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Equal-factor approach to perturbation theory
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A special application of the equal-factor method is used to reformulate perturbation theory. We derive
formulas for determining thenth-order equal factorfp‘ff{")} and the correspondingith-order energy correc-
tions{E{™}. A set of themth-order perturbation energy levdlE(™} thus may be calculated to arbitrarily high
order by self-consistent equations. We have applied this so-called equal-factor perturbation to hydrogenlike
ions in a potential field—&/r?. Our results illustrate important advantages in aspects both of practice and
theory. Work is presently underway to introduce the equal-factor assumption to perturbation theory for refor-
mulation of the principle of the first and second kind of balance thd&¥%050-294{©9)01808-9

PACS numbd(s): 31.15.Ar, 02.30.Mv

. INTRODUCTION (Ho+HV (X, @)=E(a) ¥ (X,a), tist<t;, (2

Before describing the problem, we first summarize somavhere «a is a parameter varying in the possible metastable
basic ideas of PFSKBprinciple of the first and second kind period of timet; <t<t;.
of balance theory. As isolated subsystehf, and potential Clearly, at the end of the assumed metastable process, the
H’ move closely; a perturbing potentitll’ imposes a force varying energy acquires its minimum value at the balance
on the unperturbed subsystem. The subsystem then may vappint «* [1,2] and so the minimum energy can be identified
its structure to balance this external force and, after a veryvith the energy eigenvalue of the Sctilger equatior(1):
short period of time, the total system stabilizes at the energy )
minimum position. This picture illustrates the possible meta- En=min{En(a)}a=ax - 3

stable process of formation éf, andH’ in passing froman \ye fing to our surprise that the minimization principle

unperturbed to a perturbed syst¢in2] in a possible meta- £, (3) extends the use of the variational principle to excited
stable time period, and also indicates that the phenomeno&ates as well

mentioned above is similar to a deformation of a real body in
classical mechanics. Here and throughout, the terms “pos-
sible metastable process” and “possible metastable time pe-
riod” refer to a helpful thought process we have employed in  Suppose the exact eigenfunction @{nﬁ()z,a)} corre-

working out the mathematical formalism; in certain casessponds to the energy SHEnp(@)}. Both of them respond to
and under certain circumstances, it is conceivable that thighe same common eigenvalye We assume that no eigen-

Il. THEORY

process may actually have physical significance. value of the operatoHq(«a) is degenerate. Thus the exact
~ We begin with the time-independent Scdiger equa-  eigenfunction and energy eigenvalue of the extended ‘Schro
tion, which traditionally is given by dinger equatior(2) can be expanded in powers bf
X a)=T0)(x Deg e\ M (M)
HY () =E. P (2), @ TR =X TR ,a) b AR (K a)

whereE, is the energy eigenvalue. As is well known, one is

. . ) and

interested in an entire energy levf, s}, rather than an

individual energy level in PFSKB theory. Thus we assume Enﬁ(a):E§10>(a)+)\E§11>(a)+...H\mEgm)(a)jL...,
this entire energy level is characterized by some common p p s (5)
eigenvalueg.

According to perturbation theory, one divides the totalwhere\ is a dummy argument. Termkﬁ,“[}) and ES{B’ are the
HamiltonianH into two parts: Hyo+H'. One is treated as mth-order perturbation wave function anath-order pertur-
an unperturbed pat, the other as a perturbatidt’. We  bation energy, which is defined as
suppose the stable total systéinin Eq. (1) is formed from
two subsystems$i, andH’. Then there is a possible meta- ENR () =E{J(a)—E{} Y(a), (6)
stable process which goes from an unperturbed to a per-
turbed system in a very short period of timeand the total WhereEﬁfB> and Eﬁ%’” are themth and (n— 1)th-order ap-
system obeys the extended Sdalinger equation1,2]: proximations to the energy, respectively.

In PFSKB theory, the unperturbed Schimger equation
with varying parametet is given by
*Permanent address: Shapingba Nankai Xiaoxue, Chong- )/ o 0) 0)/ o
ging 400030, People’s Republic of China. Ho(a) dnp (X, a) =Eqg(a) dnp(X, @), )
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where 8 is some common eigenvalue. The Wxﬁo)(x @)}  wherea varies in the interval ¢* —Aa<a* +Aa).
creates a subspace and, therefore, is chosen as a completédence, the perturbation expansi@h of the exact eigen-
orthonormal function basis. function is reformulated:

We ignore the inde)g as a convention in the remainder of . 0o D D)o (me(m)
this paper. Now, suppose thath-order perturbation wave ~ ¥n(X,@) = (X, @) + MW (@) ¢ (X, @) 4+ NV,
can be expanded in term of the unperturbed eigenfunction set

(6O(%,a)) X(a) g™ (Ra) - (1

According to the equal-factor assumpti), we have
(X,a)=2, C{VV(X,a). ®

e Y (%)= 2 EM™(a)¢f?(X,a), (12)
Applying the extended equal-factor assumption to coeffi- 7

cientsC{ in Eq. (8), it is straightforward to writg2] whereE{(™(a) is defined in expressiof6), the indexi is a
convention in Eq(9), and {2 (X,a) = ¢\V(X, ).

(M) _ ¢(m) (m) i =i i i=0—
Coj =fn (@B (@) if j<n, i=], j>n, i=]-1, Here we assume that the equal-factor relat@rbetween

©) f("(a) andE{™(«) can be satisfied in a possible metastable
where we separated integer variablesnadind j for coeffi-  process for a varying parameterin a near-neighbor of the
cientC([”, andE{™(«) is the correspondingith-order cor- ~ balance position* up to themth order. _
rection of the energy levels of the extended Sdimger We notice this reformulatethth-order perturbation wave
equation(2) and f™(a) is the mth-order equal factof2]. satisfie; an orthogonallcondition v_vith an unperturped wave
It is useful to note that coefficie®{” in Eq. (9) is inde- ';?or dvarylng parameter in the possible metastable time pe-

pendent of varying parametet, that is, the product of
fi(@)Ei"(a) remains |nvar|a_1r_1t. In particular, whea <¢gm>(i,a)|¢5]0)()g,a)>zo, m=12,.... (13
takes a value of a balance positiafi, we have
- (m (M *r (M % Consider the extended Scklinger equation(2) by the
fa (B (@) =17 (a™)E;(a™), (10 perturbation expansion in terms ®f which is given by

[Ho(@)+h(a) +NH T () + P (@) gD (@) +- -+ N (@) pi™ (@) ++ -]
=[E(a) +NEP (@) +- ) (P () + N P (@) P (a) +- -], (14)

where h(«) is equal toHy—Hg(«), which represents changes in subsystdig under perturbatiorH’ in the possible
metastable process.

Expanding the above equation and regrouping according to ascending powerthefreformulated perturbation expan-
sions are obtained:

[Ho(a) +h(e) ¢ () =E(a) ¢ (a), (15

[Ho(a)+h(a) 1P () gD () +H g (@) =EX () f P (@) P () +EN (@) yi(a), (16)
[Ho(a) +h(a) 1™ (@) g™ (a) + H'F™ () g™ V(a)

=ER()fM (@) g™ (@) +EP (@) f" V() g V(@) + -+ BV (@) g (). (17)

Multiplying both sides of Eqgs(15-(17) on the left by  Furthermore, thenth-order approximation to the energy is
(49(a)| and integrating, we have

EP () =EP (@) + (s (@) (@) g (), (18) EN(@)=El(a)+ 2 Epf(@), n=12,.... (2
ER () =(up (@)h(a)| g (@) fi (@)
©) © Recalling the second kind of balance condition in PFSKB
+ (¢ () [H' [y (a)), (19 theory[1], we obtain
| iE<m>(a)| m=0, n=1,2 (22)
E (@)= (¢ (a)|h(a) |y () FiM () de " TS .

(Y ()H [y (@) " Y(@). (200 Then the minimal energy for theth-order approximation is
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TABLE I. Coefficientsa;, andb,; are given in triangle below and up the diagonal positionsiferl to 13;j=1 to 13, respectively. The
accuracy is estimated to bel in the last digit(in a.u). Numbers in square brackets indicate powers of 10.

n

j 1s 2s 3s 4s 5s 6s
Is 0.628540[ +0] 0.336787(+0] 0.217600[ +0] 0.155328[ +0] 0.118009[ +0]
2s 0.209517[+0] 0.127156[ +0] 0.814767[—1] 0.579767[—1] 0.439779[— 1]
3s 0.108243[ +0] 0.721162[—1] 0.458699[ - 1] 0.324450[—1] 0.245549[ - 1]
4s 0.691152[~1] 0.426630[— 1} 0.364365{—1] 0.215544[—1] 0.162306[—1]
Ss 0.490743[ 1] 0.294434[ - 1] 0.229434[ - 1] 0.220875[—1] 0.118113[—1]
6s 0.371774[ - 1] 0.219917[-1] 0.166407[— 1] 0.142362[ 1] 0.146282[ - 1]
7s 0.294292[ - 1] 0.172668[— 1] 0.128784[—1] 0.106997[ 1] 0.996462[ 2] 0.104943[—1]
8s 0.240487[ - 1] 0.140373[—-1] 0.103805[ —1] 0.852466[ 2] 0.764648[ 2] 0.720167[ 2]
9s 0.201319[—1] 0.117102[—-1] 0.861130[—2] 0.702555[-2] 0.615720[—2] 0.568285[ 2]
10s 0.171755[-1] 0.996600[ —2] 0.730012[ 2] 0.592944[ - 2] 0.511567[ -2} 0.466787[—2]
11s 0.148788[ - 1] 0.861780[—2] 0.629464[ —2] 0.509629[—2] 0.434877[-2] 0.392800[ -2}
12s 0.130525[ 1] 0.754971[-2] 0.550270[ 2] 0.444398[ -2] 0.376217[-2] 0.336908[ — 2]
13s 0.115718[ 1] 0.668621[ —2] 0.486527[—2] 0.392141[—-2] 0.330085[ —2] 0.293488[ - 2]
s 8s 9s 10s 11s 12s 13s
0.935748[—1] 0.765513[—1] 0.641320[ -1} 0.547434[ -1} 0.474421[—1] 0.416314[—1] 0.369174[—1]
0.348404[—1] 0.284857[—1] 0.238551[ -1} 0.203573[—-1] 0.176387(—1} 0.154759[—1] 0.137220[—1]

0.194301[—1]
0.128203[—1]
0.929395[ 2]
0.716415[ 2]

0.788725[ 2]
0.547076[ —2]
0.440317[ 2]
0.366278[ 2]
0.310671[—2]
0.267839[ 2]

0.158750[—1]
0.104652[—1]
0.757450[—2]
0.581915[-2]
0.466928[ —2]

0.612419[ 2]
0.433566[ —2)
0.352152[ 2]
0.293845[ —2]
0.250010[—2]

0.132883[—1]
0.875522[—2]
0.633110[—2]
0.485829[ - 2]
0.388624[ 2]
0.321110[-2]

0.491421[-2]
0.347872[-2]
0.287972[-2)
0.243312[ 2]

0.113363[— 1]
0.746640[ —2]
0.539599[ 2]
0.413805[ - 2]
0.330678[ 2]
0.272488[ 2]
0.230246[ 2]

0.400581[—2]
0.290407[-2]
0.239471[~2]

0.982013[-2]
0.646616[ —2]
0.467127[-2]
0.358071[—2]
0.285978[ —2]
0.235436[ ~2]
0.198440[ —2]
0.170675[ 2]

0.334220[ 2]
0.243012[-2]

0.861459[—2]
0.567129[ —2]
0.409588[ —2]
0.313868[ —2]
0.250575[ 2]
0.206178[ 2]
0.173657[—2]
0.149027[ 2]
0.130015[—2]

0.281849[ 2]

0.763725[—2]
0.502714[ 2]
0.362993[ 2]
0.278096{ — 2]
0.221950[—2]
0.182559[ 2]
0.153698[ 2]
0.131800[ - 2]
0.114759[-2]
0.101311[-2]

where o{™ is the balance position at the end of the meta-
stable process.

Next, we shall seek the values of the equal-factor
(M (™) corresponding to thenth-order energy correc-
tions E(™ (™). Let us now turn to Eqs(15)—(17). Multi-
plying both sides of Eqs(15)—(17) on the left by the per-
turbing function(y{™| and integrating, we have

EM™(a™)=min{E(™(a)}. 23

We note that deriving formulé22) with equal-factor re-
lations (9) yields

f™(a) > E™(a)¢¥(X,a)=f"(ai™) >, E™
i#n j#n

X(a™) " (X,a).  (29)

Therefore, a series ahth-order self-consistent perturbation fﬁl’(agl))—[ ) ~ ORI L) ] ,
equations can be obtain¢8]. If m=1, (9 [Ho(e)+h(a) —ER ()] yr) a=aV
E(af) =10 (el (i (@) (@) 957 (@) e o -
(U (@H T ()] ot (25
If m=2, fﬁf)( ;2))_[ <¢$12)|E$11)’H'|¢ﬁl)>f§11)(a§11)) ] ,
(" [Ho() +h(@) —EP () [i)]

EN (aq™) =" (a™){(v (@) [n(a) 4™ (@) am ot

+§(M=D)( m=1)y (28

n

X (@) H Y™ (@) amafm, 20 4y
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TABLE II. Demonstration of the possible metastable process for a hydrogen atom in a potential figltl 6= —10° by an iterative
procedure. The integéris the index of the repeated process arfe{V =E()***1—EMK Numbers in square brackets indicate powers of
10.

k=1 k=3
s AED W D e ol AED EW EQ 0 o

1s 0.20+07] 0.24+07] 0.20+07] 0.00+00] 0.1q+01] 0.14+00] 0.11+00] —0.14—06] 0.59—04] 0.23—03]
2s  0.29+06] 0.25+06] 0.2+06] 0.00+00] 0.1+01] 0.55-04] 0.1—06] —0.30—07] 0.44—02] 0.50—06]
3s 0.74+05] 0.74+05] 0.74+05] 0.0q+00] 0.1+01] 0.6§—02] 0.24—08] —0.47—07] —0.55—03] 0.23—086]
4s 0.31+05] 0.31+05 0.31+05] 0.0+00] 0.1q+01] 0.33+00] 0.1§—07] —0.54—07] —0.17-02] 0.11—05]
5s  0.14+05] 0.1§+05] 0.1§+05] 0.0q+00] 0.1q+01] 0.11+02] 0.17—-07] —0.57—07] —0.20—02] 0.1 —05]
6s 0.93+04] 0.93+04] 0.93+04] 0.00+00] 0.1+01] 0.1§+03] 0.83—08] —0.64—07] —0.24—02] 0.26—05]
7s 0.5§+04] 0.5§+04] 0.59+04] 0.00+00] 0.1q+01] 0.44+03] —0.11—-07] —0.83—07] —0.2§—02] 0.3§—05]
8s 0.3d+04] 0.39+04] 0.39+04] 0.0q+00] 0.1q+01] 0.34+03] —0.37—-07] —0.14—06] —0.30—02] 0.5q —05]
9s 0.27+04] 0.27+04] 0.27+04] 0.0q+00] 0.1q+01] 0.24+03] —0.54—07] —0.14—06] —0.3§—02] 0.7 —05]
10s  0.2q+04] 0.20+04] 0.20+04] 0.0q+00] 0.1q+01] 0.17+03] —0.59—-07] —0.1§—06] —0.37—02] 0.97—05]
11s  0.19+04] 0.19+04] 0.19+04] 0.00+00] 0.1+01] 0.13+03] —0.47—07] —0.14—06] —0.37—-02] 0.11—04]
12s  0.14+04] 0.14+04] 0.14+04] 0.0d+00] 0.1+01] 0.99+02] —0.34—07] —0.14—06] —0.3§—02] 0.17—04]
k=6 k=10
ns AE® ED E(D S a® AED ED E(D £(1) al®

1s —0.27-08] 0.13—06] —0.17-06] —0.37+04] 0.29—06] —0.26—09] 0.13—06] —0.17—06] —0.24+05] 0.2§—06]
2s  0.10—05] 0.6§-07] —0.54—07] —0.14+05] 0.49—06] 0.14-08] 0.65-07] 0.5§-07] —0.14+06] 0.50—06]
3s —0.1§-04] 0.14-06] —0.64—-08] —0.34+06] 0.70—06] 0.8§-09] 0.49-07] —0.34—07] —0.2§+06] 0.6 —06]
4s 0.20-07] 0.15-06] —0.17-06] 0.14+06] —0.1§—05] 0.1§-06] 0.40—07] —0.11—07] —0.74+06] 0.7§—086]
5s  0.66—07] 0.96-07] —0.54—-07] 0.54+05] 0.31—05] —0.1§—05] —0.99—-08] —0.7—07] 0.8+06] 0.43—06]
6s 0.5§-08] 0.34-07] —0.40—07] 0.46+05] 0.2§-05] 0.20—05] 0.21-05] —0.10—04] —0.2q+08] 0.31—05]
7s 0.25-08] 0.23-07] —0.37—07] 0.3§+05] 0.27—05] 0.1§—04] 0.1§—04] —0.7q—08] —0.33+06] —0.54—04]
8s 0.14-08] 0.19-07] —0.27-07] 0.33+05] 0.29-05] 0.8§-08] 0.29-08] —0.14—07] 0.90+05] 0.1q—05]
9s 0.19-08] 0.1§-07] —0.23—-07] 0.3q+05] 0.31—05] 0.13—06] —0.64—08] —0.44—07] 0.6+06] 0.25—05]
10s 0.1§—08] 0.13-07] —0.21—07] 0.2§+05] 0.34—05] —0.20—06] —0.24—07] —0.74—07] 0.14+07] 0.49—05]
11s 0.11-08] 0.14-07] —0.19—-07] 0.27+05] 0.37-05] 0.80—08] 0.34—07] —0.34—07] 0.67+06] 0.7§—05]
125 0.7§—09] 0.11-07] —0.17—-07] 0.2§+05] 0.40—05] 0.31—08] 0.1§—07] —0.2§—07] 0.4+06] 0.6 —05]
k=12 k=25
ns AE® EWM ED £ ald AE® EW E(D £(1) ald

1s 0.14-07] 0.14-06] —0.11-06] —0.13+07] 0.2§-06] —0.24—13] 0.14—06] —0.1]—06] —0.1§+07] 0.25—06]
2s —0.74-07] —0.84—-08] —0.14—06] 0.33+07] 0.39—06] 0.8§—14] 0.5§—08] —0.11—06] 0.23+07] 0.3§—086]
3s 057-07] 0.94-07] —0.94—07] 0.29+07] 0.1§—05] 0.24—13] 0.37—07] —0.11—06] 0.34+07] 0.13—05]
4s 0.2§-07] 0.57—-07] —0.66—07] 0.19+07] 0.19—05] 0.37—15] 0.41—07] —0.94—07] 0.33+07] 0.21—05]
5s 0.13-07] 0.37-07] —0.51—07] 0.1§+07] 0.21—05] —0.2§—13] 0.34—07] —0.7§—07] 0.3q+07] 0.27—05]
6s —0.40—-07] 0.2§-07] —0.47—07] 0.14+07] 0.24—05] —0.24—13] 0.27—07] —0.64—07] 0.2§+07] 0.3]—05]
7s 0.10-06] 0.74-07] —0.47—-08] —0.14+07] 0.2§—-05] —0.94—13] 0.21—07] —0.5]—07] 0.23+07] 0.3§—05]
8s —0.71-07] —0.2§—-07] —0.2]—06] 0.73+07] 0.74-06] —0.5—13] 0.17—07] —0.43—07] 0.2q+07] 0.3§—05]
9s 0.8§-07] 0.13-06] —0.64—07] 0.29+07] 0.9§—05] —0.1]—12] 0.1§-07] —0.37—07] 0.1§+07] 0.41—05]
10s 0.1§-07] 0.29-07] —0.34—07] 0.14+07] 0.6—05] —0.9§—14] 0.14-07] —0.39-07] 0.17+07] 0.44-05]
11s 0.50—08] 0.99-08] —0.34—-07] 0.1§+07] 0.53-05] 0.60—13] 0.11-07] —0.24—07] 0.1§+07] 0.49—05]
12s —0.93-08] 0.74-08] —0.37-07] 0.17+07] 0.56—05] 0.56-13] 0.99-08] —0.26—07] 0.1§+07] 0.51—05]
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TABLE Ill. Comparison of various computed eigenvalues with the exact vafue.u) for positive coupling parametes=0.01, 0.005,
and 0.001E(M2, E(D'P | andE{M RS are the first-order approximation to the energy. The corresponding equal fégtdtand f()° are
determined by formulg46) and by trial, respectively. The equal factais)® take the value 0.05 for €5<0.125 andn=1 to 12
states. Numbers in square brackets indicate powers of 10.

5=0.01,f(M""P=0.05

ns Eox E%]_),a f(ha E§11>,b E(.RS
1s —0.52106+00] —0.5206%+00] —0.8986%+00] —0.52084+00] —0.52000+00]
2s —0.12759+00] —0.12766+00] 0.81037+00] —0.12756+00] —0.12750+00]
3s —0.56320—01] —0.56326—01] 0.41377+00] —0.56308—01] —0.56296—01]
4s —0.31571-01] —-0.31571{-01] 0.24114+00] —0.31567-01] —0.31562—-01]
5s —0.20164—01] —0.20163—01] 0.16464+00] —0.20162—01] —0.20160—01]
6s —0.13984-01] —0.13983-01] 0.12230-+00] —0.13982-01] —0.13981-01]
7s —0.10264—01] —0.10263-01] 0.95693—01] —0.10263-01] —0.10262-01]
8s —0.7852%—02] —0.78520—02] 0.77603—-01] —0.78519—-02] —0.78516—02]
9s —0.62009—02] —0.62006—02] 0.64617-01] —0.6200%—02] —0.62003—-02]
10s —0.5020%—02] —0.50202—-02] 0.54912-01] —0.50202—-02] —0.50200—02]
11s —0.41476-02] —0.41474-02] 0.47427-01] —0.41474-02] —0.41473-02]
12s —0.34841-02] —0.34839—-02] 0.41508—01] —0.34839—-02] —0.34838—02]
5=0.005,f(1""P=0.05
ns Eﬁxc Egl),a fg]l),a E%D’b ES]D’RS
1s —0.51026+00] —0.51016+00] —0.89491+00] —0.5102{+00] —0.51000+00]
2s —0.12627+00] —0.12629+00] 0.8396%+00] —0.12626+00] —0.1252%+00]
3s —0.55932—01] —0.55933-01] 0.40529+00] —0.55929-01] —0.55926—01]
4s —0.31408-01] —0.31408-01] 0.24253+00] —0.31407-01] —0.31406—01]
5s —0.20081{—01] —0.20081{—01] 0.16751+00] —0.20080—01] —0.20080—01]
6s —0.13936—01] —0.13936—01] 0.12508-+00] —0.1393%—-01] —0.1393%-01]
7s —0.10234-01] —0.10233-01] 0.98157—-01] —0.10233-01] —0.10233-01]
8s —0.78323-02] —0.78322-02] 0.79757-01] —0.78321-02] —0.78320-02]
9s —0.61867—02] —0.61866—02] 0.66503—01] —0.61866—02] —0.61866—02]
10s —0.50101—-02] —0.50100—02] 0.56573—01] —0.50100—02] —0.50100—02]
11s —0.41398—-02] —0.41398—-02] 0.48902—01] —0.41398-02] —0.41397-02]
12s —0.34781-02] —0.34780—-02] 0.42827-01] —0.34780—-02] —0.34780—-02]
§=0.001,f""*=0.05
ns Eﬁxc Eg\1>,a ff]l),a ES]1>'b E§]1>’RS
1s —0.50201+00] —0.50201+00] —0.89270+00] —0.50201+00] —0.50200+00]
2s —0.1252%+00] —0.1252%+00] 0.86263-+00] —0.1252%+00] —0.1252%+00]
3s —0.55630—01] —0.55630—01] 0.39993+00] —0.55630—01] —0.55630—01]
4s —0.31281-01] —0.31281-01] 0.24417+00] —0.31281-01] —0.31281-01]
5s —0.20016—01] —0.20016—01] 0.16993+00] —0.20016—01] —0.20016—01]
6s —0.13898—01] —0.13898—01] 0.1273%+00] —0.13898—01] —0.13898—01]
7s —0.10210-01] —0.10210-01] 0.10016+00] —0.10210-01] —0.10210-01]
8s —0.78164—02] —0.78164—02] 0.81507-01] —0.78164—02] —0.78164—02]
9s —0.61756—02] —0.61756—02] 0.6803%—01] —0.61756—02] —0.61756—02]
10s —0.50020—-02] —0.50020—-02] 0.57924—01] —0.50020—-02] —0.50020—02]
11s —0.41337-02] —0.41337-02] 0.50101—01] —0.41337-02] —0.41337-02]

125 —0.34734—-02] —0.34734-02] 0.43899—01] —0.34734—02] —0.34734-02]
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TABLE IV. Comparison of various computed eigenvalues with the exact vafua.u) for negative coupling parametes=—0.1,
—0.01, and—0.001.E{2, ESVP, andESY RS are the first-order approximation to the energy. The corresponding equal féfidtsand
(D> are determined by formul@6) and by trial, respectively. The equal factdtd° take the value 0.125 for0.10< 5<0 andn=1 to
12 states. Numbers in square brackets indicate powers of 10.

6=-0.10,f(M"*=0.125

ns Eexe ES]l),a f§11),a ES]l),b E§11>,Rs
1s —0.3647%+00] —0.35241+00] —0.94833+00] —0.3577%+00] —0.30000+00]
2s —0.10610+00] —0.10912+00] 0.13130+01] —0.10457+00] —0.10000+00]
3s —0.49731-01] —0.49688-01] 0.44328+00] —0.49187-01] —0.48148-01]
4s —0.28743-01] —0.28674-01] 0.33493+00] —0.28496-01] —0.2812%-01]
5s —0.18700—-01] —0.18635-01] 0.24755+00] —0.18571-01] —0.18400—-01]
6s ~0.13131-01] —0.13081-01] 0.19427+00] ~0.13056-01] ~0.12963-01]
7s ~0.97237-02] —0.96863-02] 0.15773+00] ~0.96774-02] ~0.96210-02]
8s —0.74893-02] —0.74610-02] 0.13143+00] —0.74590—-02] —0.74219-02]
9s —0.59450—02] —0.59234-02] 0.11174+00] —0.59246—02] —0.58985—02]
10s —0.4833%-02] —0.48166—02] 0.96538-01] ~0.48192-02] —0.48000-02]
11s —0.40068—02] —0.39934-02] 0.84507-01] —0.39967-02] —0.39820-02]
12s —0.33754-02] —0.33647-02] 0.74791-01] —0.33681-02] —0.33565—02]
5=-0.01,fVP=0.125
ns g Esl1>,a ff]l),a ES]l),b Eﬁ]l),RS
1s —0.4809%+00] —0.48064+00] —0.88966+00] —0.48079+00] —0.48000+00]
2s —0.12258+00] —0.1226%+00] 0.92372+00] —0.12256+00] —0.12250+00]
3s —0.54836—01] —0.54839-01] 0.39037+00] —0.54828-01] —0.5481%-01]
4s —0.30946-01] —0.30945-01] 0.25039+00] —0.30943-01] —0.30938-01]
5s —0.19844-01] —0.19843-01] 0.17702+00] —0.19842-01] —0.19840—-01]
6s —0.13799—-01] —0.13798-01] 0.13382+00] —0.13798-01] —0.13796—01]
7s -0.10147-01] —0.10147-01] 0.10582+00] ~0.10147-01] —0.10146-01]
8s ~0.77743-02] —0.77739-02] 0.86434-01] ~0.77741-02] —0.77734-02]
9s —0.61460—02] —0.61457-02] 0.72346-01] —0.61459—02] —0.61454—02]
10s —0.49804-02] —0.49802-02] 0.61723-01] —0.49803-02] —0.49800-02]
11s ~0.4117%-02] —0.41173-02] 0.53476-01] ~0.4117%-02] ~0.41172-02]
12s —0.34609-02] —0.34607-02] 0.46921-01] ~0.34609-02] —0.34606—02]
§=-0.001,f("""=0.125
ns Eﬁxc E(nl>,a ff]l),a ES]1>’b Eﬁ]l),RS
1s —0.49801+00] —0.49801+00] —0.89184+00] —0.49801+00] —0.49800+00]
2s —0.1247%+00] —0.1247%+00] 0.87397+00] —0.1247%+00] —0.1247%5+00]
3s —0.55482-01] —0.55482-01] 0.39766+00] —0.55482-01] —0.55481-01]
4s ~0.31219-01] —0.31219-01] 0.24513+00] ~0.31219-01] —0.31219-01]
5s —0.19984-01] —0.19984-01] 0.17117+00] ~0.19984-01] —0.19984-01]
6s —0.13880—-01] —0.13880-01] 0.12851+00] —0.13880—-01] —0.13880-01]
7s ~0.10198-01] —0.10198-01] 0.10118+00] ~0.10198-01] ~0.10198-01]
8s —0.78086—02] —0.78086—02] 0.82391-01] ~0.78086—02] —0.78086—02]
9s ~0.61701-02] —0.6170{-02] 0.68809—01] ~0.61701-02] —0.6170{-02]
10s —0.49980—02] —0.49980-02] 0.58605-01] —0.49980—-02] —0.49980—-02]
11s ~0.41307-02] —0.41307-02] 0.50706—01] —0.41307-02] —0.41307-02]
12s ~0.34711-02] —0.34711-02] 0.44441-01] ~0.34711-02] —0.34711-02]
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As expected, we have thrath-order self-consistent asso-

ciated equationg22), (26), and (29). To be explicit, we
choosem=1. Then we have

%Eﬁ”(ana:agw, (30
E (o) = (@) (0 In(e) [ = atv
+ (W H ) e, (3D
and
(0 a1) = — (g (@)|H' |4 ()

(WP Ho(a) +h(a)—ED()[yD)| )
(32

We then seek to find a solution by using iterative techniques
as in the previous work2]. We shall illustrate this in a

simple example in the next section.

IIl. CALCULATIONS

The excited hydrogenlike ion in a potential fietds/r? is

(WM Ho( @) +h(a)—EQ(a)| (™)

(29)
(m

a=uo
n

Now the mth-order perturbation equation for hydrogen-
like ions in a— &/r? field is given explicitly. Ifm=1,

EM(a)=a?{fV(a)PV(a)—26/n% = ZatM(a)P(M(a).
(37)

If m=2,
EM(a)=a¥fM™(a)PM™(a)— st V(a)Q™ Y (a)}
~ZatM(a)P"(a), (38)
so that themth-order approximation to the energy is

1 m
——+ > fWpl_4s

(m) — 2
Ey/(a)=a on? T &

2 m—1
m

1
—2+k§_‘,lf<nk)P<nk>), n=12,..., (39

n

—a”Z

where we have the conventia{!' Q=0 if m=1.
According to the condition of the second kind of balance,
the balance principle now yields

an excellent system for testing the accuracy of the equa|7 Eﬁ,m>(a)

factor approach because the coupling paramgiethis case
varies from—c to 0.125 over a wide range, and the exact
eigenvalues can be obtained easily by an analytic approach.
To explicitly demonstrate the equal-factor approach, we in-
vestigate this simple case #wave states which have com-
mon | eigenvalued =0. Application of the screened hydro-

genic partitioning scheme of Dalgarnet al. (see, for
example[4]) yields

Ho(a)=—3V2—alr, (33
h(a)=— =, (34
H'=—6lr? (35

where the potentidi(«) =Hy—Hy(«) represents changes in

1 m 2 m—1
— 4+ Wpk_ sl =+ (K k)
Za[ 2n2 kZl fn Pn o n3 kzl fn Qn

1 m
—Z| >+ > 0P| =o0. (40)
n® k=1
By using the fact that
f"(a) > E™(a)¢”(X,a)
J#n
=f" (™) > EM™(ai™) (% (%,a), (41)

j#n

hence the parametefﬂ“) is chosen as the corresponding

an initial system of the hydrogenlike ion under the potentialMth-order balance point

field — &/r? in a very short period of timd.

It is well known that the exact energy level is given as

follows:

E°=—2Z%/2n'2, n'=n+Al (36)

and Al is the root of a quadratic equatidf],

A2+ Al+26=0.

z

m
14023 fgk>p<nk>)
k=1
-

o =

m
k k
1+2n2k21 flopk_on2s

T )
2
(K (k)
Hg‘l‘ kzl 1:n Qn )
(42

so themth-order approximation of minimum energy may be
expressed as
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TABLE V. Comparison of various computed eigenvalues with the exact \aleeu) for extremely large negative coupling parameters
5=-10, —10%, and—10°. EP2, E(V'P, andE{Y RS are the first-order approximation to the energyrier1 to 12 states of a perturbed
hydrogen atom. The corresponding equal factf$? and f(V'® are determined by formul&6) and by trial, respectively. Numbers in
square brackets indicate powers of 10.

6=—10 f(VP=600

ns Eox E§11>’a f(ha Eg1>,b E(.RS
1s —0.23294—-02] —0.11038-02] —0.15693+03] —0.17104-02] 0.19950+03]
2s —0.20412—-02] —0.10750—-02] 0.2300%+03] —0.17050—-02] 0.2487%+02]
3s —0.18034—02] —0.10326—02] 0.33843+03] —0.13742-02] 0.73519+01]
4s —0.16048—02] —0.87221-03] 0.32351+03] —0.11468—02] 0.30937+01]
5s —0.14374-02] —0.70226—03] 0.28357+03] —0.99026—03] 0.15800+01]
6s —0.12948-02] —0.56289—03] 0.24516+03] —0.87746—03] 0.91204+00]
7s —0.11724-02] —0.45998—03] 0.21368+03] —0.7926%—03] 0.57289+00]
8s —0.10666—02] —0.38506—03] 0.18956+03] —0.72664—03] 0.38281+00]
9s —0.97453-03] —0.32976—03] 0.17114+03] —0.67382-03] 0.26818+00]
10s —0.89387-03] —0.28786—03] 0.15686+03] —0.63071—-03] 0.19500+00]
11s —0.82281-03] —0.25502—-03] 0.14551+03] —0.59554—03] 0.14613+00]
12s —0.75991-03] —0.22860—-03] 0.13622+03] —0.56651—03] 0.11227+00]
5=-10" f(V°=50 000
ns Eﬁxc ES)’a fs]l),a E,<.]l>'b E§]1>’RS
1s —0.24824—04] —0.11073-04] —0.15348+05] —0.16683—04] 0.19999+05]
2s —0.24478—04] —0.10910—04] 0.23070+05] —0.15674—04] 0.24999+04]
3s —0.24139-04] —0.10691—04] 0.34256+05] —0.12820—-04] 0.74069+03]
4s —0.23807—04] —0.92390—05] 0.33201+05] —0.10870—04] 0.31247+03]
5s —0.23482—-04] —0.75892—05] 0.29493+05] —0.9523%—05] 0.15998+03]
6s —0.23163—04] —0.61699—05] 0.2576%+05] —0.85484—05] 0.92579+02]
7s —0.22851—04] —0.50877—05] 0.22606+05] —0.78196—05] 0.58299+02]
8s —0.22545—-04] —0.42837-05] 0.20129+05] —0.72534—05] 0.3905%5+02]
9s —0.2224%—-04] —0.36841—05] 0.18211+05] —0.68026—05] 0.27429+02]
10s —0.21951-04] —0.32284—05] 0.1671%+05] —0.64377-05] 0.1999%5+02]
11s —0.21663—04] —0.28713-05] 0.15528+05] —0.61420—05] 0.15022+02]
12s —0.21381-04] —0.25841{—05] 0.14558+05] —0.59009—05] 0.11571+02]
8=—10° f{’*=5000000
ns Eﬁxc E§]1>,a fE]l),a E,<.]1>'b E§11>’RS
1s —0.24982—06] —0.11074—06] —0.15344+07] —0.16684—06] 0.20000+07]
2s —0.24947—06] —0.10912—06] 0.23071+07] —0.15677—06] 0.25000+06]
3s —0.24912—06] —0.1069%—06] 0.34261+07] —0.12824—06] 0.74074+05]
4s —0.24877-06] —0.92446—07] 0.33211+07] —0.10874—06] 0.31250+05]
5s —0.24842—06] —0.7595%—07] 0.2950%+07] —0.95283-07] 0.16000+05]
6s —0.24807-06] —0.61760—07] 0.25779+07] —0.85537-07] 0.92592+04]
7s —0.24772—06] —0.50933—-07] 0.22620+07] —0.78252—07] 0.58309+04]
8s —0.24737-086] —0.42887-07] 0.20143+07] —0.72594—07] 0.39062+04]
9s —0.24702-086] —0.36886—07] 0.18223+07] —0.68091—07] 0.2743%+04]
10s —0.24667—086] —0.32325-07] 0.16727+07] —0.6444%—07] 0.20000+04]
11s —0.24633-06] —0.28750—-07] 0.15539+07] —0.61492—07] 0.15026+04]

12s —0.24598—06] —0.25876—07] 0.14569+07] —0.59086—07] 0.11574+04]
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TABLE VI. Comparison of various computed eigenvalues with the exact aiue u) for various coupling parametessfor the ground
state (k) of a perturbed hydrogen atom in a potentiab/r2. E‘l’S denotes variationgRef. [5]).

s e 9 s e, e

0.1 —0.840609 0.05 —0.700000 —0.833333 —0.954915
0.01 —0.520844 0.05 —0.520000 —0.520833 —0.521060
0.005 —0.510206 0.05 —0.510000 —0.510204 —0.510257
-0.1 —0.357746 0.125 —0.300000 —0.357140 —0.364745
—0.01 —0.480789 0.125 —0.480000 —0.480770 —0.480947
—0.005 —0.490201 0.125 —0.490000 —0.490200 —0.490243
—50 —0.003444 325 99.500000 —0.002488 —0.004524
—100 —0.001710 600 199.500000 —0.001247 —0.002329

E<m>(at(m))
o (1) (1) (2] ¢ oy 1y 20 (1)§(1)
Ey/(an)=(ay ) 77 (an )P (e )_F —Zay Ty

ZZ
T X(aMPD(a®), n=12,...M. (44
1+n2k§l fgk)ng) ’ If m=2,
X L R EM( ™) = (@l™)2{ M o) pim(4(m)
1+2”23fnpn‘2”5ﬁ§+2if"Q”) — B () )
“3 Zal ) P ™),

if parametera takes the value of balance poiaf™ . B
Substituting themth-order balance point!™ in Egs.(37) n=12,... M. (49)
and(38), the correspondingith-order self-consistent pertur-

bation equation for a hydrogenlike ion in-aé/r? field is ~ Moreover, substituting the first-order balance poift) in

obtained. lfm=1 Eq. (27), we have the first-order equal factor
|
(D¢ (1)
fE\l)(a(nl)): - oQn (ay”) -
1 1 Z-eay’(1 1 Z-a '
(D D . LI et I D n gD,y (1)
Sl B (e ]? on2 212t oD (nz |2” oD ZyenZl VB (@) By (ay)ay;
n=12,... M. (46)
|
Now it is very clear that associated Edd42), (44), and @ )
(46) are self-consistent because the unknown set N } N _) p27 J=n (49)
{EM(atV)} appears on both sides of E@4). Therefore, anSpls )= _
this associated equation can be solved by applying the itera- anja, J#N
tive technique step by step as has been shown in previous d
work [2]. an
The notations in Eq937)—(46) are defined as follows: 202
1 . j=n
M+1 <ansr—2 ajs>= nd (50)
PRV (@)= 2 anE™(a) (47) bya?, j#n
J#n J
and and wherea,,; andb,,; both are proportional coefficients and
symmetric. They are listed in Table I.
M+1
QM(a)= 2 byE™(a), (48) IV. DISCUSSION AND CONCLUSIONS
J#n

A very basic idea of PFSKB theory is that there is a
where possible metastable process in the short period of time that a
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TABLE VII. The first-order approximate balance valu&‘,;l)’a corresponding tdﬁl)'a determined by formul&46) for n=1 to 12 states

of a perturbed hydrogen atom for various coupling parameieldumbers in square brackets indicate powers of 10.

6

ns 0.01 0.005 0.001 -0.1 —-0.01 -0.001 - 10? —10* —10°
ls 1.0417  1.0204  1.0040 071425 096153 099601  0.25028[—02]  0.25099[—04]  0.25100[—06]
2s 1.0025  1.0016  1.0004  0.89478 099504  0.99961  0.38051[—02]  0.38240[—04]  0.38243[—06]
3s 1.0522  1.0250  1.0048  0.75536  0.95599  0.99525  0.12617[-01]  0.12919[—03]  0.12922[—05]
4s 1.0282  1.0133  1.0025  0.85041  0.97695  0.99750  0.19825[—-01]  0.20695[—03]  0.20704[-05]
5s 1.0184  1.0089  1.0017  0.87737  0.98350 099828  0.24998[—01]  0.26545[—03]  0.26562[—05]
6s 1.0138  1.0068  1.0013  0.89831  0.98714 099867  0.28836[—01]  0.31025[—03]  0.31050[—05]
Ts 1.0112  1.0055  1.0011 091282 0098943 099892  0.31934[—01]  0.34661[—03]  0.34692[—05]
8s 1.0094  1.0046  1.0009 092367 099102 099908  0.34777[—01]  0.37958[—03]  0.37994[—05]
95 1.0081 1.0040  1.0008  0.93210 0.99218  0.99921  037566[—01]  0.41160[—03]  0.41201[—05]
10s 1.0071 1.0035  1.0007 093884 099308  0.99930  0.40383[—01]  0.44387[—03]  0.44434[—05]
1ls 1.0064  1.0032  1.0006 094435 099378 099937  0.43245[—-01]  047683[-03]  0.47734[—05]
12s 1.0058  1.0029  1.0006 094894 099436 099943  0.46128[—01]  0.51029[-03]  0.51086[—05]

system is passing from unperturbed to perturbed. Suppose fgl)vi:()’ (54)
we have a time-independent Sctirger equation:
(),i_ _ 3
HW (%) = Eq W (%), (5 En =200 9
where energy levelg, and eigenfunction? ,(X) are stable. B 1 25 (56)
We assume this system historically may come from an iso- n 2n’> n°’

lated subsystentl, and a perturbing subsystehh’. After

passing the possible metastable process, two subsystems @jgere § takes value of- 10°; the simulation process is then

formed, yielding a stable system at the total energy minimumurned on. After 25 iterations of this procedure, eventually

position. Clearly, energy level&, and wave functions one sees convergence to balance values. Briefly, this process

¥ ,(X) in the traditional Schidinger equation(51) are iden-  is shown in Table II.

tical with the balance energy level and wave functions at the In this work, the iterative processes converge rapidly for a

end of the possible metastable process. Namely, very wide range of coupling parameters fromoo<§
=<0.05. Unfortunately, we find that convergence for states of

En=min{En(@)}azox (52 n=1 to 3 is not as rapid for the coupling parameter 0.05
< 6=<0.125. The possible reason is that the equal-factor re-
Vo (X) =T (X,@)] gm o - (53)  lation (9) is not well-suited for a large positive coupling

parameters.

Next we try to solve Eq(51). First, if this equation is In previous work[2], we used the trial method to deter-
solvable by analytic means, the exact energy eigenvadiyes mine the first-order equal factéf") . We assume that!) is
and wave eigenfunctiond ,(X), can be obtained. But if we independent of principal quantum numberFor compari-
want to solve this equation using a perturbation methodson, in this work we also calculate some cases using first-
some aspects may be essentially different. We notice firsbrder equal factors which are determined by a trial process.
that the wave function has been divided into two parts: The comparison is made for the first-order approximation
\PE,O)(i,a)+ ¢ (X,a). This shows that one may artificially of various computed eigenvalugs) by equal factors deter-
impose an operation to balanced wave functions and disagrined by formula(46); (b) by equal factors determined by
sociate then into a possible metastable condition. So pertutrial; (c) by an RSPT standar@Rayleigh-Schrdinger pertur-
bation is essentially a means to solve the Sdimger equa-  bation theory, where corresponding notations alEéP‘a,
tion (51) in PFSKB theory but we cannot ignore the g(V'P andE(MRS respectively, in Tables Il1-V.

influence of the original wave functions on that physical op- |t appears that results from the trial method are only
eration.

slightly better than results from the method of equal factors
Another point is that this possible metastable process najs determined by formulé46). The trial method requires
only exist theoretically, but also can be realized by simulatexact eigenvalues as reference.
ing an iterative process. For example, in the case of a hydro- various computed eigenvalues are shown in Table V. In
genlike ion in a potential field- &/r?, the possible meta- the extremely large coupling parameter cases, we find to our
stable process can be simulated and is shown in Table II. W§urprise that both of the first-order equa|-factor approxima-
can demonstrate the entire possible metastable process {ns of eigenvalues for extremely large coupling parameter
varying E{(a), EY(a), andfP(a), and eventually these & from — 107 to — 10F lead to energy levels which are within
converge to stable values. Setting the initial parameter 10-67 % of the exact answers. As may be seen from Tables
=1 (if «=2Z for hydrogenlike ions we have the initial val- 1lI, IV, and VI, the calculated energy values from both stan-
ues of dard first-order RSPT and our first-order equal-factor ap-
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proach are in good agreement and yield accurate estimates of aM=za\b . (59)
exact energies for small values of the coupling paraméter
on the other hand, however, as is to be anticipated, first-order We have performed these first-order approximation calcu-
RSPT fails completely for the extremely large negative vallations on a 386/DX personal computer. An infinite series of
ues of the coupling parameter shown in Tables V and VI. energy levels is truncated &8 =12. Iterative processes for
We tabulate the balance poimzéﬁl) of a hydrogen atom all calculations show stable and rapid convergence. Notation
for various coupling parametesin Table VII. We find that  E;“ in the tables indicates the exact eigenvalue of state
if o) is close to 1(for the Z=1 casg, the corresponding Which was obtained in Eq36). _
RSPT-computed eigenvalues are very close to the equal- We have shown that reformulation of the perturbation ap-
factor PFSKB results. Otherwise,df! is close to zero, the Proach can lead to a series of powerful iterative-self-
corresponding RSPT-computed eigenvalues are inaccurate2"SiStent equations. A general procedure for obtaining a set
This behavior indicates that the eigenvalues computed frorfif €igeniuctions and eigenenergies is also developed in de-
RSPT can be considered as reasonable results only in thol- Results for an explicit example are illustrated.

cases in which chargg is close to the balance point of this P erturbation reformulation based on the equal-factor as-
system. sumption can contribute to perturbation theory in its simplest

Comparison of variationds] computed eigenvalues also form. It appears that the success of equal-factor perturbation

is made with equal-factor and RSPT, and results are showiy the case of hydrogenlike ions is a strong justification for

in Table VI for the ground state & of a perturbed hydro- F'FSKB theory. . N
gen atom for various values. The numerical calculations performed in this work

All results computed in this paper are for the=<£1) hy- yielded relative errors<10™°, and have been carried out on
drogen atom. Results for hydrogenlike ior&>1) can be a personal computer with software written by the author.

obtained easily by transformations:
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