2

comparison in the fourth column. The result of summationas(Lrgz _Z 2
overn’ is also given in the bottom line of the table. The " 3| EnL,~Eni-1,
advantage of the modified definition of the parameters for the

L(2J'+1)

FMP wave function is evidenfess than 1.6% discrepancy (L+1)(2Y+1)| . 4q) L J 1)
against more than 20% of the usual apprgaahd may be +Z T RaiL 3 L+1 1 '
much more significant for higher-order amplitudes. J nky  Enbtly

We have also computed in the FMP approximation the (20)
matrix elements of Table Il. They differ in magnitude from L
the data of Table Il by less than 1%, if the modified defini-where R);; = =(n’J’'L’|r[nJL) are the radial matrix ele-
tion of the angular momentum is used, while for the tradi-ments. The singlet-triplet mixing corrections between states
tional definition this difference is as much as 20%. with the samen,L, and J in Eq. (20) are considered in

The main difficulty in the exact computation of the am-[11,12. The numerical values for the mixing parameter
plitudes of second to fourth orders in Eq®) and (3) is cog6,), J=L
related to the infinite sums over the total atomic spectrum nLL:[l J£L
including the continuum, which represent the Green function '
(5). Therefore, for practical numerical computer implemen-are listed in[12].
tation of the perturbation theory it is necessary to have the As seen from Eqs(7) and (8), the components of the
most convenient representation for the Green function. In ouhyperpolarizability have a more complicated resonance de-
calculations we used the analytical representation of th@endence. Therefore, it is convenient to divide the compo-
Green function for the Fues model potentiAlppendix A nents (8) into resonant and nonresonant parig= Hres)
based on the Sturm-series expanditf]. Thus, the radial + yj(”"“). As was already pointed out, the resonant pait)
matrix elements, to which the polarizabilities and hyperpo-is determined by the tensor patf, ~of the multiplet polar-
larizabilities may finally be reduced, can be presented in th‘f"zability and the fine-structure spIthtin@JJ, _ Such resonant

fo““f! Ofl absoluttelty converging series, well suited for the NU-contributions to the irreducible parts of the hyperpolarizabil-
merical computations. ity are given in Table Il for am 3P, state. Generally speak-
ing, since the fine-structure splitting, is about one order of
V. RESULTS AND DISCUSSION magnitude less thady,, the resonant terms with the factor
o _ 1/6,, dominate in these expressions. But they cancel exactly
Accurateab initio calculations of thev,, | andy,. , are  jn full expressions for the hyperpolarizabilities of states with
not routine because both relativistic and electron correlatiothe magnetic quantum numb&t =0, as may be verified
effects can be very important. Note that in EG9.and(5),  from Eq. (10). It is easy to see also that the terms with the
the transition energies appear in the denominator. Since thfactor 145, cancel out of the hyperpolarizability of states
resonance energies withf =n are typically two orders of with M=1. And at last, all the resonant

(21)
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TABLE lll. Resonant contributions to the irreducible parts of the hyperpolarizability 3R ; states.

J 76°(n °Py) 75°(n°Py) 74°(n°Py)
0 (arn3p,)? 0 0
502
1 (cu:1 3P2)2 g(a:] 3p2)2 0
512 2512
2 | 4 4.9 3t , 8 N 9 18, t , 2 3
5(a 3P) &2 01y 7lan 3P2) S0z O12 ss(ap 3P2) S0z 012
terms cancel out of the hyperpolarizability of the state with ,yj(non)(nLJ): ')’j_"-)”j (23)

M=2,ie., (res) _=0, in complete accord with the fact that

this state has no degeneracy and is not mixed to any otheXfter calculating the sums over total angular momenta of

sublevel of then 3P state. intermediate states, the expressions for the two components
Note that the resonant part appears in the hyperpolarizef the nonresonant hyperpolarizability of an atom in a triplet

ability if we use the nondegenerate perturbation theory fostate may be written as follows:

separate sublevels of an atomic multiplet. In this case the

resonance terms are retained in the sums over the atomic_

basis[the sum ovemn, of Eq. (7) or the sum for the Green  ¥;=24(—1)7*- " I7I1

(2J+1—j)1}1’2

+ .
function (5)]. (2J+2);
In the perturbation theory for degenerate staf&§], j 110 i i
which deals with the secular equatiéhl), the resonant hy- 13 3 E 10,18 1 £ 1% 1202 g,
i1z

perpolarizability is extracted out of the fourth-order terms
self-consistently. Thus the resonant hyperpolarizability is L, j, L L, 1 L,
presented explicitly by the last term of E4.3) while the rest [ ]E CLo 1L 10‘ ’
of the y components in this equation include only the non- L ! - ju L1

resonant part. Ly 1 L
O[J }

N ) L30 ~Lg0 1111
To ca(t!]((:#)late the nonresonant hyperpolarizability compo XE C3 . C L0 1 L1 RL1L2L3 (24

nents,y;" ", we have to remove from the seri¢g) [or
alternatlvely, from the Green functidp)] all the degenerate
substates and to carry out the summation over the rest of trend
atomic basis. Some of the calculations may be carried out
analytically with the use of the angular-momentum algebra oAtz (23+1—]);]"2

reducing the right-hand side of E(B) to a combination of N W

the radial matrix elements.

We take into account the fact that the nonresonant contri- 110 ~is0 Ji )2 )
bution to the hyperpolarizability is not more than 2—-3 % of E Hmzclo 110 10C110 2003 3 3
the total value ofy. So the relativistic effects may be ne-
glected in their calculations. In this case the radial matrix ji L L j» L
e!ement(nl_\]lL1|r|n2J2L2), Which represents the r_educed 1 3 3 X 1 3 3 E (CLO 1
dipole matrix element between triplet states according to the

relation[15] L, 1 E (CL30 L; 1 L Ri01
jl LO 1 '2 L 1 L3L3'
Jo+L L 0

(n1d1L4[|D[nyd,L ) = (—1)"%2" Uly,0,0,CL ,010 (25)

1L, ) . . .

% (nJ1Lq]r|nod,L,), Here the notation for th&lth-order radial matrix element
1 J, is used,
(22) NNy, ...,n n n n n n
R._i._zz ,,,,,,, L“"\|“=<nLJ|r 1gyragyre. - r™Ngy riNeanl ).

may be considered to be independent of the total momenta, (26)
and the sum oved,,J,,J; in Eq. (8) may be calculated
analytically. Since the Kronecker symbols of E@) elimi- The Sturm-series resolution for the Green function in the

nate the sum ovel, and ovell,, it is convenient to separate FMP method(see the Appendix Amakes it possible to de-
the irreducible part of hyperpolarizability into two terms,  rive
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TABLE IV. The numerical values for the components of polar- 502=8249 MHz was obtained earli¢B]. These theoretical

|z?2|!tlé/ )ﬁ]%s;éfinec:iutr:e nonresonant part of hyperpolarizability data and the corresponding experimental valaé 502
Y] J ' =8257t5 MHz are not in a satisfying agreement. The dif-
ference between the theory and experiment is not acceptable

Component Direct summation Model potential and necessitates further investigations, both on the experi-
s 17203 17266 mental and theoretical side.

Z§3P° E& 17193 17255 As pointed out in the Introduction, the level of the experi-
$3Pz mental accuracy can be increased significantly by using more

@33p, [4] 35165 374.16 elaborate experimental techniques. On the other hand, the

¥5°"(3 °Po) —7.084x 10" —7.077x 10" theoretical consideration of higher-order effects requires a

Y3 3p,) —7.073< 10" —7.065< 10" development of the effective method of perturbation theory

Y53 3p)) —3.602x< 10" —3.573x 10* as applied to processes, taking into account both relativistic

Y3 3p,) —7.069% 101 —7.061x 101 and correlation effects by aab initio calculation of compli-

Y4ro(33p,) 7.142¢ 1010 7.079% 101 cated spectral sums in the nonresonant case.

Y3 3P,) 1.862x 10° 1.996x 10

VI. CONCLUSIONS

the hypergeometric-type series representation for the radial In connection with laser spectroscopy measurements
matrix element(26) which converges absolutely and may be which have been carried out and are planfigf we have
calculated numerically to any desired precision. Typically,calculated the higher-order dipole susceptibilities for the
five to six terms in the serieA2) are sufficient for the 1s3p 3P, and 1s3p 3P, states of helium. The usual assump-
relative accuracy of 1% [5,11]. The Sturm series account tion, that the major portion of the relativistic correction to the
also for the contribution of the continuum, so a reliable con-scalar polarizability is determined by the transition energy
trol is ensured for the accuracy of calculations with the finiteand not by the matrix elements, was also taken into account
sums of oscillator strengths. by combining precise variational calculations with the ex-
To verify the contribution of states neglected in the finite perimental transition energies. Simple expressions have been
sums, we compared the numerical results for the radial masbtained which can be used to estimate itdependence by
trix elements of second, third, and fourth order, which appeatalculations of the susceptibilities in the resonant approxima-
in calculations of hyperpolarizability componer®4),(25),  tion.
as computed in the FMP approximation with the use of the The present study may be important for further experi-
Green function and the finite sums of oscillator strengthgnental investigations of the 0<0~ anticrossing measure-
without account for the continuum. The relative differencements in He |, where the experimental accuracy can be im-
between the two values does not exceedl® 2 when both  proved considerably, in particular, by using microwave
sums are computed to a relative accuracy not less thah. 10 spectroscopy. Another interesting example of the field-
This is about the best possible precision for the sums ovestrength dependence, namely, the splittiig(F) between
the discrete spectrum since, e.g., the triple summation ithe fine-structure sublevels with total angular momedta
strictly divergent(the single and double summations are con-=1 andJ=2 and the magnetic numb& =1 may also be
vergenj [16]. However, a few lowest terms in every sum studied on the basis of our data. On the other hand, the hy-
usually form a convergent sequence which is sufficient tgperpolarizabilities themselves are of current interest because
obtain the accuracy indicated above. of their relevance to optical harmonic generation through the
The numerical results fou, 3p, and 7(3”533 are listed in  interaction of intense beams of light with helium atoms.

Table IV. Only nonresonant contributions which may be
used directly in Eq(13) are presented. For calculating the
resonant contributions, the data for the tensor polarizability
and the expressions of Table Il may be used. As seen from This work was supported by the Russian Foundation for
these data and Eq13), the relativistic Cl method gives for Basic ResearckiRFBR Grant Nos. 96-02-00257 and 97-02-
the minimum of 6o(F) the value §,,=8231 MHz at the 16407 and by the Deutsche Forschungsgemeinsdl@fant
point of the 0" X0~ anticrossing aF =152.6 kv/cm. The NO. 436 RUS 113/164/®,5]. The work of A.D. and
corresponding results given by the FMP approximation’V-R-J. was supported in part by NSF Grant No. PHY 95-

802=8234 MHz andF=147.6 kV/cm are in a good agree- 13179.

ment with the preceding data. Finally, the field correction of

the order ofF* contributes about 2.7% of the total shift at the APPENDIX A: ANALYTICAL REPRESENTATION
point of the anticrossing and gives a fairly large deviation OF THE GREEN FUNCTION EOR THE FUES’ MODEL
from the quadratic Stark effect which may be essential POTENTIAL

within the limits of the experimental accuracy.

It should be noted that a calculation of the energy separa- The angular variables of the valence electron may be
tion 8p(F) by using Eq.(11), which includes the other ex- separated in the Green functi®x(r;,r,) corresponding to
cited states with.#1, leads to the resul,,=8244 MHz. the energyE by resolving into infinite series over a
Independently, also by matrix diagonalization the resultspherical-harmonic bas|$,11]:
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- - - N 8 1
Ge(rl,rz):% 9i(E;re,ra)Yim(n) Y (ny), (AL Yo 3p ) = 5( RILL §R81R381)
- - + 3_ 2R1111_ E(R11R101+ RllRlol)}
wheren=r/r is the unit vector, and the coefficients of these 45| =210 gt7"2 TR0 T TR0 22

series are the radial Green functions, which in turn may be

: ; : 272 50 32
resolved into Sturm-function series, n 2_25[ R%ﬁl_ = %1R%21 n Z_SR%%'
(B1)
4z | X+x'
9(E;r,r)==——-(xx") exp —
0 ? (non)( 4 3 8 i Lon 101
non
. ) Yo (N Pl):—(Rom__Ro Roo)
. k!Li)"H(X)L?"H(X ) 9 2
=0 I'(k+2N+2)(k+ N +1—v)’ 2 7
| | o) + 2| 2RI < (RERI RRY)
272 67 32
+ 2SRl = plip1ol) —Rllll,
where x=2Zr/v, v=2Z/(—2E)*? and L} (x) is the La- 225[ 212 g 2 22| 25 2%
guerre polynomial. The poles of the radial Green function (B2)

g,(E;r,r") correspond to the hydrogenlike energigs =

—Z%12v2, with v=vy=n,+\,+1. Here,n,=0,1,2... is

the radial quantum number and is the effective orbital 4

momentum. The residues at these poles are equal to the prod-y5"°"(n®P;)= 5( RaTs— ERélRégl)
ucts of corresponding radial eigenfunctions given by Eq.

(19). Other representations for the Green function of the Fues 6. 1111 7 11101, —11-101
2R515— g(Rz Roo +RoR22)

model potential were given ifb]. + 15

Note that the series in EqA2) converge for allr,r’
(exc[uding the poi'nrz'r’=0)' yvhepl;<0. The advantage_ ﬁ 1111 1_3 11101 E 111
of this representation is that it is similar to the representation + 555 Rarz = 77Re Raz | + 77gRes2
of eigenfunctions in which effective wave functions for in-
termediate states are polynomials times exponentials, similar (B3)

to the bound-state wave functions, but with one and the same
argument for all of them. Such a representation includes the
sum over bound states and the integral over continuum.

The reduced Green function, corresponding to the energy
of a bound leveE,,, is defined by a limiting procedure

8 17
%P 5 RitE- SoRERE

2 107
- R LR D)
d 272 1111 1007 115101 32 1111
GR(En,;r,r’):E[(E—En,)G(E;r,r’)], E—Eq. +E[R212_1020R2 R22 +2_5R232 ,
(A3) (B4)
The radial parts oGR(E,,;r,r’) are presented iff].
The expression in the right-hand side of E41) is par- ,y(non)(n 3p)=— §< 1111 2—5R11R1°1)
ticularly convenient when the contribution to the energy shift *2 2 9| 010 4270 TH00
or the amplitude of a radiation process under consideration is 5 151
given by a finite number of the partial terms in this expan- _ 3_ 1111 i 115101, 5115101
. : 2R51p (RyRyo +RgR32)
sion, for example, because of the selection rules. 45 168
_ E[ 1111 £7R11R101} _ ERllll
APPENDIX B: RADIAL MATRIX ELEMENTS 225 22 294772 22 | 175 %32
We here present the formulas for the irreducible parts of (BS)
hyperpolarizability(8) written in terms of the radial matrix
elementg26), as calculated according to Eq23)—(25). The g
expressions given below for the irreducible parts of hyper- _(non) . 3p y_ _ 11, pll 101, p101
polarizability differ from those of Refl4], where the fine- va" (N 7P2) 225X 35(5R0 +Rz)(5Rg + R3z).

structure effects were not taken into account: (B6)
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