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Magneto-optical rotation in atomic transitions between levels withJ50 and J51
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We give a density-matrix account of an atom in a dilute vapor which is subject to a magnetic field and
through which is propagating plane-polarized monochromatic light with frequency in the vicinity of a transi-
tion between levels of total angular momentaJ50 and 1, where the degeneracy may be in either the upper or
lower level. The master equation approach allows saturation effects to be treated in a nonperturbative manner,
and collisions are included within the context of the impact approximation. The particular case of the Voigt
effect in a (1̃ 0) transition~lower levelJ51! is considered in detail, and contrasted with that in (0˜1),
already published; in the absence of collisions, the (1˜0) rotation spectrum is of Lorentzian form at all
intensities, while if collisional relaxation is much faster than radiative decay, it takes the same form as for the
(0˜1) case. The rotation produced by a magnetic field of arbitrary direction and the effects of atomic motion
are also discussed.@S1050-2947~99!02108-3#

PACS number~s!: 33.55.Ad, 33.55.Fi, 32.70.Jz
v
ha
e
e
e

to
t
th
t
o
m
ud
se

ti

in
b

o
x
f

n
ch
ed
ef
a
p
e
r
av
de
ra
d.

s of

ely,

the

lly
in
the
tric

nd

re
a

in
stics
n
(0

lar-
ain

at
eti-
ion
to
ing.
ly

day
ich
I. INTRODUCTION

The change in the state of polarization of light when tra
eling through a dilute gas subject to a magnetic field
been extensively studied, both experimentally and theor
cally @1–9#. The simplest and most important case is wh
the light is plane polarized and propagates along the fi
direction ~the Faraday or Macaluso-Corbino effect!, but the
Voigt effect, in which the magnetic field is perpendicular
the direction of propagation, has also been the subjec
experiments. The main interest is when the frequency of
light is close to an atomic resonance. The developmen
tunable lasers gave the field renewed stimulus, leading n
bly to Faraday spectroscopy as a tool for the study of ato
structure and collisional effects; optical rotation can be st
ied as a function of frequency at constant field, or the la
can be tuned to the center of the atomic resonance and
variation of rotation recorded as a function of the magne
field strength.

The theoretical description of the phenomena is in pr
ciple well understood; the basic equations which have to
solved are relatively straightforward, within the context
approximations which are generally justified in normal e
perimental conditions~for example, the impact treatment o
atomic collisions!. Unfortunately, the methods of solutio
generally employed involve further approximations whi
are not so widely applicable, thus giving results of limit
use. This is particularly true with respect to saturation
fects, which are very useful since they can produce sh
features in the rotation spectra directly associated with s
cific decay mechanisms; however, they have generally b
treated perturbatively@10#, despite the fact that with lase
light it is easy to produce strong saturation effects. We h
developed an approach using a master equation for the
sity matrix describing the system, which allows compa
tively simple solutions for any strength of radiation fiel
PRA 601050-2947/99/60~2!/973~9!/$15.00
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This approach has previously been applied to the case
atoms withJg50, Je51, whereJg ,Je are the ground and
excited level total electronic angular momenta, respectiv
with Jg51, Je50 and withJg5 1

2 ,Je5 1
2 . We refer to these

as the (0̃ 1), (1˜0), and (12˜
1
2 ) cases, respectively.

We have derived and solved the equations governing
Faraday effect for all three cases@11–13#, and for the Voigt

effect in the (0̃ 1) case@14#. The (1
2˜

1
2 ) case, treated in

@13#, with degeneracy in both levels, differs fundamenta
from the other two. However, the equations solved
@11,12,14# are special cases of equations which govern
response of atoms to plane-polarized light with its elec
vector at any orientation to an applied magnetic field~and so
are applicable to both the Voigt and Faraday effects a
indeed intermediate geometries!, and which are almost the
same for the (0̃ 1) and (1̃ 0) cases. These equations a
relatively simple, and readily solvable by computer for
given physical situation. We therefore give them explicitly
the present paper, and solve them to find the characteri
of the Voigt effect for the (1̃ 0) case, which has not bee
treated before. We contrast the results with those for the
˜1) case; there are striking differences despite the simi
ity of the basic equations. It is useful to recall here the m
features of the Faraday effect for the (0̃1) and (1̃ 0)
cases, which were strikingly verified@15# by applying them
to experimental data already in the literature@7#. In the (0
˜1) case, the rotation spectrum is very straightforward
low intensities, but when saturation occurs there is comp
tion between the two circular components of the polarizat
of the driving field for the ground-state population leading
observable effects over and above simple power broaden
Collisional relaxation of orientation and alignment is on
important at high intensities. By contrast, in the (1˜0) case,
whatever the strength of radiation field, there is no Fara
effect at all in the absence of relaxation processes wh
973 ©1999 The American Physical Society
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974 PRA 60F. SCHULLER AND D. N. STACEY
redistribute atoms among the ground magnetic sublev
This is because the atoms are optically pumped into the
level with Mg50, a ‘‘dark state’’ from which they cannot b
removed by absorption. This major difference between
(0˜1) and (1̃ 0) cases for the Faraday effect occurs d
spite the very similar equations which describe the two. T
comparison of the Voigt effects is analogous to, but not id
tical with, that of the Faraday effects. It remains true th
collisional relaxation of orientation and alignment is not im
portant at low intensities in the (0̃ 1) case. It is also true
that optical pumping is significant even at vanishingly lo
intensities in the (1̃ 0) case in the absence of collision
however, for the Voigt geometry there is no dark state so
effect does not vanish.

As in our previous papers, we assume monochrom
incident light and a dilute gas. The (0̃1) and (1̃ 0) cases
are developed in parallel, to highlight the contrast betwe
the two. Calculations are carried out for stationary atom
and atomic motion is taken into account subsequently
convolution. In the normal Voigt geometry, the plane of p
larization of the incident light is atp/4 to the direction of the
magnetic field, and the observed rotation is due to differ
tial absorption of the polarization components along and p
pendicular to the field. For this reason, the theory~in contrast
to the Faraday effect! is valid only for rotations small com
pared withp/4. We first give the theory, then discuss t
results.

II. OPTICAL BLOCH EQUATIONS

We use the definitions and nomenclature developed
@11–14#. A plane monochromatic wave is incident on a d
lute sample of atoms of number densityN. The wave is lin-
early polarized with electric vectorE and its frequencyv is
close to the atomic transition frequencyv0 . A constant mag-
netic field is applied to the system, with~for the Voigt ge-
ometry! its field vectorH at right angles to the direction o
propagation of the light. The angleu betweenE andH will
be set top/4 to obtain explicit expressions for the Voig
effect, but in setting up the equations we maintain genera
Similarly, it is convenient to set up the density-matrix fo
malism to describe a system in which both levels can h
nonzero angular momentum before specializing to the
cases of interest here.

The state of the system is described by a density matrr
with optical coherencesrMg ,Me

and Zeeman coherence

rMg ,M
g8
,rMe ,M

e8
. A reduced stationary density matrixs has

been defined in@16# by introducing the following transfor-
mation:

r~ t !5exp~2 iat !s exp~ iat ! ~1!

with

a5 1
2 v~Pe2Pg!, ~2!

wherePg andPe are projection operators in the ground- a
excited-state manifolds defined in the usual way by the
pressions
ls.
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Pg5(
Mg

uMg&^Mgu and Pe5(
Me

uMe&^Meu. ~3!

This transformation implies that we have for optical coh
ences the relation

rMg ,Me
5exp~ ivt !sMg ,Me

, ~4!

whereas elements within one multiplet are not affected
the transformation.

With this procedure the following master equation for t
reduced stationary density matrixs has been derived from
the Liouville equation@17#:

i

\
@Hm ,s#1

i

\
@Veff ,s#1~F1G!s50. ~5!

In this equation,Hm is a modified atomic Hamiltonian de
fined as

Hm5HA2
\v

2
~Pe2Pg! ~6!

with HA the Hamiltonian of the atom in the static magne
field. The second term on the right-hand side of this equa
is the consequence of the removal of oscillations by
transformation~1!. Veff , which describes the interaction o
the atom with the incident wave, is given by the express

Veff52 1
2 PemPg•E2 1

2 PgmPe•E, ~7!

wherem is the atomic dipole operator.
Finally, the operatorsF,G describe, respectively, colli

sional relaxation within the multiplets and natural~radiation!
damping together with collisional relaxation of optical cohe
ence. The effect ofF on each multiplet is most convenientl
described in terms of an irreducible tensor basisTkq for the
density operator. Specializing now to the particular cases
interest,F does not operate on a level withJ50, so we write
for the part of the density operator within theJ51 manifold

se5(
k,q

skqTkq S sg5(
k,q

skqTkqD , ~8!

where the first expression is appropriate to the (0˜1) case,
and the second, in large parentheses, to the (1˜0) case. We
shall maintain this convention in the following.

We then account for collisional destruction of orientati
and alignment in the impact approximation by introduci
relaxation ratesf k , k51,2:

FTkq5 f kTkq , ~9!

where these rates are proportional to the number densit
perturbing atoms.

The effect ofG is given by

GuMe&^Meu5AuMe&^Meu2Aug&^gu,
~10a!

S Gue&^eu5Aue&^eu2
A

3 (
Mg

uMg&^Mgu D ,
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GuMe&^gu5S A

2
1g D uMe&^gu,

~10b!

FGuMg&^eu5S A

2
1g D uMg&^euG ,

whereg is the half-width at half maximum~HWHM! of the
Lorentzian due to dephasing collisions andA is the Einstein
coefficient for spontaneous emission for the transition.

We now define the Rabi frequencyVM in terms of the
dipole matrix element by the relation

\VM5^M umug&•E ~\VM5^eumuM &•E!. ~11!

We further define an intensity as the product

I M5VMVM* . ~12!

According to this definition, one can show that for linear
polarized lightI M is given in terms of the field amplitudeE
and the angleu betweenE andH by the relations

I 15I 215
I

2
sin2 u, ~13a!

I 05I cos2 u, ~13b!

where

I 5
1

\2 umu2E2 ~14!

and

umu2[u^JeimiJg&u2 ~ umu2[u^JgimiJe&u2!,

the square of the reduced matrix element~as defined in@18#!.
In our earlier work, we derived the optical Bloch equ

tions for the quantitiesSgM , where

sgM5VMsgM ~sMe5VMsMe!. ~15!

For the present purposes, it is more convenient to introd
the combinations

sg11sg215t11 iut , sg12sg215t21 iu2 ,

sg05t31 iu3 ~s1e1s21e5t11 iu1 ,

s1e2s21e5t21 iu2 , s0e5t31 iu3). ~16!

since these are more directly related to the Faraday and V
rotations ~see Sec. III!. The Bloch equations for the (0
˜1) case then take the form

S R2
r I 0

2
1G D t12R2

r I 1t32Du11S R2
i I 0

2
1

vc

2 Du250,

~17a!

S r r I 11R1
r I 0

2
1G D t21S r i I 11R1

i I 0

2
1

vc

2 Du12Du2

1R1
i I 1u350, ~17b!
ce

igt

Dt12S r i I 11R1
i I 0

2
1

vc

2 D t21F S 4

3A
1

1

6~A1 f 2!
1r r D I 1

1R1
r I 0

2
1GGu11~4c1R1

r !I 1u352I 1 , ~17c!

2S R2
i I 0

2
1

vc

2 D t11Dt21R2
i I 1t3

1S 1

2~A1 f 1!
I 11R2

r I 0

2
1G Du250, ~17d!

2R2
r I 0

2
t11~R2

r I 11G!t32R2
i I 0

2
u22Du350, ~17e!

2R1
i I 0

2
t21Dt31~4c1R1

r !
I 0

2
u1

1~2dI01R1
r I 11G!u352

I 0

2
, ~17f!

where

c51/3A21/12~A1 f 2!, ~18a!

d51/3A11/6~A1 f 2!, ~18b!

G5A/21g, ~18c!

2R15
1

ivc/21A1 f 1
, ~19a!

2R25
1

ivc/21A1 f 2
, ~19b!

2r 5
1

ivc1A1 f 2
, ~19c!

and where the superscripts indicate real and imaginary p
vc is the positive frequency separation between the s
with M521 and that withM511.

These equations have been applied previously to the
˜1) Faraday and Voigt cases. In the Faraday geometry
set I 050, whereas in the usual Voigt geometry, i.e., withu
5p/4, we haveI 052I 1 .

Equations~17! apply to the (1̃ 0) case provided the
following modifications are made:~i! In the definitions of
the variablest i ,ui , the quantitiessgM are replaced bysMe ;
~ii ! vc is replaced by2vc throughout;~iii ! on the right-hand
side of Eqs.~17c! and~17f!, I 1 ,I 0 are replaced byI 1/3,I 0/3;
~iv! the quantityA is eliminated from the combinationsA
1 f 1 ,A1 f 2 , so that the corresponding denominators n
become proportional tof 1 , f 2 .

The first modification is an obvious redefinition, the se
ond reflects the fact that the ordering of the Zeeman com
nents of the line reverses if the lower level is split rather th
the upper, while the third only leads to a scaling of all t
t i ,ui by a factor of 3. It can be simply understood by co
sidering the special case of a weak radiation field and a m
netic field large enough to produce well-separated Zeem
components. If the laser is on resonance with one of th
components, any atom can be excited if the lower leve
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976 PRA 60F. SCHULLER AND D. N. STACEY
nondegenerate, whereas only one-third are in resonance
is split. It is the fourth modification which reflects the maj
difference in the physics of the two cases. It expresses
fact that atoms cannot now leave the Zeeman sublevel
spontaneous emission, so that any nonequilibrium distr
tion of population among them caused by optical pump
will remain unless destroyed by collisional processes.
deed, apart from the rescaling, the equations for the
˜1) and (1̃ 0) cases are essentially the same iff 1 , f 2
@A. This has implications for the interpretation of the so
tions as discussed below.

Equations~17! can be solved by standard methods
linear equations, but given that there are only four nonz
coefficients in each it is convenient to proceed as follow
starting with~a!,~d!,~e!, we express the variablest2 ,u1 ,u3 as
functions of t1 ,t3 ,u2 and substitute these results in
~b!,~c!,~f!, which we solve numerically. Finally, we subst
tute these numerical solutions into~a!,~d!,~e! to obtain the
values oft2 ,u1 ,u3 required for determining the Faraday an
the Voigt effects, respectively, as we now discuss.

III. VOIGT AND FARADAY ROTATION
WITH STATIONARY ATOMS

A. Voigt and Faraday rotation angles

As has been shown in@11,14#, the Faraday and Voig
rotation anglescF ,cV for the (0̃ 1) case are linked to the
variables defined in Eq.~16! by the following relations:

cF52
C

I
t2x, cV5

C

I
~u32u1!x, ~20!

wherex is the distance traveled through the medium and
constantC is given by

C5Numu2
v

e0c\
. ~21!

These equations also apply to the (1˜0) case. In the fol-
lowing, we disregard the factorsC andx and consider only
the quantity (u32u1)/I . We thus find that the basic equa
tions ~17! contain a description of the Faraday and Vo
effects in both the (0̃ 1) and (1̃ 0) cases. For the Fara
day variables, the equations reduce to very simple analy
form @11#. This is because the radiation links theJ50 level
to only two of theJ51 sublevels, and the intensity in th
two circular components of the radiation is the same. Des
their greater complexity, however, the equations for
Voigt case are readily solvable as described in the prece
section. Since it is easy to obtain curves for any chosen
ues of the various parameters, we concentrate here on
situations which illustrate the important physical mech
nisms, with particular emphasis on the comparison betw
the Voigt effect in the two cases. In the figures illustrati
optical rotation, the curves are specified by values
vc ,g, f 1 , f 2 , and the Rabi frequency, all expressed as fr
tions of the Einstein coefficientA for the transition, which
sets a natural scale for the phenomena. The dimension
quantity A(u32u1)/I is then independent of the absolu
value ofA, and it is therefore convenient to use it as ordin
in the rotation spectra.
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B. Voigt rotation with negligible collisional effects

We consider first the casef 15 f 25g50. A full discus-
sion of the (0̃ 1) case is given in@14#, but we summarize
the results here for the purposes of comparison. In a w
radiation field, the pattern is derivable from the familiar Ze
man triplet. The absorption in the centralp component is
twice that in the twos components, leading to the profil
shown in Fig. 1~a! ~we take for the sake of clarity the case
which the triplet is well-resolved, i.e.,vc significantly
greater thanA!. As the intensity increases, there is a regim
in which saturation affects each component individually, i.
they still do not appreciably overlap; as a result, the rotat
on resonance at each tends towards equality as in Fig. 1~b!.
Finally, at intensities such that the Rabi frequency is mu
greater than the Zeeman splitting, the individual compone
merge into a single broad feature, as in Fig. 1~c! @19#.

The (1̃ 0) case differs fundamentally from this becau
the splitting is in the lower rather than the upper level. Ev
with the weakest radiation fields, there is no relaxati
mechanism to redistribute the atoms among the Zeeman
levels, so in the stationary regime the population chan
produced by optical pumping are not dissipated. The equi
rium populations of the sublevels depend on the Zeem
splitting and the intensity and frequency of the light, and o
might thus anticipate a family of curves whose forms depe
on these parameters in quite a complex way. However,
population decrease in a given state as the light is tu
towards it counterbalances the increase in atomic respon
just such a way as to remove any features at the position
the Zeeman components. One obtains a Lorentzian pro
for all values of the parameters:

u32u1

I
5

A

8

vc
2

vc
2S 5D21 5

4 A21vc
22

I

2D1I 2

. ~22!

As the intensity is reduced, the full width at half maximu
~FWHM! of this profile tends to the constant value (A2

14vc
2/5)1/2; at high intensities, it increases as (2/A5)I /vc .

FIG. 1. Voigt effect in the (0̃ 1) case with no collisions. The
value of A(u32u1)/I , proportional to the Voigt rotation angle, i
shown forvc /A510, and intensitiesI /A25(curvea) 1023, ~curve
b! 1, ~curve c! 50, which correspond to weak, intermediate, a
strong radiation fields. Case~c! is shown on a scale magnified by
factor of 100.
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PRA 60 977MAGNETO-OPTICAL ROTATION IN ATOMIC . . .
C. Voigt rotation with collisions

We now discuss the changes which occur when collisi
play a significant role. Since we expect destruction of opti
coherence due to collisions~represented byg! and relaxation
of orientation and alignment (f 1 and f 2 , respectively! to be
on comparable time scales@20#, we set these three param
eters equal for simplicity. The precise relationship betwe
the different multipole relaxation rates is discussed in@20#.
In the (0̃ 1) case, phase-changing collisions do of cou
broaden the response curves of the individual componen
all intensities, butf 1 and f 2 only affect the profile at inten-
sities high enough for there to be a significant population
the excited level. By contrast, in the (1̃0) case, they are o
particular importance at the lowest intensities because
redistribute the populations of the ground level substa
tending to bring them back to equality. Consider the situat
f 1 , f 2 ,g@A@I 1/2 shown in Fig. 2~a!, curve a. Because the
effects of optical pumping have been removed, one obta
essentially the same profile as that found for the weak ra
tion field effect in the (0̃ 1) case, i.e., that shown in Fig
1~a! but with the components broadened due to pha
changing collisions.

We now take the case where the Rabi frequency is
small compared withA, i.e., single atom saturation effec

FIG. 2. Voigt effect in the (1̃ 0) case. The value ofA(u3

2u1)/I is shown forvc /A5100, collisional relaxation rates give
by g/A, f 1 /A, f 2 /A510, and intensitiesI /A25(curvea) 1023,
~curve b! 50, ~curve c! 500, ~curve d! 43103, ~curve e! 83103,
~curve f ! 23104. The curves in~a! show the onset of saturation
while those in~b! show saturation becoming complete. With th
choice of parameters, collisional relaxation is much faster than
spontaneous emission rate, so the form of the curves applies al
the (0̃ 1) case; however, the effect is then larger by a factor o
as explained in the text.
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occur. We first assume that collisional relaxation still dom
nates both, and that the Zeeman splitting is large compa
with the collisional broadening, i.e., we takevc@ f 1 , f 2 ,g
@A. Now consider increasingI, starting at the low level
discussed above, at which the peak rotation on the cen
component is twice that on either of the other two. Supp
the laser is tuned to one of the Zeeman components. It is
a good approximation to neglect stimulated transitions in
others, because they are well-resolved, so we have e
tively a two-level system. As the intensity increases,
populations of the two levels connected by the laser li
tend to equality; however, the populations of all three ma
netic sublevels are tied together, so when saturation is c
plete the populations of all four states are 0.25N. The deple-
tion of the input beam under these circumstances is thus
same on all components, and independent of the incid
intensity; it is simply set by the rate of spontaneous de
out of the upper level. The rotation on all three compone
thus tends to equality, just as in the (0̃1) case, and the
Voigt rotation, since it is proportional to thefractional dif-
ferential absorption, decreases as 1/I . This progression is
shown in Fig. 2~a!.

Finally, we consider the profile when the intensity is
high that the stimulated transition rate is fast compared w
all other processes, and the Rabi frequency is large comp
with the Zeeman splitting. Then the width of the respon
curves is so large that the individual resonances are lost,
the profile has a single feature as in the (0˜1) case shown
in Fig. 1~c!. This progression is shown in Fig. 2~b!.

It is thus clear that when collisional effects dominate t
natural decay rate, the (0̃1) and (1̃ 0) cases are very
similar. This similarity is reflected in Eqs.~17! as mentioned
earlier, i.e., the significant difference between the two cas
apart from the overall scaling factor of 3, is the eliminatio
of A from the combinationsA1 f 1 ,A1 f 2 . If A! f 1 , f 2 , this
is not a significant change under conditions such thatu1 ,u3
are not too similar.

D. Arbitrary field orientation

In @21#, we considered magneto-optical rotation for t
(0˜1) case when the direction of propagation makes
arbitrary angle with the direction of the magnetic field. He
we summarize the results and extend them, applying th
also to the (1̃ 0) case. Figure 3 shows a Cartesian frame
which the light propagates in the positivex direction. The

e
to

3

FIG. 3. Coordinate system used to describe the propagatio
linearly polarized light for any direction of applied magnetic fiel
For key, see text.
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978 PRA 60F. SCHULLER AND D. N. STACEY
magnetic field is in thex,z plane at an angleb to the z
direction. The electric vector, which is then located in they,z
plane, makes an anglef with the y direction. Thenu ~de-
fined, as above, as the angle betweenE andH! is given by

cosu5sinf cosb. ~23!

Following @21#, we express the spherical components of
polarizationP of the medium in terms of those ofE using
coefficientsKM as follows:

PM5KMEM , ~24!

whereM is defined, as usual, with respect to the magne
field as quantization axis. We have that

KM522umu2N
sgM

I M
S KM522umu2N

sMe

I M
D ~25!

so that the low-intensity form for the coefficientsKM is

KM5umu2
N

e0\

1

D2Mvc/22 iG

S KM5umu2
N

3e0\

1

D1Mvc/22 iG D . ~26!

In @21#, we introduced quantitiesCMM8 defined by the rela-
tion

CMM85(
M9

dM9MKM9dM9M8 ~27!

involving elements of the familiar rotation matrixd~b! asso-
ciated with the rotation of the direction ofH into that of the
z axis of our Cartesian frame. We then showed that
magneto-optical rotationc is given by the following expres
sion:

c5
vx

2c
Im@ 1

2 ~R12R0!sin 2f1Q#, ~28!

where

R1511
1

e0
~ 1

2 C111
1
2 C21211C121!, ~29a!

R0511
1

e0
C00, ~29b!

Q5
1

e0

i

&
~C101C210!. ~29c!

From these expressions, the following explicit result
obtained:

c5
vx

4c
@$ 1

2 Im~K11K21!2Im K0%sin 2f cos2 b

1Re~K12K21!sinb#. ~30!
e

c

e

This was derived in@22# for the low-intensity limit in the
(0˜1) case, i.e., with theKM defined as in Eq.~26!. Under
these circumstances, theKM have no angular dependenc
and therefore, as pointed out in@22#, the rotation is separable
into Faraday and Voigt contributions. Equation~30! is in fact
still valid in the nonlinear case. The separability of the tw
effects only holds in the linear regime, however, beca
otherwise theKM depend on the angleu which in turn de-
pends onb andf so that the optical rotation will vary in a
nontrivial way with these angles.

To carry out explicit calculations, it is useful to expre
the rotation in terms of the variables defined in Eq.~15!:

c5
vx

2e0\c
Numu2F S u3

I 0
2

u1

2I 1
D sin 2f cos2 b1

t2

I 1
sinb G .

~31!

From this expression, the magneto-optical rotation for eit
transition can be obtained at any angle and any intensity;
Voigt and Faraday effects appear as special cases.

IV. EFFECTS OF ATOMIC MOTION

The motion of the atoms leads to a distribution of cent
atomic frequencies due to the Doppler effect, giving for t
case of thermal equilibrium the familiar Gaussian cente
on v0 . We define this distribution by its HWHMDvD . In
the optically thin situation we are considering, the final ro
tion profiles are obtained by simple convolution of th
Gaussian with the rotation spectra derived above. In S
III A–III C, we discuss the Voigt effect, while in Sec. IV D
we compare the behavior of the Voigt and Faraday effec

A. „1˜0… case without collisions

After convolution one obtains a Voigt profile for all in
tensities, since the spectrum for a stationary atom is
Lorentzian form. The area under the Lorentzian drops w
increasing intensity, becoming;1/I for large I, so the larg-
est effect is observed at line center at low intensity.

B. „0˜1… case without collisions

The stationary-atom spectrum has a peak rotation wh
drops with increasing intensity~Fig. 1!. However, after con-
volution this ceases to be the case. The fact that the rota
produced by a single atom at low intensity averages to z
over frequency means that when convolved with a Dopp
distribution of much greater width, the spectrum is strong
suppressed. When saturation effects become significant
overall single-atom rotation is reduced, but it also becom
predominantly of one sign; at first, this is enough to cau
the peak of the convolved curve to continue to grow.
ceases to do so, and eventually reduces, as the intensit
creases further. This sequence is shown in Fig. 4.

C. „1˜0… case and„0˜1… case with collisions

We consider next the situation in which collisional rela
ation dominates the natural decay rate, so that the (1˜0)
and (0̃ 1) cases behave similarly. Qualitatively, the var
tion with intensity is as for the (0̃ 1) case without colli-
sions, and for just the same reason: the convolved rota
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spectrum at first increases with intensity because it cease
average to zero when saturation effects become appreci
reaches a maximum, and then steadily decreases.

D. Comparability with Faraday rotation

Since the Voigt effect for the (1̃ 0) case without colli-
sions depends so strongly on collisional effects, we first c
sider the more straightforward (0̃1) case, at low intensity
As pointed out in@21#, if the Zeeman splitting is larger tha
the radiation width, so that the triplet is well resolved, t
peak Faraday and Voigt rotations are comparable. Howe
if the splitting is small compared with the linewidth, then th
Voigt effect is smaller. In this regime, the magnitude of t
Faraday effect is linear in the applied magnetic field, wh
the Voigt effect is quadratic. This is because the peak va
of the Faraday rotation, which occurs at line center, is
difference between two dispersion curves which are d
placed linearly with applied field. The Voigt rotation is th
difference between a component which remains centere
v0 and the sum of two components, each of half the inten
of the first, centered atv06vc/2.

These considerations carry over to the Doppler-broade
case; the Voigt effect is suppressed by comparison with
Faraday effect by an amount;vc /DvD . It is evident that
these results apply also at low intensity to the collisio
broadened (0̃ 1) case, and thus also to the (1̃0) case
provided that collisional relaxation is much faster than sp
taneous emission. Figure 5 shows the (1˜0) Faraday and
Voigt rotations for the stationary atom case, while Fig.
shows the greater reduction in the latter caused by conv
tion. It is therefore much harder experimentally to study
Voigt effect without contamination with residual Faraday r
tation than the converse.

V. VOIGT EFFECT AS A FUNCTION
OF MAGNETIC FIELD

The rotation spectra discussed up to this point have
been given as a function of frequency, with the magne

FIG. 4. Effect of inclusion of atomic motion on the Voigt effec
The example shown is for the (0̃1) case without collisions, with
vc /A510, convolved with a Gaussian function of HWHM 25A.
The intensityI /A2 takes the following values: curvea, 1023; curve
b, 0.1; curvec, 0.5; curved, 10; curvee, 100. The largest rotation
occurs when there is appreciable saturation present, in contra
the case for stationary atoms. This is because the rotation ave
to zero in weak radiation field.
to
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field kept constant in each case. This is because for the
poses of understanding the spectra in terms of phys
mechanisms it is simplest to discuss the frequency respo
of stationary atoms, and then convolve in the Doppler dis
bution as a final step. However, experimentally it can
convenient to keep the frequency fixed near line center
measure the rotation as a function of magnetic field. T
also has an advantage in that when the rotation is recorde
a function of frequency, Doppler broadening causes loss
detail and can limit the interpretation. When recorded a
function of field, however, saturation can cause narrow f
tures ~in the present case, associated with particular rel
ation mechanisms! to appear in the spectra, even in the pre
ence of atomic motion. Examples of experimental curves
given in @7# for the case of Faraday rotation, and their inte
pretation is discussed in@15#.

We therefore give for completeness in Fig. 7 spectra
they would appear if recorded as a function ofvc with the
frequency of the radiation fixed near line center, suppos

to
ges

FIG. 5. Comparison of the Faraday and Voigt effects for t
(1˜0) case. The values ofAt2 /I ~Faraday! and A(u32u1)/I
~Voigt! are shown forvc /A5100, collisional relaxation rates
g/A, f 1 /A, f 2 /A510, and intensityI /A251023. The two effects
are comparable if as in this casevc is large enough for the compo
nents to be well-resolved.

FIG. 6. Curvea Voigt and curveb Faraday rotation in weak
radiation field for moving atoms in the (1̃0) case, obtained by
convolving the curves of Fig. 5 with a Gaussian function of HWH
25A. The value ofvc is now much smaller than the linewidth, s
the Voigt rotation is suppressed by comparison with that due to
Faraday effect.
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the transition to be Doppler-broadened. For ease of comp
son, we choose the values ofA, I, and the relaxation rates t
be the same as those of the corresponding curves in Fig.
explained earlier, this set of curves applies to both the
˜1) and (1̃ 0) cases. In obtaining the curves shown
Fig. 7, it has been assumed throughout that the Dop
width of the transition is much larger than the entire struct
@15#. The rotation for a given value ofvc can then be found
simply by integrating the frequency-dependent curve, si
the Doppler distribution is effectively flat over the frequen
range of interest. The rotation must always be zero forvc
50, and is symmetric aboutvc50, so only the curves for
positivevc are shown. The rotation tends to a constant va

FIG. 7. Voigt rotation in the (1̃ 0) case, plotted as a functio
of vc /A with the frequency of the radiation fixed at a value ne
line center. The Doppler width of the transition is supposed la
compared with the entire structure~see text!. The curves correspond
to the plots of Voigt rotation against frequency for fixed field in F
2; values of the collisional relaxation areg/A, f 1 /A, f 2 /A510 and
the intensities areI /A25(curveb) 50, ~curve c! 500, ~curve d! 4
3103, ~curvee! 83103, ~curve f ! 23104.
.
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as vc increases; this is because once the magnetic fiel
large enough for the triplet to become resolved, no furt
changes can occur so long asvc!DvD . When this ceases to
be the case~beyond the region plotted in Fig. 7!, our ap-
proximation that the Doppler width is much larger than t
entire structure breaks down, and the rotation decrease
ymptotically to zero.

No curve is shown corresponding to Fig. 2~a!, since in the
absence of saturation effects the average over frequenc
the rotation produced by any given atom is zero. Hence
the limit of very large Doppler width, the rotation is zero fo
all values of the field. The first effect of saturation appears
Fig. 7~b!, the relative decrease in the response in the cen
component of the triplet apparent in Fig. 2~b! causing there
to be a nonzero rotation which increases over a freque
range determined by the collisional rate since this gove
the width of the individual atom response curve. The sa
general behavior is shown in Figs. 7~c!–7~f!, the progres-
sively slower rise to the maximum rotation occurring b
cause the linewidth becomes dominated by the rapid rat
stimulated transitions, increasing asAI . A low-frequency
feature associated with the collisional rat
(g/A, f 1 /A, f 2 /A510) becomes discernible in Figs. 7~d!–
7~f!, but its exact shape and position depend also on the l
of saturation.

VI. CONCLUSION

We have given the basic equations which govern the F
aday and Voigt rotations~and any combination of the two!
for all radiation field strengths for the (1̃0) and (0̃ 1)
cases. We have treated explicitly the Voigt effect for t
(1˜0) case, contrasting it with the (0̃1) case. The major
difference between the two occurs when there is neglig
collisional relaxation, in which case optical pumping caus
the (1̃ 0) rotation to become a simple Lorentzian functio
of frequency at all strengths of the radiation field. Wh
collisional relaxation is more important than spontaneo
emission, however, the two cases become very similar.
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