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Higher-order Stark effect on an excited helium atom
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Degenerate perturbation theory is used to study dipole susceptibilities of an excited helium atom in an
external electric field. The dependence of the perturbed energy of levels in atoms on fine-structure effects and
on the higher-order Stark effect is investigated. Numerical results have been obtained for the (1s3p) 3P0 and
(1s3p) 3P2 states of helium. The magnitude of the electric field and the energy separation at the 02302

anticrossing are calculated. Calculations of polarizabilities and hyperpolarizabilities are carried out using sums
of oscillator strengths and, alternatively, with the excited electron Green function. An estimate is given based
on the model potential method for the contribution of an infinite series over the bound states, including the
integral over the continuum, for second- and higher-order matrix elements. The relativistic approach for
evaluating reduced dipole matrix elements based on the relativisticno-pair Hamiltonian and including both the
Coulomb and Breit interactions~configuration-interaction method! is analyzed.@S1050-2947~99!06108-9#

PACS number~s!: 32.10.Dk, 31.15.Ar, 31.30.Jv, 31.25.Eb
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I. INTRODUCTION

Nonlinear susceptibilities of atoms determining high
order effects in their interaction with strong electromagne
fields have drawn significant attention in recent years. T
interest has been caused both by the development of ex
mental techniques and by new theoretical approaches fo
scribing higher-order amplitudes of elementary nonlin
processes. The level of experimental accuracy in this field
study is sufficiently high to enable the unequivocal deter
nation of the numerical values for higher-order susceptib
ties and for a straightforward comparison between the
perimental and theoretical data.

High-resolution spectroscopic measurements on He I
oms in external electric fields may be considered as a
impetus for a detailed theoretical analysis of the state vec
and matrix elements of this fundamental two-electron s
tem. Precision measurements at nonzero electric field ca
particular, be performed at an electric-field anticrossi
where the energy separation of a pair of sublevels ha
minimum and is independent of the electric-field strength
first order. In He I, anticrossings of singlet-triplet (S-T) sub-
levels are found for all 1snl levels withl>2 at electric fields
F<100 kV/cm, which can easily be produced in expe
ments. These anticrossings arise from the coupling of sin
and triplet states by the spin-orbit interactionHSO.
Therefore, the off-diagonal matrix elementshoff
PRA 601050-2947/99/60~2!/986~10!/$15.00
-
c
is
ri-
e-
r

of
i-
-
x-

t-
w
rs
-
in
,
a

n

-
et

;^1snl 1LLiHSOi1snl 3LL& can be accurately deduced fro
these energy separations. So far, precision measuremen
S-T anticrossing separations were performed on the 1s3d
configuration using laser spectroscopy@1# and on the 1s5l
configurations using level-crossing and radio-frequen
spectroscopy@2#. In combination with accurately known
zero-field fine-structure splittings, these results can be
ploited to determine experimentally all of the relevant p
rameters of the fine-structure multiplets, i.e., the excha
integrals, the diagonal matrix elements ofHSS and of HSO,
and the off-diagonal matrix element. Since there are m
S-T anticrossings than off-diagonal matrix elements, ev
higher-order effects may become apparent.

Another type of anticrossing can provide interesting d
with respect to relativistic and QED corrections in 1snpcon-
figurations. This opportunity has been demonstrated by la
spectroscopic investigations of the 02302 anticrossing of
(1s3p) 3P levels. So far, the energy separation of this an
crossing has been measured only with an accuracy of65
MHz @3#. However, one should bear in mind that here t
experimental errors can be reduced by about two order
magnitude by employing microwave techniques. Nevert
less, even at the present level of accuracy, the measurem
make obvious that a simple nonrelativistic approach is ins
ficient for explaining the experimental result. The ratio of t
energy separation at the anticrossing to the zero-field en
separation between the (1s3p) 3P0 and (1s3p)3P2 levels
986 ©1999 The American Physical Society
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depends sensitively on relativistic and QED corrections
the scalar susceptibilities of the fine-structure levels. The
perimental results of@3# indicate that these corrections are
the order of 1%. After increasing the experimental accur
by two orders of magnitude, an extremely sensitive tes
relativistic and QED corrections will become possible.

Therefore, the time has come for careful relativistic c
culations of the susceptibilities for excited states of heliu
which involve the most accurate matrix elements, and b
fine-structure and mixing effects. In view of the situatio
presented above, the goal of this paper is a theoretical an
sis of the terms up to the order ofF4 in the fine-structure
splitting of the atomic multiplet (1s3p) 3PJ (J50,2) in a
uniform electric fieldF. We shall show that the fine-structur
splitting in a field deviates from the quadratic law in rath
weak fields, far from the ionizing one for a given level. Su
a deviation corresponds to the fourth-order terms inF in the
power-series expansion of the energy shift1

DE5E2E052
1

2
anLJM

F22
1

4!
gnLJM

F42•••, ~1!

whereE0 is the zero-field energy, andanLJM
andgnLJM

are
the dipole polarizability and hyperpolarizability, respe
tively. Note that the odd-power terms disappear due to pa
conservation. It is well known that the main contribution
the hyperpolarizabilitygnLJM

for fine-structure sublevels i
given by the off-diagonal transition matrix element betwe
sublevels, which can be expressed in terms of the ten
polarizability of the atomic multiplet@4,5#. In order to take
into account the influence of relativistic effects on this qua
tity, we use the relativistic configuration-interaction~CI!
method, based on theno-pair Hamiltonian and including
both the Coulomb and Breit interactions@6–8#.

In Sec. II, a brief account of our approach is given. T
key point is that it is consistent to use relativistic and no
relativistic variational wave functions for the evaluation
dipole matrix elements, together with experimental transit
energies. A description of the CI method and results of
relativistic calculations of reduced dipole matrix eleme
are given in Sec. III. These results are compared with
values obtained using the Fues model-potential met
@10,11# in Sec. IV. A new approach for determining the p
rameters of the Fues model potential@12# is presented here
Numerical results and discussions are given in Sec. V. S
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analytical expressions for the Green function, together w
the formulas used for the irreducible parts of the hyperpo
izability tensor are presented in the Appendixes A and B

II. FORMULATION OF METHOD

The polarizabilityanLJM
and hyperpolarizabilitygnLJM

in
Eq. ~1! are conveniently expressed in terms of the seco
through fourth-order matrix elements of the atomic dipo
moment,

anLJM
52^nLJMuDGnLJ

DunLJM&, ~2!

gnLJM
524@^nLJMuDGnLJ

DGnLJ
DGnLJ

DunLJM&

2 1
2 anLJM

SnLJM
~23!#. ~3!

Here

SnLJM
~23!5^nLJMuD~GnLJ

!2DunLJM&, ~4!

and

G(nLJ)5 (
um&ÞunLJ&

um&^mu
Em2EnLJ

~5!

is the reduced Green function of the atom with the ene
EnLJ

; the stateunLJ& being excluded from the sum over th

complete setum&. The z component of the electric-dipole
moment of the atom is given byD5( i r i cosui where the
summation is carried out over all the atomic electrons.

The structure ofanLJM
and relativistic methods for the

numerical calculation of the second-order matrix elemen
Eq. ~2! were discussed in detail in our previous paper@12#,
so we shall focus here on the calculation of the hyperpo
izability given by Eq.~3!.

After the angular integration, applying standard angul
momentum theory@13# allows the static hyperpolarizability
tensor to be resolved into irreducible parts,g j (nLJ) @4#,

gnLJM
5(

j
F ~2J12! j

~2J112 j ! j
G1/2

CJM j0
JM g j~nLJ!. ~6!

The irreducible parts of the hyperpolarizability may be p
sented in terms of the fourth-, third-, and second-order
duced matrix elements of the dipole moment,
SL1L2L3

J1J2J3 5 (
n1n2n3

^nLJiDin1L1 J1
&^n1L1 J1

iDin2L2 J2
&^n2L2 J2

iDin3L3 J3
&

~En1L1 J1
2EnLJ

!~En2L2 J2
2EnLJ

!

^n3L3 J3
iDinLJ&

~En3L3 J3
2EnLJ

!

2dJ2JdL2L(
n1

^nLJiDin1L1 J1
&^n1L1 J1

iDinLJ&

En1L1 J1
2EnLJ

(
n3

^nLJiDin3L3 J3
&^n3L3 J3

iDinLJ&

~En3L3 J3
2EnLJ

!2
, ~7!

1Atomic units are used throughout the paper.
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as follows:

g j~nLJ!524F ~2J112 j ! j

~2J112 j ! j 11
G1/2

~21!2JP j

3(
j 1 j 2

P j 1 j 2
C1010

j 10 C1010
j 20 Cj 10 j 20

j 0

3 (
J1J2J3

H 1 1 j 1

J J2 J1
J H 1 1 j 2

J J2 J3
J

3H j 2 j 1 j

J J J2
J (

L1L2L3

SL1L2L3

J1J2J3 . ~8!

Here the standard designations for Clebsch-Gordan c
ficients, Pochhammer symbols (a)n , 6-j symbols, and re-
duced matrix elements of the atomic dipole moment are u
@13#, and P j 1 j 2 , . . . ,j N

5P j 1
P j 2

•••P j N
, P j5A2 j 11. Ex-

pressions~7! and ~8! can be simplified further for particula
sets of atomic quantum numbersJ,L.
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It should be noted that the general expression for the
perpolarizability~6! is similar to that of the polarizability,
which can be written in terms of the scalar~s! and tensor~t!
parts

anLJM
5anLJ

s 1anLJ

t 3M22J~J11!

J~2J21!
. ~9!

The irreducible parts of the hyperpolarizability~8! are non-
zero for j 50,2,4, and, therefore, the fourth-order term in E
~1! is in general determined by only three invariant atom
parameters. The first,g0(nLJ), corresponds to the scalar pa
of hyperpolarizability,g2(nLJ) corresponds to the rank-
tensor part of hyperpolarizability,g4(nLJ) determines the
tensor part of rank 4.

Finally, the hyperpolarizabilitygnLJM
can be represente

in a general form@5#
gnLJM
5g0~nLJ!1g2~nLJ!

3M22J~J11!

J~2J21!
1g4~nLJ!

3~5M22J222J!~5M2112J2!210M2~4M221!

J~2J21!~2J22!~2J23!
. ~10!
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This result may be used directly for determining the e
ergy of a nondegenerate state of an atom. In the cas
degenerate states the diagonalization procedure shoul
used for the atom-field interaction Hamiltonian. Then t
above expressions are valid for the diagonal matrix elem
of the atom-field interaction, but in this case all the sublev
of the degenerate state should be excluded from the sum
the reduced Green function~5! ~see, e.g.,@14#!.

In view of the goal of this paper, let us consider the e
ergy separationd025E3 3P0

2E3 3P2
between fine-structure

components with magnetic quantum numberM50. Since
the zero-field separationd02

(0) between these components
essentially less than the energy separations between s
with different principal and/or orbital quantum numbers, d
generate perturbation theory should be used for determi
the energy shift.

Therefore, the energy shiftDEnLJM
5E2EnLJM

is the so-
lution of the secular equation

detiDEnLJM
dJJ82VJJ8i50. ~11!

When determining the energy corrections up to the fou
-
of
be

ts
ls
for

-

tes
-
g

h

order inF, we have to calculate the matrix elements in th
equation to the same order. The second- and fourth-o
corrections to the diagonal matrix elements are determi
by the polarizability and hyperpolarizability tensors given
Eqs. ~9! and ~10!. For the off-diagonal matrix elementVJJ8
which is of second order inF, it is sufficient to take into
account only the first nonvanishing term of the correspo
ing power series because it always appears in the sec
equation~11! in a product with another nondiagonal matr
element.VJJ8 can be expressed in terms of the tensor po
izability of the 1snp3P2 state@4,12#

V0252
F2

A2
an3P2

t . ~12!

We now substitute the expressions for the matrix eleme
into Eq.~11! to obtain the corresponding power series for t
energy separationd02(F) in a uniform electric field. Since
the degenerate basis consists of only two states, this equ
is easily solved analytically, and it is possible to calculate
leading terms in theF power series:
d02~F !5AFd02
(0)2

1

2
F2~an3P0

s
2an3P2

s
!2

1

24
F4~gn3P0

2gn3P2
!G2

12F4~an3P2

t
!2'd02

(0)2
1

2
F2~an3P0

s
2an3P2

s
1an3P2

t
!

2
1

24
F4@g0~n3P0!2g0~n3P2!1g2~n3P2!26g4~n3P2!#1F4

~an3P2

t
!2

d02
(0)

1•••. ~13!
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The second expression here appears as a power-s
resolution for the square root in the first line. It coincid
with the field-dependent splitting of the fine-structure subl
els as calculated in nondegenerate perturbation theory w
may be used when the field-dependent contribution is m
smaller than the field-free splittingd02

(0) . The last term deter-
mines the main contribution to the difference between
sublevel hyperpolarizabilities due to the largest contribut
~with n25n andL25L, hence, with the smallest denomin
tor! in the sum overn2 of Eq. ~7!. Evidently, as noted earlie
@4,5,12#, this term ~we shall call it ‘‘the resonant term’’!
appears already in the second-order perturbation theory
degenerate states. The previous term, also of fourth orde
F, appears only in fourth-order perturbation theory and
counts for the ‘‘nonresonant’’ contributions to the hyperp
larizability ~with n2Þn and/orL2ÞL). However, this term
may provide a contribution at the level of a few percent
the total fourth-order correction, which amounts in the vic
ity of the anticrossing to a half of the total field-depende
part of the splitting~13!. Thus, the contribution of the ‘‘non
resonant’’ terms of the hyperpolarizability may be appro
mately equal to that caused by the relativistic corrections
the polarizability and may be rather important when comp
ing the theoretical results with high-precision experimen
data.

Accurate calculations of the reduced matrix elements
the components of the polarizability and hyperpolarizabi
require reliable wave functions which should give corre
values for both of the quantities. The calculations of t
atomic susceptibilities were carried out using a sum of os
lator strengths. To include relativistic effects, we used p
cise relativistic configuration-interaction calculations of r
duced dipole matrix elements~see the next section!. To
control the results we have also carried out similar calcu
tions with the Fues model-potential method. A simple a
lytical presentation for the model-potential Green functi
enables us to evaluate the contribution of the high-n terms
~including continuum! which are neglected in the finite-sum
approach. Details of the calculations and numerical res
are presented in the following sections.

III. RELATIVISTIC CONFIGURATION-INTERACTION
CALCULATIONS OF REDUCED DIPOLE MATRIX

ELEMENTS

The configuration-interaction method has been previou
used to obtain high-precision wave functions and matrix
ements of atoms with a few electrons, especially for heliu
like ions. In this section we follow the techniques of Ref.@6#
to calculate the reduced matrix elements for resonant te
in the polarizability and hyperpolarizability expansions. T
wave functions for the atomic states are obtained from r
tivistic CI calculations. For the initial~final! state, we write

C I (F)5(
k> l

Ckl
I (F)Fkl , ~14!

whereFkl are configuration state functions coupled to giv
values ofJ,M , and parity, defined by
ries
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Fkl5hkl (
mkml

Cj kmkj lml

JM ak
†al

†u0&. ~15!

Here hkl51/A2 if k5 l and hkl51, otherwise. The coeffi-
cientsCkl

I (F) are configuration weights for the initial~final!
state determined variationally, seeking extrema of the exp
tation value of theno-pair Hamiltonian including both the
Coulomb and Breit interactions. The wave function is subj
to the normalization condition

(
l>k

uCkl
I (F)u251. ~16!

Discussions of the relativistic CI problem for heliumlike ion
including extensive comparisons of CI energies with expe
ment have been given in Refs.@7,8#. The electric-dipole op-
eratorQM in second-quantized form is given by

QM5(
i j

~r M ! i j ai
†aj , ~17!

wherer M is a one-particle dipole matrix element of theM th
component of the coordinate vector in a spherical basis.
calculating the matrix element of the many-body electr
dipole operator in the CI basis and performing the angu
reduction, one obtains an explicit expression for the redu
matrix elements in terms of the weight coefficientsCkl

I (F)

given by Eq.~44! of Ref. @6#. Of particular importance in
calculating reduced matrix elements relativistically is the
clusion of contributions from the negative-energy states.
our calculations are performed using theno-pair Hamil-
tonian, contributions from these states are naturally not
cluded and must be added in separately. In Ref.@6#, the
importance of these contributions was addressed in deta
using second-order QED perturbation theory with the f
Hamiltonian ~rather than theno-pair Hamiltonian used for
the present calculations!. While contributions from negative
energy states were found to play an important role in
velocity gauge for electric-dipole matrix elements, such co
tributions in the length gauge were insignificant. As d
cussed in@9#, the relative contribution of negative-energ
states for allowed E1 transition amplitudes calculated
length gauge is of ordera4Z3. As a result of such analysis
our calculations are presented in the length gauge. As a
step in our calculation, we obtain the CI wave functions
the initial and final states. The numerical methods used
evaluate the weight coefficientsCkl

I (F) are described in Refs
@7,8#. The single-particle basis orbitals used in the CI exp
sion consist of a subset of 20 out of 30B-spline basis func-
tions for each partial wave. The accuracy of matrix eleme
was tested by slightly changing the cavity radius and num
of included splines. The numerical accuracy achieved is
the level of number of quoted figures in Table I. The co
ventional approach to CI calculations is to perform a
quence of calculations with increasing number of par
waves included and then to extrapolate the sequence of
ues to a number corresponding to an infinite set. In the p
ticular case of dipole matrix elements we find that this
quence of values saturates very early and, hence, the re
for a set which includes thes, p, d, f , andg partial waves
are found to be sufficient.

Finally, in Table I we present the calculated values
reduced dipole matrix elements relevant to resonant con
butions to the polarizabilities and hyperpolarizabilities f
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the cases considered in this paper. The signs of the m
elements were set consistently with the phase conven
used in Fues model-potential calculations, discussed in
next section.

IV. FUES’S MODEL-POTENTIAL METHOD
IN CALCULATIONS OF OPTICAL TRANSITION

AMPLITUDES IN ATOMS

The Fues model potential~FMP! for describing the state
of a valence electron in a many-electron atom is a rat
useful tool for simple and straightforward calculations of t
optical transition amplitudes in any order of interaction b
tween an atom and an external electromagnetic field. It
proposed by Simons@10# as an analytically solvable examp
of an atomic pseudopotential which may be used in gene
ing valence and Rydberg orbitals for calculating oscilla
strengths and ionization amplitudes. Later on, an analyt
expression for an atomic Green’s function@11# was derived
with the help of the FMP which was quite effective in ca
culating numerous higher-order transition amplitudes a
electromagnetic susceptibilities determining various p
cesses of interaction between atoms and intense fields@5#.
Being of an asymptotic nature relative to the valen
electron position vectorr , the FMP provided accurate nu
merical results for the matrix elements of positive powers
the absolute value ofr , specifically for atoms with a single
valence electron or the one-electron excited states of an a
with a few valence electrons.

However, it was noted that the method, while giving qu
accurate results for excited states, failed to do so for
transitions involving the ground-state wave functions, ev
in atoms with a single electron in the valence shell or
those involving the metastable states of atoms with sev
valence electrons. In these cases the wave function of
other asymptotic method—the quantum defect meth
~QDM!—was much more precise in numerical calculatio
@10,11#. We propose here an approach for determining
parameters of the FMP providing accurate numerical res
in calculating static optical characteristics without resort
to any other kind of wave function for the states of atom

TABLE I. Reduced matrix elements of electric-dipole opera
~a.u.! for He I.

Transition Value

un8LJ8
8 &˜unLJ& ^n8LJ8

8 iDinLJ&

1s3p 3P0˜1s3s 3S1 26.4797
1s3p 3P2˜1s3s 3S1 214.489
1s3p 3P0˜1s3d 3D1 8.2923
1s3p 3P2˜1s3d 3D1 1.8542
1s3p 3P2˜1s3d 3D2 7.1805
1s3p 3P2˜1s3d 3D3 16.994
1s4 f 3F2˜1s3d 3D1 213.68
1s4 f 3F3˜1s3d 3D2 216.66
1s4 f 3F2˜1s3d 3D2 25.887
1s4 f 3F3˜1s3d 3D3 25.886
1s4 f 3F2˜1s3d 3D3 20.9953
1s4 f 3F4˜1s3d 3D3 220.03
rix
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The FMP method, similarly to the QDM, is based on t
Rydberg formula for the relation between the energy and
effective principal quantum numbernnl of an atomic level
unl&, that is,

Enl52
Z2

2nnl
2

, ~18!

whereZ is the charge of the residual ion. Here, the notat
l is used for the valence-electron angular momentum, in c
trast with the total atomic angular momentumL. Therefore
L5 l if the angular momentum of the atomic core is ze
The corresponding radial wave function of the state has
hydrogenlike form,

Rnl5~21!k
2

nnl
2
A Z3 nr !

G~nnl1l l11!S 2Zr

nnl
D l l

3e2Zr/nnlLnr

2l l11S 2Zr

nnl
D , ~19!

and depends on the choice of the radial quantum numbernr ,
which in turn determines the effective angular-moment
quantum number,l l5nnl2nr21 ~a smooth dependence o
l l on energy of the level in most cases may be neglecte!.

If we require the experimentally observed set of valen
electron states with angular momentuml to be complete, the
value ofnr50 must be taken for the lowest of them@10,11#,
consecutively increasing by unity for higher states. This d
nition caused substantial inaccuracy for the radial matrix
ementŝ nlur Lun8l 8& with L>1 ~up to 50% in absolute value
with an opposite sign in some cases, since the phase-fa
integer powerk was taken always to be zero!. That is why
the nodeless ground-state radial wave functions~19! were
usually replaced by the one-node QDM wave functio
@10,11#. Such a replacement is equivalent to another defi
tion of the radial quantum number, i.e.,nr51 for the ground
state and the effective angular momentuml5ng22, instead
of l5ng21, whereng is the effective principal quantum
number of the ground state. Such a modification of the d
nition for l implies the existence of an additional ‘‘imag
nary’’ state with the effective principal quantum numb
n im5ng21, since the set of states~19! should be complete
But being of a very low energy,Eim52Z2/(2n im

2 ), and, con-
sequently, having a very short-ranged wave function,
‘‘imaginary’’ state cannot provide significant contribution
to the optical transition amplitudes in higher orders.

The modified definition of the radial and effectiv
angular-momentum quantum numbers seems prefer
when using the FMP in numerical calculations involving t
ground, metastable, and possibly some low-lying states w
small angular momenta. The value ofk5n2 l 2nr21
should be taken in the phase factor (21)k, in accordance
with the asymptotic phase of the corresponding hydrogen
wave function.

Table II lists the results of numerical calculation
of the ‘‘oscillator strengths,’’ f n8S,3P(22)
52z^n8 3S1udzu3 3P0& z2/(En8S2E3P) corresponding to the
dipole transitions from the first ninen 3S1 states to the 33P0
state in helium which are required to determine the high
order matrix elements for the static polarizability and hyp

r
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TABLE II. The contributions of 1sn8s 3S1 intermediate states on the polarizability of 1s3p 3P0 state of
He I @11#.

n8 f n8S,3P(22)ul050.698 f n8S,3P(22)ul0520.302 f n8S,3P(22)uCI,var.meth

2 20.34 21.67 21.57
3 22377.93 22682.56 22638.45
4 451.87 319.37 312.17
5 25.38 18.27 17.92
6 6.36 4.60 4.72
7 2.59 1.88 1.85
8 1.34 0.97 0.96
9 0.79 0.57 0.57

10 0.51 0.37 0.34
(n8 21888.6 22337.7 22301.50
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polarizability of the 33P0 state. The principal quantum num
bers of the 3S states are given in the first column. Th
second column presents the oscillator strengths as calcu
in the FMP approximation with the usual choice of the rad
quantum numbernr50 for the lowest triplet state of the H
atom, 2 3S1, giving the value of the effective angula
momentum quantum number for the3S statesl050.698.
The third column corresponds to the modified definition
nr51 for the 2 3S1 state, withl0520.302. High-precision
variational values for the oscillator strengths@13# and nu-
merical data of the CI method@6# for n853 are presented fo
comparison in the fourth column. The result of summat
over n8 is also given in the bottom line of the table. Th
advantage of the modified definition of the parameters for
FMP wave function is evident~less than 1.6% discrepanc
against more than 20% of the usual approach! and may be
much more significant for higher-order amplitudes.

We have also computed in the FMP approximation
matrix elements of Table II. They differ in magnitude fro
the data of Table II by less than 1%, if the modified defi
tion of the angular momentum is used, while for the tra
tional definition this difference is as much as 20%.

The main difficulty in the exact computation of the am
plitudes of second to fourth orders in Eqs.~2! and ~3! is
related to the infinite sums over the total atomic spectr
including the continuum, which represent the Green funct
~5!. Therefore, for practical numerical computer impleme
tation of the perturbation theory it is necessary to have
most convenient representation for the Green function. In
calculations we used the analytical representation of
Green function for the Fues model potential~Appendix A!
based on the Sturm-series expansion@11#. Thus, the radial
matrix elements, to which the polarizabilities and hyperp
larizabilities may finally be reduced, can be presented in
form of absolutely converging series, well suited for the n
merical computations.

V. RESULTS AND DISCUSSION

Accurateab initio calculations of theanLJM
andgnLJM

are
not routine because both relativistic and electron correla
effects can be very important. Note that in Eqs.~4! and ~5!,
the transition energies appear in the denominator. Since
resonance energies withn85n are typically two orders of
ted
l

f

n

e

e

-
-

n
-
e

ur
e

-
e
-

n

he

magnitude smaller than the nonresonant ones (n8Þn), the
resonance terms totally dominate the sum. For these tra
tions, we used precise relativistic CI calculations of reduc
dipole matrix elements. The matrix elements for the oth
exited states are calculated by using nonrelativistic va
tional data@13#. The convergence of the method is cons
ered in@12#.

Using this approach, we have calculated relativistica
the scalar and tensor polarizabilities of helium excited sta
For example, the resonant term for the scalar polarizab
had the form

anLJ
s(r )52

2

3 H (
J8

L~2J811!

EnLJ
2EnL21J8

FRnJL
nJ8L21H L J 1

J8 L21 1J G2

1(
J8

~L11!~2J811!

EnLJ
2EnL11J8

FRnJL
nJ8L11H L J 1

J8 L11 1J G2J ,

~20!

where RnJL
n8J8L85^n8J8L8ur unJL& are the radial matrix ele-

ments. The singlet-triplet mixing corrections between sta
with the samen,L, and J in Eq. ~20! are considered in
@11,12#. The numerical values for the mixing parameter

bnLL
5H cos~unL!, J5L

1, JÞL
~21!

are listed in@12#.
As seen from Eqs.~7! and ~8!, the components of the

hyperpolarizability have a more complicated resonance
pendence. Therefore, it is convenient to divide the com
nents ~8! into resonant and nonresonant parts:g j5g j

(res)

1g j
(non) . As was already pointed out, the resonant partg j

(res)

is determined by the tensor partanLJ

t of the multiplet polar-

izability and the fine-structure splittingdJJ8 . Such resonant
contributions to the irreducible parts of the hyperpolarizab
ity are given in Table III for ann 3PJ state. Generally speak
ing, since the fine-structure splittingd12 is about one order of
magnitude less thand02, the resonant terms with the facto
1/d12 dominate in these expressions. But they cancel exa
in full expressions for the hyperpolarizabilities of states w
the magnetic quantum numberM50, as may be verified
from Eq. ~10!. It is easy to see also that the terms with t
factor 1/d02 cancel out of the hyperpolarizability of state
with M51. And at last, all the resonant
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TABLE III. Resonant contributions to the irreducible parts of the hyperpolarizability inn 3PJ states.

J g0
(res)(n 3PJ) g2

(res)(n 3PJ) g4
(res)(n 3PJ)

0
212

(an 3P2

t )2

d02

0 0

1
29

(an 3P2

t )2

d12
29

(an 3P2

t )2

2d12

0

2
3
5~an 3P2

t
!2F 4

d02
1

9

d12
G 2

3
7 ~an 3P2

t
!2F 8

d02
1

9

d12
G 18

35~an 3P2

t
!2F 2

d02
2

3

d12
G
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terms cancel out of the hyperpolarizability of the state w
M52, i.e.,gn 3P22

(res)
50, in complete accord with the fact tha

this state has no degeneracy and is not mixed to any o
sublevel of then 3P state.

Note that the resonant part appears in the hyperpola
ability if we use the nondegenerate perturbation theory
separate sublevels of an atomic multiplet. In this case
resonance terms are retained in the sums over the at
basis@the sum overn2 of Eq. ~7! or the sum for the Green
function ~5!#.

In the perturbation theory for degenerate states@13#,
which deals with the secular equation~11!, the resonant hy-
perpolarizability is extracted out of the fourth-order term
self-consistently. Thus the resonant hyperpolarizability
presented explicitly by the last term of Eq.~13! while the rest
of the g components in this equation include only the no
resonant part.

To calculate the nonresonant hyperpolarizability com
nents,g j

(non) , we have to remove from the series~7! @or
alternatively, from the Green function~5!# all the degenerate
substates and to carry out the summation over the rest o
atomic basis. Some of the calculations may be carried
analytically with the use of the angular-momentum algeb
reducing the right-hand side of Eq.~8! to a combination of
the radial matrix elements.

We take into account the fact that the nonresonant con
bution to the hyperpolarizability is not more than 2–3 %
the total value ofg. So the relativistic effects may be ne
glected in their calculations. In this case the radial ma
element^n1J1L1ur un2J2L2&, which represents the reduce
dipole matrix element between triplet states according to
relation @15#

^n1J1L1iDin2J2L2&5~21!J21L1PJ1J2L2
CL2010

L10

3H 1 L1 J1

1 J2 L2
J ^n1J1L1ur un2J2L2&,

~22!

may be considered to be independent of the total mome
and the sum overJ1 ,J2 ,J3 in Eq. ~8! may be calculated
analytically. Since the Kronecker symbols of Eq.~7! elimi-
nate the sum overJ2 and overL2, it is convenient to separat
the irreducible part of hyperpolarizability into two terms,
er

z-
r
e
ic

s

-

-

he
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,

i-
f

x

e

ta,

g j
(non)~nLJ!5ḡ j2g̃ j . ~23!

After calculating the sums over total angular momenta
intermediate states, the expressions for the two compon
of the nonresonant hyperpolarizability of an atom in a trip
state may be written as follows:

ḡ j524~21!J1L11PL
2P jJF ~2J112 j ! j

~2J12! j
G1/2

3H j L L

1 J JJ (j 1 j 2

P j 1 j 2
C10 10

j 10 C10 10
j 20 Cj 10 j 20

j 0 (
L2

PL2

2

3H L2 j 1 L

j L j 2
J (

L1

CL0 10
L10 CL20 10

L10 H L1 1 L2

j 1 L 1 J
3(

L3

CL0 10
L30 CL20 10

L30 H L3 1 L2

j 2 L 1 J RL1L2L3

1111 ~24!

and

g̃ j524PL
4PJ

2P jJF ~2J112 j ! j

~2J12! j
G1/2

3(
j 1 j 2

P j 1 j 2
C10 10

j 10 C10 10
j 20 Cj 10 j 20

j 0 H j 1 j 2 j

J J JJ
3H j 1 L L

1 J JJ 3H j 2 L L

1 J JJ (L1

~CL0 10
L10

!2

3H L1 1 L

j 1 L 1J RL1

11(
L3

~CL0 10
L30

!2H L3 1 L

j 2 L 1J RL3L3

101 .

~25!

Here the notation for theNth-order radial matrix elemen
is used,

RL1L2 , . . . ,LN

n1n2 , . . . ,nN115^nLJur n1gL1
r n2gL2

r n3
•••r nNgLN

r nN11unLJ&.

~26!

The Sturm-series resolution for the Green function in
FMP method~see the Appendix A! makes it possible to de
rive
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the hypergeometric-type series representation for the ra
matrix element~26! which converges absolutely and may
calculated numerically to any desired precision. Typica
five to six terms in the series~A2! are sufficient for the
relative accuracy of 1025 @5,11#. The Sturm series accoun
also for the contribution of the continuum, so a reliable co
trol is ensured for the accuracy of calculations with the fin
sums of oscillator strengths.

To verify the contribution of states neglected in the fin
sums, we compared the numerical results for the radial
trix elements of second, third, and fourth order, which app
in calculations of hyperpolarizability components~24!,~25!,
as computed in the FMP approximation with the use of
Green function and the finite sums of oscillator streng
without account for the continuum. The relative differen
between the two values does not exceed 331023 when both
sums are computed to a relative accuracy not less than 124.
This is about the best possible precision for the sums o
the discrete spectrum since, e.g., the triple summation
strictly divergent~the single and double summations are co
vergent! @16#. However, a few lowest terms in every su
usually form a convergent sequence which is sufficient
obtain the accuracy indicated above.

The numerical results fora3 3PJ
and g3 3PJ

(non) are listed in

Table IV. Only nonresonant contributions which may
used directly in Eq.~13! are presented. For calculating th
resonant contributions, the data for the tensor polarizab
and the expressions of Table III may be used. As seen f
these data and Eq.~13!, the relativistic CI method gives fo
the minimum of d02(F) the value d̄0258231 MHz at the
point of the 02302 anticrossing atF̄5152.6 kV/cm. The
corresponding results given by the FMP approximat
d̄0258234 MHz andF̄5147.6 kV/cm are in a good agree
ment with the preceding data. Finally, the field correction
the order ofF4 contributes about 2.7% of the total shift at th
point of the anticrossing and gives a fairly large deviati
from the quadratic Stark effect which may be essen
within the limits of the experimental accuracy.

It should be noted that a calculation of the energy sep
tion d02(F) by using Eq.~11!, which includes the other ex
cited states withLÞ1, leads to the resultd̄0258244 MHz.
Independently, also by matrix diagonalization the res

TABLE IV. The numerical values for the components of pola
izability a3 3PJ

and the nonresonant part of hyperpolarizabil
g j (3

3PJ)
(non) of helium.

Component Direct summation Model potential

a3 3P0

s @4# 17203 17266

a3 3P2

s @4# 17193 17255

a3 3P2

t @4# 351.65 374.16

g0
(non)(3 3P0) 27.08431011 27.07731011

g0
(non)(3 3P1) 27.07331011 27.06531011

g2
(non)(3 3P1) 23.60231010 23.57331010

g0
(non)(3 3P2) 27.06931011 27.06131011

g2
(non)(3 3P2) 7.14231010 7.07931010

g4
(non)(3 3P2) 1.8623108 1.9963108
ial
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d̄0258249 MHz was obtained earlier@3#. These theoretica
data and the corresponding experimental value@3# d̄02
5825765 MHz are not in a satisfying agreement. The d
ference between the theory and experiment is not accept
and necessitates further investigations, both on the exp
mental and theoretical side.

As pointed out in the Introduction, the level of the expe
mental accuracy can be increased significantly by using m
elaborate experimental techniques. On the other hand,
theoretical consideration of higher-order effects require
development of the effective method of perturbation the
as applied to processes, taking into account both relativi
and correlation effects by anab initio calculation of compli-
cated spectral sums in the nonresonant case.

VI. CONCLUSIONS

In connection with laser spectroscopy measureme
which have been carried out and are planned@3#, we have
calculated the higher-order dipole susceptibilities for t
1s3p 3P0 and 1s3p 3P2 states of helium. The usual assum
tion, that the major portion of the relativistic correction to th
scalar polarizability is determined by the transition ener
and not by the matrix elements, was also taken into acco
by combining precise variational calculations with the e
perimental transition energies. Simple expressions have b
obtained which can be used to estimate theJ dependence by
calculations of the susceptibilities in the resonant approxim
tion.

The present study may be important for further expe
mental investigations of the 02302 anticrossing measure
ments in He I, where the experimental accuracy can be
proved considerably, in particular, by using microwa
spectroscopy. Another interesting example of the fie
strength dependence, namely, the splittingd12(F) between
the fine-structure sublevels with total angular momentaJ
51 andJ52 and the magnetic numberM51 may also be
studied on the basis of our data. On the other hand, the
perpolarizabilities themselves are of current interest beca
of their relevance to optical harmonic generation through
interaction of intense beams of light with helium atoms.
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APPENDIX A: ANALYTICAL REPRESENTATION
OF THE GREEN FUNCTION FOR THE FUES’ MODEL

POTENTIAL

The angular variables of the valence electron may
separated in the Green functionGE(rW1 ,rW2) corresponding to
the energy E by resolving into infinite series over
spherical-harmonic basis@5,11#:



se
b

io

r
q

ue

tio
n-

i
am
th

rg

if
n
n

o

er

994 PRA 60A. DEREVIANKO et al.
GE~rW1 ,rW2!5(
lm

gl~E;r 1 ,r 2!Ylm~nW 1!Ylm* ~nW 2!, ~A1!

wherenW 5rW/r is the unit vector, and the coefficients of the
series are the radial Green functions, which in turn may
resolved into Sturm-function series,

gl~E;r ,r 8!52
4Z

n
~xx8! l expS 2

x1x8

2 D
3 (

k50

` k!Lk
2l l11

~x!Lk
2l l11

~x8!

G~k12l l12!~k1l l112n!
,

~A2!

where x52Zr/n, n5Z/(22E)1/2, and Lm
l (x) is the La-

guerre polynomial. The poles of the radial Green funct
gl(E;r ,r 8) correspond to the hydrogenlike energiesEnl5
2Z2/2nnl

2 with n5nnl5nr1l l11. Here, nr50,1,2, . . . is
the radial quantum number andl l is the effective orbital
momentum. The residues at these poles are equal to the p
ucts of corresponding radial eigenfunctions given by E
~19!. Other representations for the Green function of the F
model potential were given in@5#.

Note that the series in Eq.~A2! converge for allr ,r 8
~excluding the pointr 5r 850) whenE,0. The advantage
of this representation is that it is similar to the representa
of eigenfunctions in which effective wave functions for i
termediate states are polynomials times exponentials, sim
to the bound-state wave functions, but with one and the s
argument for all of them. Such a representation includes
sum over bound states and the integral over continuum.

The reduced Green function, corresponding to the ene
of a bound levelEnl , is defined by a limiting procedure

GR~Enl ;r ,r 8!5
]

]E
@~E2Enl!G~E;r ,r 8!#, E˜Enl .

~A3!

The radial parts ofGR(Enl ;r ,r 8) are presented in@5#.
The expression in the right-hand side of Eq.~A1! is par-

ticularly convenient when the contribution to the energy sh
or the amplitude of a radiation process under consideratio
given by a finite number of the partial terms in this expa
sion, for example, because of the selection rules.

APPENDIX B: RADIAL MATRIX ELEMENTS

We here present the formulas for the irreducible parts
hyperpolarizability~8! written in terms of the radial matrix
elements~26!, as calculated according to Eqs.~23!–~25!. The
expressions given below for the irreducible parts of hyp
polarizability differ from those of Ref.@4#, where the fine-
structure effects were not taken into account:
e

n

od-
.
s

n

lar
e
e

y

t
is
-

f

-

g0
(non)~n 3P0!5

8

9 S R010
11112

1

3
R0

11R00
101D

1
32

45F2R210
11112

5

6
~R2

11R00
1011R0

11R22
101!G

1
272

225FR212
11112

50

51
R2

11R22
101G1

32

25
R232

1111,

~B1!

g0
(non)~n 3P1!5

8

9 S R010
11112

1

2
R0

11R00
101D

1
32

45F2R210
11112

7

8
~R2

11R00
1011R0

11R22
101!G

1
272

225FR212
11112

67

68
R2

11R22
101G1

32

25
R232

1111,

~B2!

g2
(non)~n3P1!5

4

9 S R010
11112

1

2
R0

11R00
101D

1
16

45F2R210
11112

7

8
~R2

11R00
1011R0

11R22
101!G

1
28

225FR212
11112

13

14
R2

11R22
101G1

16

175
R232

1111,

~B3!

g0
(non)~n 3P2!5

8

9 S R010
11112

17

30
R0

11R00
101D

1
32

45F2R210
11112

107

120
~R2

11R00
1011R0

11R22
101!G

1
272

225FR212
11112

1007

1020
R2

11R22
101G1

32

25
R232

1111,

~B4!

g2
(non)~n 3P2!52

8

9 S R010
11112

25

42
R0

11R00
101D

2
32

45F2R210
11112

151

168
~R2

11R00
1011R0

11R22
101!G

2
56

225FR212
11112

277

294
R2

11R22
101G2

32

175
R232

1111,

~B5!

g4
(non)~n 3P2!52

8

225335
~5R0

111R2
11!~5R00

1011R22
101!.

~B6!
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