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Quantum teleportation with squeezed vacuum states
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We show how the partial entanglement inherent in a two-mode squeezed vacuum state admits two different
teleportation protocols. These two protocols refer to the different kinds of joint measurements that may be
made by the sender. One protocol is the recently implemented quadrature phase approach of Braunstein and
Kimble [Phys. Rev. Lett80, 869(1998]. The other is based on recognizing that a two-mode squeezed vacuum
state is also entangled with respect to photon-number difference and phase sum. We show that this protocol can
also realize teleportation; however, limitations can arise due to the fact that the photon-number spectrum is
bounded from below by zero. Our examples show thgiven entanglement resource may admit more than a
single teleportation protocol and the question then arises as to what is the optimum protocol in the general
case [S1050-29479)08808-3

PACS numbegps): 03.67.Hk, 03.67.Lx, 42.56:p

[. INTRODUCTION communication channel. Thus Alice and Bob each have ac-
cess to one of the two entangled subsystems described by
One of the central results in the rapidly developing field .
of quantum information theory is the possibility of perfectly N ey n
transferring an unknown quantum state from a target system €)= (1) )ngo Nmag (s @
at the sender’s locatioA to another identical system at the
receiver’s locatiorB. This is called teleportation and requires This state is generated from the vacuum state by the unitary
that the sender and receiver share a maximally entangleiansformation
state, and further, that they communicate via a classical -
channel. The original proposal of Benneital. [1] was U(r)=e @b -ab) ()

posed in terms of systems with a two-dimensional Hilbert _
space [quantum-bits (qubits [2]]. However, recently where\ =tanhr and wherea,b refer to the mode accessible

Furasawaet al. [4], using a proposal of Braunstein and to Alice and the mode acc_:essible to Bob,.respe.ctively.
Kimble [3], have demonstrated that the method can also be The entanglement of this state can be viewed in two ways:
applied to entangled systems with an infinite-dimensionafirSt: s an entanglement between quadrature phases in the
Hilbert space, specifically for harmonic-oscillator states. IntWo modes(EPR entanglemeptand second as an entangle-
that work, a coherent state was teleported using an entanglB1€nt between number and phase in the two modes. We can
ment resource that consisted of a two-mode squeeze%as"y show that this state approximates the entanglement of
vacuum state. The joint measurements required for telepo@? EPR state in the limih—1 or r—c. The quadrature
tation are the joint quadrature phase on the target system afjiase entanglement is easily seen by calculating the effect of
that part of the entangled resource shared by the receivéil® squeezing transformation, @), in the Heisenberg pic-
The essential feature exploited in the scheme of Furasawire. We first define the quadrature phase operators for the
etal. is the well-known fact that a two-mode squeezedWo modes,

vacuum state is an approximation to an EPRnstein-

Podolsky-Rosenstate, which had previously been shown by Xa=a+a', ©)

Vaidman[5] to enable teleportation of continuous observ- .

ables. However, a squeezed vacuum state is @haper- Ya=—i(a—al), (4)

fectly) entangled in number and phase. Can this entangle- .

ment be used as a teleportation resource as well? Xg=b+bT, (5)
In this paper we show that by making joint number and

phase measurements this entanglement can also be used for Yg=—i(b—b"). (6)

teleportation. However, because the number operator is
bounded from below, there are limits on the ability to tele-Then
port a quantum state with this protocol.

Suppose that at some prior time a two-mode squeezed Var(X,+Xg)=2e~ 7, @)
vacuum state is generated and that one mode is open to local
operations and measurements at the sender’s locAtion Var(\‘(A_\?B)ZZe*Zr, (8)

observer Alice, while the other mode is open to local opera-
tions and measurements in the receiver's locaBpiy ob-  where Var@) =(A?)—(A)? is the variance. Thus in the limit
server Bob. Alice and Bob can communicate via a classicabf r —o the statel£) approaches a simultaneous eigenstate
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of Xo+Xg and Y,— Y. This is the analogue of the EPR that given by Vaidman; however, we will use more conven-

tional quantum optics notation.
state with position replaced by the real quadrati¢esd the
P P 'y . g ~ Consider the following entangled state of two modes
momentum replaced by the imaginary quadratifes

This state is also entangled with respect to the correlation
specified by the statemerdan equal number of photons in 1X1,P1)as= eiiQA)”(B|xl>A®|Yl>B (13)
each modeHowever, it is not a perfectly entangled state, ’ '

which would require théunphysical case of a uniform dis- where the quadrature phase operafiixsXg are defined in

tribution over correlated states. It can approach a perfectl
entangled state of photon number asymptotically in the |Imlt% (6) and the states appearing in this equation are the

A—1. The reduced density operator of each mode is quadrature phase eigenstates,

thermal-like state with mean photon number -
XalX1)a=Xa|X1)a,

9 YelY1)e=Y4|Y1)s.

and thus the limit of a perfectly entangled state can Onl)pne then easily verifies that the state defined in(E8). is a
occur as the mean photon number goes to infinity, which iSimultaneous eigenstate X — Xg and¥»+ Yg with respec-
not physical. For finite excitation, the distribution of corre- tive eigenvaluesX,,Y;. The unitary transformation in Eq.
lated states is very close to uniform for valuese? . This  (13) is generated by the perfect QND Hamiltonidt
suggests that in practice this state can be used as a perfectiyY Xz, which realizes a QND coupling between modes
entangled state of photon number, provided all other statesndB. It is also the prototype measurement coupling Hamil-
available have significant support on the photon-number baonian first defined by von Neumann.
sis up to a maximum value of<e?'. We now show that this It is important to realize that all perfect QND couplings
is indeed true if this state is used as a teleportation resourcare a source of entanglement and a potential resource for
In the case of number and phase, it is obvious that theéeleportation. For example, the original teleportation scheme
squeezed vacuum state is the zero eigenstate of the numbey is based on qubit Bell states that can be generated by
difference operator single qubit rotations together with a controlled (GtNOT)
gate. In this case the §oT gate provides the entanglement.
The CNOT gate is itself is based on an ideal QND interaction
in which the target qubit is the apparatus for measuring the
state of the control qubit. If the target qubit is prepared in the
Not so obvious is the fact that, as—1, the two modes logical zero state it will only change if the control qubit state
become anticorrelated in phase. To see this we compute thg in a logical one state, and in all cases the state of the
canonical joint phase distribution for the two modes usingcontrol qubit is unchanged. The control not gate itself can be
the projection operator valued measure, realized by a simple controlled phase shift gate between two
qubits. Such an interaction does nothing unless the state of
_ _ both qubits is a logical one in which case the state acquires a
|pa.de)= > €"?ATMle|n), 0 [m)g, (1) 7 phase shift. For example, if we code our logical states via
n,m=0 . . .
bosonic Fock states, such that the logical zero is the zero
Fock state and the logical one is the one Fock state, the
mutual phase shift between two modes with annihilation op-
eratorsa and b can be realized by the QND number mea-
122 surement interactioh, =t ka'ab'b [6]. In optics this inter- _
P(¢n,dg)= ———— . (12)  action has been realized at the level of very few photons in
[1—Nel(%atdB)|2 cavity QED with very small cavitie§7].
Needless to say the EPR state is not a physical state, not
As N—1, this distribution becomes very sharply peaked atecause the QND interaction cannot be achieved, but be-
¢a=— ¢g. Thus the photon number in each mode is per-cause the quadrature phase eigenstates appearing {h3tq.
fectly correlated while the phase in each mode is highly anare infinite energy states. However, we can use arbitrarily

.1
JZ=§(aTa—b*b). (10)

o0

normalized on[—,7] with respect to the measure
dpadpgldm?. The joint distribution is

ticorrelated. close approximations to these states, given a sufficient en-
ergy resource, as in the case of a squeezed vacuum state
Il. TELEPORTATION discussed below. _ ,
_ _ In the protocol for teleportation based on this state, we
A. Teleportation using a quadrature EPR state now consider another mode, the target mdgen an un-

We first show how teleportation of continuous variables isknown state ). Joint quadrature phase measurements of
possible using a perfect quadrature phase QM§Dantum X1—X, and Y7+ Y, are made on modeB and A, yielding
nondemolition measurement between two optical modes two real numbersX, andY,, respectively. The total input
andB to create the entanglement resource. The state that &ate for the teleportation protocol is
produced is an optical analogue of the EPR state discussed
by Vaidman[5]. Our presentation is completely equivalent to Vi) =)71®]|X1,Y1) aB- (14
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The (unnormalizeg conditional state of the total system after |{I‘,(><,Y)>: (X|® <Y|ei?TS<A| )11 s (22)
the measurement ok andT is given by the projection T A THE/AB
- (%.P) It is then easy to show that the state of md@at the receiver
(Wi 2)=ar{X2, Yol )11X1, Y1) as®[ X2, Yo) At is the pure statppyy(r))g With the wave functior(in the Xg
(19  representation

Using Eqg.(13) we may then write the conditional state of o _
modeB as ¢XY(X1,X2;")=J mdxldxze'leg(xl,x2;r)z//(X—X1),
(X2,Po)\  — - 1124, (23)
|2 P2)g=[P(X,,Y2)]1 YD (X,,Y2)|Y1)g, (16)
where ¢(x)=(x| )7 is the wave function for the target
where state we seek to teleport. The kernel is given by

P(X,,Y,)=g(Y,|DTdD|Y 1 1 1
(X2,Y2)=p(Y4] [Y1)s (17 Q(Xl,Xz;r)=Tex%—z(xfrxz)zezr

is the probability for the resultsX;,,Y,). The statdY,)g is Ve

an eigenstate of g with eigenvalueY, which is determined
by the initial choice of entangled state fér and B. The

operator(i) acts only on mod@ and is defined by

(X, —Xp)%e™ 2| (24

4
o This state is clearly not the same as the state we sought to
&)(x Yo)=ar( Xy, Y, e YaXs NHO|X)a. (18 teleport. However, in the limit of infinite squeezimg- oo,
2:Y2)=ar(Xz. Vel [78[X0a we find thatG(x,,X,;r)— 8(X1+X,) and the state of mod@
Using the definition of the stateX,,Y,)at, approaches

X2, Y2)ar= eiXAQT|X2>T®|Y2>A, (19 | dxv(r))e—e™Ve Ve Vel y)g, (25)

~ ~ o which, up to the expected unitary translations in phase-space,
whereXr|Xp)1=Xo|Xz)r andYa|Y2)a=Ya|Y2)a, itis pos- g the required teleported state.
sible to show that

C. Squeezed-vacuum-state teleportation using number

(X2, P2\ — aiXoYoniXo¥ga—iPoX
|72 7o) g =72 T2e "2V 2 8| ) g (20 and phase measurements

Thus up to a phase factor and two simple unitary transfor- In this section we explore to what extent teleportation is
mations, the conditional state 8fis the same as the initial possible using the number phase entanglement implicit in the
unknown state of the targdt If A now sends the results of squeezed vacuum state. In this case we expand the target
the measurementx(,Y,) to the receiveB, the phase factor state in the photon number basis as

and two unitary transformations can be removed by local

o

operations that correspond to a displacement in phase space )r= E CoM) (26)
by X, in the real quadrature direction ang in the imagi- 4 T &y “miTyT
nary quadrature direction. The initial stateTohas then been
“teleported” to modeB at a distant location. Thus the input state to the receiver and sender is
B. Squeezed-vacuum-state teleportation using quadrature N1y 212 n
emsuremonts [Win)=(1=A)P2 3 Ney|m)r@[n)a2[ms. (27

In the Introduction we noted that the squeezed Vacul, o cilitate the description of the joint measurements that

state need to be made ohandA modes at the receiver, we define
|g>:efr(aTbT7ab)|O>AB 1) the eigenstates of the operator
.1 0 .
is an approximation of the quadrature EPR state discussed in J,==(N7+—Np) (28)

Sec. IIA. In the limit of infinite squeezing, this state be- 2

comes equivalent to the EPR state. We now show that the ~ A
two-mode squeezed vacuum state can be used for teleportdhereNr,N, are the number operators for modesndA,
tion with a fidelity that approaches unity as the Sque(_:.Zmdespectlvely. These eigenstates can be written as pseudoan-

increases to infinity. gular momentum states as
We again assume perfect projective measurements of the a )
joint quadrature phase quantiti&s— X, andY,+ Yg on the ol i K ar=K[j K)ar, (29)

target state and the sender’s part of the entangled mfade, . A ] A
with the resultsX and Y, respectively. Theunnormalizeyy ~ Where the eigenviaugof Jf is determined by the resulf
conditional state of the total system after the measurement is N/2(N/2+ 1), whereN=N,+ N+ is the total photon num-
then seen to be given by ber operator for modesI and A with eigenvliaue N
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=0,1,2.... In that casej =N/2. The relationship between (1-\2)¥2 = '
the state Eq(29) and the original product number basis is |z//(*k'¢+)>5=m ngo A 2ke e (7R d N+ 2k) g,
[iKar=li+k)r® i —K)a- (30 (36)

) ) ~whereP(Kk) is in fact the probability for Alice to obtain the
The combined state of the entire system may now be writtepesy|tk. This is given by

o j )
Vi) =(1-AHPE2 2 Nl kareli —Ks. P (k)= (122 2 \"[cq i, (37)
(3D

Note that in this equation the sum oviek is over half inte- P—(_k)=(1_’\2)n§2k A"cq-2ul?, (38
gers as well as integers.

The teleportation protocol for number and phase requiregith k taken as positive in both equations.
that Alice make two measurements of a joint quantity’on  Now it only remains for Alice to communicate to Bob
andT. In this case the first measurement will seek to deterwhat value she got for the two measurements, that is, the
mine one half the photon number difference as representeghluesk and ¢, , and for Bob to find the appropriate condi-
by J,, while the second measurement will seek to determindional unitary transformations to reconstruct the state. The
the phase sum of the two modes. For the first measuremenpfiase displacement part is quite straightforward. The re-
the possible results afe={0,=3,+1,+3,...}. Consider ceiverB applies the local unitary transformation
first the case ok>0. The conditionalunnormalizedl state

of the entire system is U(=k,¢) =€ ¢MNe=h), (39
o whereNg is the number operator for the mo&e After this
POY= (12212 \nc n+2k)@|n) @ nYg | transformation the states become
(W)= (122X, Nfen adn+2K)re[n)a@|n)e o
32 1-\
(32 |¢<k>>:% S A% In—2K)g,  (40)
=2k
where we have returned to the product number basis in +(k)
preparation for the next measurement of the phase sum. If (1-\)¥2 =
the measurement result was negatise0, the conditional |¢(7k)>:— 2 AN 2k In+2Kk)g, (41)
unnormalized state is VP_(—k) n=0 "
o with k>0 in both cases. Naively one might think that we can
|\I,(—k)>:(l_)\2)1/22 A 2Ke, In)r® [N+ 2K) A now apply a number displacement operator, either up or
n=0 down by X, to reconstruct the state in a fashion analogous to

the case of quadrature teleportation. While formally we can
construct such an operat(see beloy, there is going to be a

) .. problem with the cask>0, as all the coefficients for photon
The secondmeasurement is a measurement of the jointy;mpers less thankewill be missing This result is directly

total phase operator for mod&sandA, defined by the pro-  aeribytable to the fact that the spectrum of the number op-
jection operator valued measure erator is bounded below by zero. We must accept this as a
limit to teleportation when number phase measurements are
i used and keep this in mind when trying to find more general
|¢+><¢+|:n§;0 k?n%(n ) [n.K)ar(k,mle M e, teleportation schemes in the future.
' ' (34) What is the number displacement operator? The generator
of displacements for number must be the canonical phase.

Now, it must be said at once that such measurements afe?'mally this is defined by
unphysical; however, they do represent the limit of perfectly -
valid (though rather impracticpldiscrete phase measure- D(k):f d¢eik¢|¢>(¢|, (42)
ments[6]. As a result of this measurement, Alice has a value G

¢, for the phase. The corresponding conditional state of
modeB, given a positive number difference measurement, iV

®|n+2Kk)g. (33)

% k=min(n,m)

here

2\l = _ _ nd| ). 43
|¢(k,¢+)>82% Zokncn+2ke—l¢+(n+k)|n>8’ |6) nzoe In) (43)

(35 The fact that these basis states are not normalizable indicates
that it is impossible in practice to realize a true number dis-
while if a negative number difference result were obtainedplacement operator. However, there are schemes that can re-
the state of mod® would be produce arbitrarily well a number displacem¢ai9].
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o o FIG. 2. The fidelity versus the resut for the number differ-
FIG. 1. The probability distribution for obtaining a resuitfor ence operatoN;—N, for a coherent state in the target with
the number difference operatbi;—N, for a coherent state in the =6 =0.9 (dashedl and &= 6.0\ = 0.99 (solid).
target witha=6.0\=0.99.

) ) photon number in modd, which, asn—1, can be a large
We first consider the example of the target state preparefegative number. For this reason the distribution is highly

in the number statgN). In this case the probability of ob- asymmetric and falls off quite slowly fan<0.

taining a resulim for the measurement of the photon-number

K One performance measure for teleportation is the fidelity
difference operator 2 on A andT is between the target state for moBeand the actual state tele-
ported. We will calculate the fidelity for the transported state
(1-AHN2N"M - m<N after the appropriate number displacement operator has
P(M=10, m=N (44 acted. This is defined by
wherem=0,1,2 .... Themost probable result i;m=N, in F(m) = [o{yf ™), (46)
which case the teleported state is the vacuum d@itg,

which, given the data=N may be displaced back {\}g . wher'e|w(m)>_5 is the teleported and displaced state at the
independent of the value af Indeed, it is easy to see that receiverB, given a photon number d_|ffe_ren_ce measurement
we can teleport a number state perfectly, regardless of thgSult; ™ at the sender andT. The fidelity is given by
value of \, provided that we can make number displace-

» pro - (1-\2) . .| & | |20+ 2

ments. This is in contrast to the quadrature case where fidel- Ao \"——— | m=0
ity does depend oi. This is a consequence of the perfect F(m)= P.(m) n=o  (n+m)!

correlation between photon number for each mode in the exd —|e|A(1-)\)2], m<O0.

squeezed vacuum state. However, the probabilities for differ- (47)
ent values of the photon number differenceArand T do

depend on the value o¥.

The fidelity is plotted in Fig. 2 forr=6 and two values oX.
Next consider the case of a coherent state This state We see that foh—1 the fidelity is very close to unity until
has a Poisson photon-number distribution with a mean of there is a chance of obtaining a positive photon-number dif-

—|a|2. The probability of observing a photon-number differ- ference tha_t exceeds the average photon number in the target
encem between the target and the sender méde state we wish to teleport. However, we see from Fig. 1 that

this is likely to happen with rapidly decreasing probability.

—2/m|(1 _y 2ya—lal?(1-23) Given the current difficulty of realizing a photon-number
N (1-\%e , m<O0 . L X . :
_ displacement operator, it is of interest to determine the fidel-
P(m)= 2\ e fal? o la?0r ™ ity when no attempt is made to displace the final state. If we
(1-A%)e @ E N nm, m=0
n=0 .

assume that the target state is a coherent state with amplitude
(45) a, the fidelity when the results of the photon-number differ-
ence measurement is zera=0, is

wherem= 2k is an integer. This distribution is shown in Fig.

1, with a=6\=0.99. Note that the distribution is relatively (48)

flat aroundm=20, that is, around equal photon numbers inhc te that th hot ber in th tandl ;
both A andT. It is easy to see that, when—1, the rapid We note that tneé mean photon number in the entangiemen

— .. . resource shared by and B is just that for a squeezed
fall-off occurs for valuesn>n. This is not too surprising, as — 2 2 . -
. . L — vacuum statensy,=\“/(1—\°), we may write the fidelity as

the most likely photon number in modeis justn, and thus
this is the largest possible value for the photon-number dif- o

n
ference between modes and T. However, the minimum F(o):exp{ —_—)\2]_
value form (which is negativiis determined by the largest

F(0)=eld’ a7

(49)
Nsy
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IlI. CONCLUSION

We have shown how the imperfect entanglement of a
two-mode squeezed vacuum state can be used for teleporta-
tion of an unknown quantum state for two different measure-
ment protocols at the sender. One protocol is based on
quadrature phase measurements and is suggested by the fact
that a squeezed vacuum state is an approximation of an EPR
correlated state for quadrature phase amplitude variables.
However, a squeezed vacuum state is also entangled with
respect to the photon-number difference and phase sum in
the two modes. This suggests a protocol based on number
and phase measurements at the sender. While such measure-
ments are just beyond the reach of current experiments in
quantum options, our examples suggest that a given en-

FIG. 3. The fidelity versus the resutt for the number differ-  tanglement resource admits more than one teleportation pro-
ence operatoNt—N, when no attempt is made to displace the tocol. In the case of a squeezed vacuum state the quadrature
teleported state conditioned in this result, for a coherent state in thghase protocol is simpler, based on current technology.
target witha= 6\ =0.9 (dashed However, this may not be true for other entanglement re-

sources, or other realizations of the entanglement. In fact,
This indicates that when the mean photon number in th@ny perfect QND interaction between two systems is a po-
entanglement resource is significantly greater than that in thtential entanglement resource, and determining the best tele-
target state, the teleportation has high fidelity. Indeed, in thgortation protocol may be a nontrivial exercise.
limit A\—1, the teleportation for a resutt=0 is perfect. Of
course the fidelity falls off ifm+0, unless we act with the
number displacement operator to shift the received state. If ACKNOWLEDGMENTS
we do not(or possibly canngtdo that, the fidelity falls off in
a Gaussian-like fashion, which for[>1 has a width that We would like to thank the Benasque Center for Physics
scales like half the mean photon number in the target statgor support during the visit at which this paper was written,
n/2. This is shown in Fig. 3. and also W. Munro for useful discussions.
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