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Quantum logic operations based on photon-exchange interactions
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Nonlinear interactions between two photons are required for the construction of optical quantum logic gates,
but those interactions are normally very weak due to the small magnitude of the electric field associated with
a single photon. We note that exchange interactions can have a large effect even when there is no physical
interaction between two particles, and we exploit this property for the construction of optical quantum logic
gates. We show that the probability of there being two virtually-excited atoms in a medium can be a factor of
2 larger when two nonresonant photons propagate through the same medium as compared to the case in which
they propagate through two separate media, in analogy with photon bunching. As a result, the application of
one or more laser pulses will produce a nonlinear phase shift that can be used to construct anXOR quantum
logic gate. This provides an example of a quantum control process in which one photon can control the state
of another photon even when there is no sequence of physical interactions linking the two photons. From a
classical point of view, it is not possible to identify a path for the flow of information or a specific cause for
the outcome of the control process.@S1050-2947~99!03508-8#

PACS number~s!: 03.67.2a
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I. INTRODUCTION

Nonlinear optical effects normally require high-intens
beams of light containing many photons. Roughly speak
this is because the electric field associated with a single p
ton is very weak, which causes the physical interaction o
single photon with another particle to be correspondin
small. One way to avoid this difficulty is to confine tw
photons to a small cavity with a highQ-factor, which in-
creases both the magnitude of the electric field and the in
action time. Although nonlinear phase shifts at the tw
photon level have been demonstrated in this way@1#, the
complexity of the required high-Q cavities and atomic trap
may limit the practical value of these techniques in the c
struction of full-scale quantum computers@2,3# containing
large numbers of qubits.

Even when there is no physical interaction between t
identical particles, the requirement that the wave function
symmetric or antisymmetric under their exchange can p
duce an apparent tendency of the particles to either repe
attract each other, the simplest example being that of pho
bunching@4,5#. There can be no real attraction or repulsi
in such a case, since there is no actual force between the
particles, but in many respects the net effect is much
same as if there were. Exchange interactions have a m
impact in many systems, where relatively strong physi
forces would be required to produce any equivalent effe
such as is the case in a neutron star.

The relatively large magnitude of exchange interactio
suggests that it may be possible to construct optical quan
logic gates in such a way that the required nonlinear inte
tion is derived from exchange interactions rather than
relatively weak physical interactions of the photons. As
will show below, the probability of there being two virtually
excited atoms in a medium can be a factor of 2 larger w
two off-resonant photons propagate through the same
dium as compared to the case in which they propag
through two separate media, in analogy with photon bun
PRA 601050-2947/99/60~2!/917~20!/$15.00
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ing. This difference in the population of the excited atom
states can be exploited by applying a sequence of laser pu
to produce phase shifts in the excited states of the ato
Since the effects of the laser pulses are dependent on
population of the excited states, a different phase shif
obtained when the two photons are in the same medium
is obtained when they propagate through two separate me
which corresponds to a nonlinear effect. We have also c
sidered several other approaches that appear to be less e
tive, as described in one of the appendices, including an
lier suggestion that relied on collisions with a buffer g
rather than laser pulses@6#.

The difficulty in obtaining nonlinear interactions at th
two-photon level by conventional means@7-9# can be seen
by considering the probability that an off-resonant phot
passing through a medium, such as an atomic vapor cell,
interact with an atom in the medium. This probability can
made to be on the order of unity by simply increasing t
number of atoms in the medium, but the probability that tw
photons will interact with thesameatom in such a medium
will typically be very small. For example, if the medium
contains 1010 atoms and the total probability of an interactio
is on the order of unity, then the probability that two photo
will interact with the same atom will be on the order
10210. Any nonlinear optical process that requires both ph
tons to interact with the same atom might therefore be
pected to be negligibly small. In contrast, the exchange
teraction of interest here involves pairs of atoms and d
not require both photons to interact with the same atom.

As an example, a conventional process for the produc
of nonlinear phase shifts~Kerr effect! is illustrated in Fig. 1.
Here two photons with frequenciesv1 andv2 interact with a
three-level atom. The frequency of photon 2 is relative
close to the transition frequency between atomic levels 2
3, so that virtual transitions in which photon 2 is absorb
and then reemitted would produce a phase shift for phot
of that frequency. Virtual transitions of that kind can on
occur if photon 1 has previously been absorbed by the at
917 ©1999 The American Physical Society
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918 PRA 60J. D. FRANSON AND T. B. PITTMAN
since the atom would otherwise be in its ground state and
in level 2 at room temperature. The net result is that
presence or absence of photon 1 can control the phase
experienced by photon 2. This requires photons 1 and
interact with the same atom, which is very unlikely at sing
photon intensities, and conventional mechanisms of this k
are usually not significant at single-photon intensities a
result. To the best of our knowledge, all previous mec
nisms@1,7-12# for the production of nonlinear phase shifts
low intensities require two photons to interact with the sa
atom. Classical arguments based on the flow of informa
suggest that this must always be the case, as will be
cussed in more detail below.

We are concerned, instead, with processes in which
photons interact with two different atoms in a medium@6#,
such as those labeledA andB in Fig. 2. In this virtual pro-
cess, atomA absorbs photon 1 and reemits photon 2, wh
atom B absorbs photon 2 and reemits photon 1. This
change of the two photons will produce an energy shift t
can be calculated using perturbation theory, for exam
which in turn will produce a shift in the overall phase of th
system. If the numberN of atoms in the medium is suffi
ciently high that each photon has a probability on the or
of unity of being absorbed by an atom, then the probabi
amplitude for a process of this kind would also be expec
to be on the order of unity. Since the number of pairs
atoms is proportional toN2, the expected nonlinear phas
shift should also be proportional toN2 in the weak coupling

FIG. 1. A conventional mechanism for the production of no
linear phase shifts~Kerr effect!, in which virtual transitions between
atomic levelsu2& and u3& will produce a phase shift for photons o
frequencyv2 , provided that a photon at frequencyv1 is present to
produce a virtual transition from levelu1& to level u2&. Mechanisms
of this kind require both photons to interact with the same ato
which is unlikely to occur at single-photon levels.

FIG. 2. An exchange interaction in which atomA absorbs pho-
ton 1 and reemits photon 2, while atomB absorbs photon 2 and
reemits photon 1. A mechanism of this kind is expected to be r
tively strong at single-photon intensities because the two pho
are not required to interact with the same atom.
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limit, whereas conventional mechanisms in which both ph
tons interact with the same atom give a nonlinear phase s
proportional toN. We previously showed@6#, however, that
the contributions from all Feynman diagrams of this ki
cancel out and give no net effect unless the system is
turbed in some way, such as by collisions with a buffer g
More detailed calculations have subsequently shown that
use of a buffer gas for this purpose is strongly dependen
the nature of the collision process, as is discussed in m
detail in Appendix B, and that the random nature of t
collisions would also introduce undesirable phase noise.

The difficulties associated with the use of collisions c
be avoided by using laser pulses to perturb the excited st
of the atoms, and the remainder of this paper will concentr
on that approach. Perhaps the simplest way to unders
this mechanism is to consider the probabilityP2 that two
atoms will be in virtually-excited states at the same tim
when two non-resonant photons pass through the same
dium, as illustrated in Fig. 3~a!. We show below thatP2 is a
factor of 2 larger when both photons pass through the sa
medium than is the case when the two photons pass thro
two separate but otherwise identical media, as illustrated
Fig. 3~b!. This increased probability is due to the fact th
atom A may have been excited by photon 1 while atomB
was excited by photon 2, or atom A may have been exc
by photon 2 while atomB was excited by photon 1, as illus
trated in Fig. 4. The probability amplitudes for these tw
processes will constructively interfere provided that

dk•dr!
p

2
, ~1!

-

,

-
ns

FIG. 3. ~a! Two photons passing through an optical mediu
such as an atomic vapor cell.~b! The same two photons passin
through two separate media. The nonlinear phase shift is equ
the difference in the phases in the two cases, which can be stro
affected by exchange interactions.

FIG. 4. A virtual state in which atomsA andB are both excited
may have been produced in two ways: Photon 1 may have exc
atom A while photon 2 excited atomB, or photon 1 may have
excited atomB while photon 2 excited atomA. Constructive inter-
ference between these two probability amplitudes can produc
factor of 2 enhancement in the probability of there being two
cited atoms, in analogy with the Hanbury-Brown and Twiss expe
ment.
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PRA 60 919QUANTUM LOGIC OPERATIONS BASED ON PHOTON- . . .
wheredk is the difference in thek vectors of the two photons
and dr is the difference in the positions of the two atom
This is the same condition that is required for the observa
of the Hanbury-Brown and Twiss effect~photon bunching!
and Fig. 4 is analogous to that effect if atomsA and B are
viewed as two ‘‘detectors’’ placed in front of a wel
collimated source.

The factor of 2 difference inP2 can be exploited by ap
plying a laser pulse to produce a phase shift in the exc
states of the atoms in the medium. As mentioned above,
effects of the laser pulse will depend on the population of
excited atomic states and a different phase shift will the
fore be produced when the two photons propagate toge
through the same medium than when they propagate thro
two different media. This corresponds to a nonlinear ph
shift whose origin ultimately derives from the exchange
teraction of Fig. 4. A suitable sequence of such laser pu
can give a nonlinear phase shift ofp, which can then be use
in an interferometer arrangement@13# to produce a
Controlled-NOT~XOR! quantum logic gate.

We begin by defining the system of interest and desc
ing the corresponding state vector and Hamiltonian. By
glecting scattering and dispersion, which are both small
large photon detunings, and by making the adiabatic appr
mation, the quantum state of the entire system can be
scribed by a set of six complex numbers that are taken to
the elements of an effective six-dimensional state vector.
propagation of the photons through the medium and th
interaction with the laser pulses can then be determined
solving a six-dimensional eigenvalue problem. After cons
ering the simplest case of a single laser pulse, the choic
an optimal sequence of laser pulses is described. We
clude with a discussion of the nonclassical nature of th
results and their inconsistency with classical concepts s
as the flow of information and determinism. Appendix
considers the limitations imposed by symmetry consid
ations while Appendix B discusses a number of less effec
approaches, including the use of collisions with a buffer g
or Berry’s geometric phase@14#. Appendix C presents a sim
plified derivation for the case of equal detunings.

II. STATE VECTOR AND HAMILTONIAN

The optical medium will be assumed to be an atomic
por cell for simplicity, although the basic results should a
ply equally well to solid-state materials. Equation~1! can be
satisfied for a medium with a moderate thicknessL if the
difference in frequencies of the two incident photons is mu
less than their average frequency and they propagate in
same direction. For example,v12v2 may be on the order o
a few GHz in a typical experiment, which would allow th
thickness of the vapor cell to be on the order of 1 cm.
order to minimize reflections from the surface of the m
dium, it will be assumed that the density of atoms in t
medium is slowly varying compared to the wavelength of
photons, as illustrated in Fig. 5~a!. The total numberN of
atoms in the medium will be assumed to be large (;1010).

The thickness of the atomic medium can be substanti
increased while still satisfying Eq.~1! by using a periodic
density of atoms as illustrated in Fig. 5~b!, where it is as-
sumed that the photons are propagating in thez direction.
.
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Here the thin structure of Fig. 5~a! is repeated at intervalsDz
for which Dzdk52pp, wherep is an integer. This approac
is somewhat similar to the commonly-used technique
quasiphase matching@15# and would allow moderate value
of L even for relatively large differences in the frequencies
the two photons. For simplicity, we will assume the geo
etry of Fig. 5~a! throughout this paper, but the results can
readily extended to the periodic case.

The effects of interest involve two-level atoms, as in F
2, but it will be necessary to vary the energy of the upp
atomic levels in a time-dependent manner by applying ex
nal fields to the system. This could be done in a variety
ways but, to be specific, we will assume that a laser beam
used to couple the second atomic level to a third atomic s
that is of no other interest, as illustrated in Fig. 6. He
photons 1 and 2 are slightly off resonance with the atom
transitions between levels 1 and 2, while the laser beam
sufficiently far from resonance with the atomic transition b
tween levels 2 and 3 that no significant population trans
into level 3 occurs. In that case, the net effect of the la
beam is to shift the energy of level 2 by an amount that c
be calculated using perturbation theory or other methods~ac
Stark shift!. The lack of population in level 3 allows us t
use a two-level model for the atoms in which the energyeA
of level 2 is a function of time.

The incident photons are assumed to propagate along
z direction and are represented by multimode Fock sta
~not merely weak coherent states! corresponding to Gaussia
wave packets. The temporal widthtp of the wave packets is
assumed to be much longer than the transit timeL/c through
the medium, so that the magnitude of the electric field of

FIG. 5. ~a! An atomic medium whose densityr is a slowly
varying function of positionz and sufficiently thin thatdkdz
!p/2, wheredz is the thickness.~b! A periodic medium satisfying
the conditiondkDz52pp, whereDz is the periodicity andp is an
integer. In either case, there is constructive interference betwee
probability amplitudes of Fig. 4.

FIG. 6. The application of a laser pulse that is detuned from
transition between levels 2 and 3, which can be used to produ
Stark shift in the energy of level 2 and a corresponding phase s
in that state.
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920 PRA 60J. D. FRANSON AND T. B. PITTMAN
photons is essentially uniform throughout the medium. T
effects of interest require a multimode analysis, since
nonlinear phase shift depends on the expectation value o
product of the intensities of the two photons, which wou
vanish for plane-wave single photons in free space. The
cident photons can be represented by two single-photon
ation operators,a1

† anda2
† , defined by

a1
†5(

k
f 1~k!ak

† ,

~2!

a2
†5(

k
f 2~k!ak

† .

Here the operatorak
† creates a plane-wave photon@16# with

wave vectork, and f 1(k) and f 2(k) are the Fourier coeffi-
cients of the Gaussian wave packets at the initial timet0 .
These coefficients are chosen in such a way that the inv
Fourier transforms are given by

G1~z![
1

A2p
E eik•r f 1~k!d3k5geik̄1ze2~z2z0!2/2c2tp

2
,

~3!

G2~z![
1

A2p
E eik•r f 2~k!d3k5geik̄2ze2~z2z0!2/2c2tp

2
,

where g is a constant andz0 is the initial location of the
center of the wave packets, which is taken to be far from
location of the atoms so that there is initially no interactio
Both wave packets have the same amplitude and width
different values for their centralk vectors,k̄1 and k̄2 , which
are related to the central frequencies of their Fourier spe
by v̄15ck̄1 andv̄25ck̄2 . Both the medium and the photo
wave packets are assumed to have no significant sp
variation in the transverse direction, so that the right-ha
side of Eq. ~3! involves only thez coordinate. The main
results of this paper depend only on the assumption that
modulus ofG1(z) andG2(z) is a slowly varying function of
z and the exact shape of the wave packets is not essent

The initial state of the field is then given by

ug1 ,g2&5a1
†a2

†u0&, ~4!

where u0& is the vacuum. We will also consider the singl
photon states defined by

ug1&5a1
†u0&,

~5!

ug2&5a2
†u0&,

as well as the following states containing two identical ph
tons:

ug1 ,g1&5
1

&
~a1

†!2u0&,

~6!
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ug2 ,g2&5
1

&
~a2

†!2u0&.

All of the atoms are assumed to be in their ground st
initially, so that the quantum state of the system is initia
given by

uC~ t0!&5ug1 ,g2&)
i

uc1i&, ~7!

whereuc1i& represents atomi in its ground state.
It will be convenient to write the HamiltonianH as the

sum of two parts:

H5H01H int . ~8!

H0 represents the energies of the field and the atoms in
absence of any interaction and is given as usual by

H05(
k

~ak
†ak11/2!\vk1(

i
1/2eAszi , ~9!

where the atoms are labeled with indexi, eA is the energy of
the excited state~level 2! of an atom above its ground stat
and szi is one of the Pauli spin matrices in a two
dimensional Hilbert space consisting of the ground and
cited states of atomi. ~This does not imply any spin interac
tions.! The interaction HamiltonianH int in the Coulomb
gauge and in the standard dipole approximation@16# is given
by

H int52q(
i

r i•E~Ri !. ~10!

Here q is the charge of the electron andr i is the relative
coordinate of the electron in atomi, where we are assumin
hydrogenlike atomic states.E(Ri) is the second-quantize
electric field operator@16,17# at the locationRi of the center
of mass of atomi, which is given in the Schro¨dinger picture
@5# and MKSA units by

E~R!5 i(
k, j

S \ck

2«0VD 1/2

@lje
ik•Rak2lj* e2 ik•Rak

†#. ~11!

Here «0 is the permittivity of free space,V is the volume
used for periodic boundary conditions, andl j represents the
two orthogonal polarization states of a photon. Except for
discussion regarding symmetry considerations in Appen
A, both photons will be assumed to have the same stat
polarization and the polarization indices will be droppe
since two photons of orthogonal polarizations cannot
dergo an exchange interaction as shown in Figs. 2 and 4
means of dipole transitions.
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III. SCHRÖ DINGER’S EQUATION
AND THE CHOICE OF BASIS VECTORS

The photon wave packets are not eigenstates ofH0 and
they will propagate at the speed of light in the absence of
interactions. As a result, it is much more convenient to w
in the interaction picture@5#, where the photon state vecto
remain constant in the absence of any interaction and
electric field operator becomes time dependent. Sch¨d-
inger’s equation then involves only the interaction Ham
tonianH8(t):

i\
duC&

dt
5H8~ t !uC&, ~12!

where H8(t)5exp@iH0(t2t0)/\#Hint exp@2iH0(t2t0)/\# as
usual.H8(t) will be found to be a slowly-varying function o
time after a suitable unitary transformation, which will allo
the adiabatic approximation@18# to be used to reduce th
solution of the Schro¨dinger equation to an eigenvalue pro
lem. The eigenvectors can be computed numerically or a
lytically, but in either case we will need the matrix elemen
of H8(t) in a suitable basis.

The postulates of quantum mechanics allow us to cho
any set of orthonormal basis vectors in Hilbert space~Fock
space for the photons!. The nonlinear phase shifts of intere
correspond to a coherent process in which the photons pr
gate out of the medium in the same state in which th
entered it, aside from an overall phase factor. As a resu
will be convenient to choose a set of basis vectors in F
space that includes the original stateug1 ,g2& as well as the
statesug1& and ug2& that can arise as a result of virtual a
sorption of the photons while they are in the medium. Sin
we need a complete set of orthonormal basis vectors,
define a set of modified plane-wave creation operatorsbk

†

that are constructed in such a way that they generate s
that are orthogonal to those generated bya1

† anda2
† :

bk
†5cn@ak

†2 f 1* ~k!a1
†2 f 2* ~k!a2

†#. ~13!

Here cn is a normalization constant and the last two ter
provide the desired orthogonality. Both@a1 ,a2

†# and^g1ug2&
become exponentially small whenuv12v2u is much larger
than the frequency spread of the Gaussian wave pac
which will be assumed to be the case, and the set of op
tors a1

† , a2
† , and bk

† obey the usual commutation relation
@16,19# in that limit. This allows us to choose a set of bas
vectors that consists of all of the states that are generate
a1

† , a2
† , and thebk

† at the initial timet0 . By definition, these
basis vectors are independent of time in the interaction
ture whereas, in the Schro¨dinger picture, they correspond t
freely-propagating wave packets that do not include the
fects of interactions.

The relevant matrix elements can now be calculated
this basis. For example, we will need the matrix eleme
E1(Ri ,t) andE2(Ri ,t) of the electric field operator define
by

E1~Ri ,t !5^0uE~Ri ,t !ug1&,
y
k

e

a-
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E2~Ri ,t !5^0uE~Ri ,t !ug2&. ~14!

Making use of Eqs.~2!, ~5!, and~11! allows E1(Ri ,t) to be
written as

E1~Ri ,t !5 i S \ck̄1

2«0V
D 1/2

^0ueiH 0~ t2t0!/\

3(
k

@eik•Riak2e2 ik•Riak
†#e2 iH 0~ t2t0!/\

3(
p

f 1~p!ap
†u0&. ~15!

Here we have approximated the term\ck as a constant ove
the narrow bandwidth of the photons, which allows it to
taken outside of the sum. The commutation relations eli
nate all terms except those wherek5p, the remaining sum
can be expressed as an integral that is proportional to
density r( k̄1) of photon states, andH0 /\ reduces tov1
5ck1 when acting on the eigenstates to the right. Equat
~15! then reduces to

E1~Ri ,t !5 ir~ k̄1!S \v̄1

2«0VD 1/2E ei @k•Ri2ck~ t2t0!# f 1~k!d3k.

~16!

Comparison with Eq.~3! shows that, aside from a constan
this expression is equal to the Gaussian functionG1„Zi
2c(t2t0)…. For simplicity, we take the center of the me
dium to be atz50 and evaluate the matrix elements the
since the medium has been assumed to be sufficiently
that the modulus of the field is essentially uniform over th
distance@20#. We also choosez0 and t0 in such a way that
the photon wave packets are centered on the medium at
t50. In that case, these matrix elements reduce to

E1~ t !5g8e2 i v̄1te2t2/2tp
2
[E0~ t !e2 i v̄1t,

~17!

E2~ t !5g8e2 i v̄2te2t2/2tp
2
[E0~ t !e2 i v̄2t,

whereg8 is a constant andE0(t) is a real function that cor-
responds to the slowly varying envelope of the Gauss
wave packet at the location of the atoms. It should be no
that the frequency spread of the wave packets is still reflec
in the time dependence ofE0(t) but does not appear in th
exponential phase factor, which will be important in cons
ering the effects of subsequent unitary transformations.

The matrix elements involving the modified plane-wa
states can be evaluated in the same way, with the result

z^0uE~0,t !uk& z! z^0uE~0,t !ug1& z ~18!

for times at which the wave packets overlap the location
the medium. Hereuk&5bk

†u0& is one of the modified plane
wave basis states. This reflects the fact that the fields
photon 1 and photon 2 are concentrated in that reg
whereas the plane-wave states are not localized. We th
fore make the approximation that the matrix elements
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922 PRA 60J. D. FRANSON AND T. B. PITTMAN
volving the plane-wave states can be neglected and that t
is no coupling into those modes. This corresponds to
neglect of scattering and dispersion, which are expected t
small in the limit of large detunings, and it also neglec
small radiative corrections such as the Lamb shift@19#. The
validity of this approximation when using a sequence of la
pulses will be discussed in Sec. VI.

The photon detunings, defined asd15\v̄12eA and d2
5\v̄22eA , will be assumed to be much smaller in magn
tude thanv̄1 or v̄2 . The rotating wave approximation~en-
ergy conservation! then ensures that the absorption of a ph
ton must be accompanied by the excitation of an atom@17#.
Having neglected any coupling into the plane-wave sta
the only states of the field that can occur when both phot
propagate in the same medium, as in Fig. 3~a!, are linear
combinations of the statesug1 ,g2&, ug1&, ug2&, u0&, ug1 ,g1&,
and ug2 ,g2&. These six basis vectors span the occupied
gion of Fock space for this system and the state of the fi
can be specified by its probability amplitudes in this bas
which form the elements of a six-dimensional state vecto

If the photons are linearly polarized along thex direction,
for example, then the atomic part of the relevant matrix e
ment is given by

^w2i uH8~ t !uw1i&52q^w2i ueiH 0~ t2t0!/\xie
2 iH 0~ t2t0!/\uw1i&

5d0eieA~ t2t0!/\, ~19!

where d0 is the magnitude of the dipole moment betwe
these two states. For the case of degenerate hydroge
atomic states,uw2i& corresponds to the linear combination
states that is excited by the absorption of a linearly polari
photon, as discussed in more detail in Appendix A.

Since there are only two incident photons, there can b
most two excited atoms, which will be labeledi and j with
i . j to avoid counting the same state twice. The total nu
ber of atomic states is thus on the order ofN2. The basis
vectors for the combined system of electromagnetic field
atoms consist of the tensor products of the various ato
states with the six field states described above. In that b
we definec(g1 ,g2) to be the probability amplitude to hav
both of the original photons and no excited atoms. The pr
ability amplitude for atomi to be excited with photon 1
remaining will be denoted byc(g1 ,i ), while c(g2 ,i ) will
denote the probability amplitude for atomi to be excited
with photon 2 remaining. The probability amplitude for a
oms i and j to be excited with no photons remaining will b
denotedc(0,i , j ), with i . j . The probability amplitudes to
have two identical photons and no excited atoms will
denoted byc(g1 ,g1) andc(g2 ,g2).

The time dependence of these probability amplitudes
be found from the Schro¨dinger equation, Eq.~12!, and the
corresponding matrix elements ofH8(t):

i\
d

dt
c~g1 ,g2!5(

i
Meid2t/\c~g1 ,i !

1(
i

Meid1t/\c~g2 ,i !,
ere
e
be

r

-

s,
s

-
ld
,

-

ike

d

at

-

d
ic
is,

-

e

n

i\
d

dt
c~g1 ,i !5Me2 id2t/\c~g1 ,g2!1(

j , i
Meid1t/\c~0,i , j !

1(
j . i

Meid1t/\c~0,j ,i !

1&Me2 id1t/\c~g1 ,g1!,

i\
d

dt
c~g2 ,i !5Me2 id1t/\c~g1 ,g2!1(

j , i
Meid2t/\c~0,i , j !

1(
j . i

Meid2t/\c~0,j ,i !

1&Me2 id2t/\c~g2 ,g2!,

i\
d

dt
c~0,i , j !5Me2 id1t/\c~g1 ,i !1Me2 id2t/\c~g2 ,i !

1Me2 id1t/\c~g1 , j !1Me2 id2t/\c~g2 , j !,

~20!

i\
d

dt
c~g1 ,g1!5(

i
&Meid1t/\c~g1 ,i !,

i\
d

dt
c~g2 ,g2!5(

i
&Meid2t/\c~g2 ,i !.

Here M is a brief notation for the basic matrix element d
fined by

M ~ t !5d0E0~ t ! ~21!

and it will be a real number for an appropriate choice of t
relative phase between the two atomic states. The factor
& that appear in these equations are due to stimulated e
sion into states containing two photons or absorption fr
those states.

Because the atoms are all subjected to the same field
following probability amplitudes will all be equal:

c~g1 ,i !5c~g1 ,i 8!,

c~g2 ,i !5c~g2 ,i 8!, ~22!

c~0,i , j !5c~0,i 8, j 8!

for all values ofi, i 8, j, and j 8. This allows Eq.~20! to be
simplified by introducing a new set of variables:

c~g1![ANc~g1 ,i !,

c~g2![ANc~g2 ,i !, ~23!

c~0![AN~N21!/2c~0,i , j !.

These new variables have been chosen in such a way tha
squared modulus ofc(g1) gives the total probability tha
photon 1 is present and photon 2 has been absorbed, re
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less of which atom is excited, with a similar role forc(g2).
The squared modulus ofc(0) similarly gives the total prob-
ability of there being two excited atoms and no photo
With this change of variables, Eq.~20! becomes

i\
d

dt
c~g1 ,g2!5ANMeid2t/\c~g1!1ANMeid1t/\c~g2!,

i\
d

dt
c~g1!5ANMe2 id2t/\c~g1 ,g2!

1A2~N21!Meid1t/\c~0!

1A2NMe2 id1t/\c~g1 ,g1!,

i\
d

dt
c~g2!5ANMe2 id1t/\c~g1 ,g2!

1A2~N21!Meid2t/\c~0!

1A2NMe2 id2t/\c~g2 ,g2!, ~24!

i\
d

dt
c~0!5A2~N21!Me2 id1t/\c~g1!

1A2~N21!Me2 id2t/\c~g2!,
m

iv
r

b
th
co

b
f
e

.
i\

d

dt
c~g1 ,g1!5A2NMeid1t/\c~g1!,

i\
d

dt
c~g2 ,g2!5A2NMeid2t/\c~g2!,

which involves a total of six complex variables.
An inspection of Eq.~24! reveals that it is equivalent to

Schrödinger’s equation for a six-dimensional vector who
components are taken to be

uc&eff[S c~g1 ,g2!

c~g1!

c~g2!

c~0!

c~g1 ,g1!

c~g2 ,g2!

D , ~25!

provided that the Hamiltonian is chosen to be
Heff5MF 0
ANe2 id2t

ANe2 id1t

0
0
0

ANeid2t

0
0

A2~N21!e2 id1t

A2Neid1t

0

ANeid1t

0
0

A2~N21!e2 id2t

0
A2Neid2t

0
A2~N21!eid1t

A2~N21!eid2t

0
0
0

0
A2Ne2 id1t

0
0
0
0

0
0

A2Ne2 id2t

0
0
0

G , ~26!
or
de

m-
der

ily
mil-
ich

d

where\ has been omitted to make the notation more co
pact. Since the six components ofuc&eff completely deter-
mine the state of the system and their squared moduli g
the total probabilities of the various photon states, we refe
uc&eff as the effective state vector for the system.

The physical meaning of the effective state vector can
understood by considering the state of the full system
corresponds to each of its elements. For example, the se
component ofuc&eff corresponds to the state

uC~g1!&5
1

AN
(

i
ug1 ,i &, ~27!

where each atom has an equal probability amplitude to
excited. Although there are;N other linear combinations o
the statesug1 ,i &, the Hamiltonian couples the initial stat
only to the particular linear combination shown in Eq.~27!
-

e
to

e
at
nd

e

and all of the other linear combinations are unexcited
‘‘dark’’ and can be ignored. Similar comments can be ma
with regard to the other components ofuc&eff , which corre-
spond to the probability amplitudes of the only linear co
binations of states that can evolve from the initial state un
the action of the Hamiltonian. The Hamiltonian of Eq.~26!
could be derived in a somewhat simpler way by arbitrar
defining these six state vectors and showing that the Ha
tonian does not couple them to any other states, after wh
the matrix elements in Eq.~26! could be written down by
inspection.

The exponential factors in Equation~26! are rapidly vary-
ing functions of time. This time variation can be eliminate
by making a unitary transformation given by

uc8&eff5e2 ih0tuc&eff , ~28!

where the matrixh0 is taken to be
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h053
0 0 0 0 0 0

0 2d2 0 0 0 0

0 0 2d1 0 0 0

0 0 0 2~d11d2! 0 0

0 0 0 0 ~d12d2! 0

0 0 0 0 0 ~d22d1!

4 . ~29!

After this transformation, the effective state vector obeys the equation

ih
d

dt
uc8&eff5Heff8 uc8&eff , ~30!

where the effective Hamiltonian now has the form

Heff8 5F 0
ANM
ANM

0
0
0

ANM
2d2

0
A2~N21!M

A2NM
0

ANM
0

2d1

A2~N21!M
0

A2NM

0
A2~N21!M
A2~N21!M
2~d11d2!

0
0

0
A2NM

0
0

~d12d2!

0

0
0

A2NM
0
0

~d22d1!

G . ~31!
e
th
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Equations~30! and ~31! determine the time evolution of th
system for the case in which both photons propagate in
same medium, as in Fig. 3~a!, and they will form the basis
for most of the remaining analysis. For simplicity, the prim
in Eqs.~30! and ~31! will be omitted below.

For comparison purposes, we will also need to calcu
the properties of the system when each photon propagat
a separate medium, as in Fig. 3~b!. In this case, we have two
independent systems whose time evolution can be calcul
separately, after which the state vector for the overall sys
will be equal to the tensor product of the two individual sta
vectors. For the case in which only photon 1 is incident o
medium, an analysis similar to that presented above give
effective state vector with the following components:

uc1&eff[S c8~g1!

c8~0!

c8~g2!
D . ~32!

Herec8(g1) is the total probability amplitude that photon
remains with no excited atoms,c8(0) represents the prob
ability amplitude that the incident photon has been absor
and there is one excited atom, andc8(g2) represents the
probability amplitude that photon 1 has been absorbed
another photon of frequencyv̄2 has been reemitted. The e
fective Hamiltonian for this system is
e

te
in

ed
m

a
an

d

d

H1 eff5F 0
ANM

0

ANM
2d1

ANM

0
ANM

~d22d1!
G . ~33!

For the case in which only photon 2 is incident on a mediu
the corresponding quantities are

uc2&eff[S c9~g2!

c9~0!

c9~g1!
D , ~34!

H2 eff5F 0
ANM

0

ANM
2d2

ANM

0
ANM

~d12d2!
G . ~35!

IV. TWO-PHOTON DRESSED STATES

The photon wave packets have been assumed to be
from the medium at the initial timet0 so that their interaction
with the atoms will be exponentially small at that time. Th
initial state vectoruc0& is then given in the above basis by

uc0&5S 1
0
0
0
0
0

D , ~36!
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which is an eigenstate ofHeff with M (t)50. It will be as-
sumed that the Gaussian wave packets are sufficiently b
that E0(t) is slowly varying on the time scale set by th
diagonal terms ofHeff . In that case, the adiabatic approx
mation @18# is valid and the state vector will slowly evolv
into the corresponding instantaneous eigenstate ofHeff . If no
laser pulses are applied to the medium, the state vector
evolve back intouc0& as the wave packets propagate aw
from the medium, since we have neglected scattering
dispersion.

We will primarily be interested in values ofANM/d that
are large enough to produce a perturbed state vectoruc(t)&
that is substantially different fromuc0& but not so large as to
approach any level crossings, which would be nonadiaba
Values ofANM/d of this magnitude can be readily achieve
in an atomic vapor cell under conditions in which the sc
tering and absorption are relatively small. This strongly p
turbed eigenstate can be thought of as a two-photon dre
state@21#.

Since the nonlinear interaction between two single p
tons is usually negligible, it might be expected that two ph
tons would propagate independently through a medium
that the two-photon dressed state may be nothing more
the tensor product of two single-photon dressed states.
is not the case due to exchange interactions of the kind
are illustrated in Figs. 2 and 4. In particular, Fig. 4 sugge
that there should be a factor of 2 increase in the probab
of there being two virtually-excited atoms when two photo
propagate in the same medium as compared to the ca
which they propagate through two separate media. In o
to quantitatively investigate this possibility, we defineP1S as
the probability that there is exactly one excited atom in
medium for the case in which both photons propagate in
same medium, as in Fig. 3~a!, and we defineP2S as the
probability that there are two excited atoms under the sa
conditions. We also defineP1D and P2D as the correspond
ing probabilities when the two photons propagate in differ
media, as in Fig. 3~b!. In terms of the effective probability
amplitudes defined above, these probabilities are given b

P1S5uc~g1!u21uc~g2!u2, ~37!

P2S5uc~0!u2, ~38!

P1D5uc8~0!u2
„12uc9~0!u2…1uc9~0!u2„12uc8~0!u2…,

~39!

P2D5uc8~0!u2uc9~0!u2. ~40!

Constructive interference between the two processes sh
in Fig. 4 then suggests that

P2S

P2D
52 ~41!

should hold, at least to lowest order in perturbation theo
From the adiabatic approximation, these probability a

plitudes can be found by calculating the instantaneous eig
vectors ofHeff , H1 eff , andH2 eff that correspond to the per
turbed form of the initial state vectors. For moderate valu
of ANM/d, the appropriate eigenvector in each case will
the one whose energy is nearest the initial value of zero.
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results of a numerical calculation of the relevant eigenvec
in the limit of largeN are summarized in Table I for the cas
in which d1522, d253, andANM51/2. ~We will specify
times in units of nanoseconds and energies in units o\
divided by 1 ns, which puts the various plots and numeri
results on a scale that is typical of experiments of this kin!
The results of Table I were calculated numerically to an
curacy of 40 significant digits but only the first 20 digits a
shown in the table. Rather than simply taking the limit
largeN by replacingAN21 by AN in the Hamiltonians, the
numerical calculations were performed using a character
cally large value forN and a correspondingly small value o
M. The specific results shown in Table I were obtained us
N51012 andM50.531026, but equivalent results were ob
tained for other values of these parameters. The advantag
this approach is that it includes the usual mechanisms
nonlinear optics in which both photons interact with t
same atom, the magnitude of which will be seen to be
factor of 1/N smaller than the exchange interactions of int
est here.

It can be seen from Table I thatP2S /P2D is equal to 2, as
expected, to a precision of 12 significant digits. The discr
ancy in the twelfth decimal place is approximately equal
1/N, which reflects the contribution from conventional e
fects in which both photons do interact with the same ato
For example, the absorption of photon 1 will depopulate
ground state of one of the atoms, which in turn will preve
the virtual absorption and reemission of photon 2 by t

TABLE I. Numerical results of an eigenvector calculation of th
two-photon dressed state for the case in whichd1522, d253, N
51012, andANM51/2.

c(g1 ,g2) 0.959 141 163 220 186 939 59
c(g1) 0.154 292 855 116 767 135 53
c(g2) 20.227 657 784 572 637 029 94
c(0) 20.053 939 771 936 222 158 01
c(g1 ,g1) 0.021 988 495 337 845 905 76
c(g2 ,g2) 0.031 951 276 598 403 394 29
ES 20.038 245 115 666 580 845 33

c8(g1) 0.971 837 992 302 328 512 77
c8(0) 20.234 534 582 685 425 689 06
c8(g2) 0.022 900 791 304 068 227 03
E1 20.120 665 473 331 518 234 61

c9(g2) 0.986 558 239 421 311 819 62
c9(0) 0.162 624 965 900 796 428 55
c9(g1) 0.015 998 771 693 051 438 80
E2 0.082 420 357 664 940 187 49

P1S 0.075 634 352 016 604 905 31
P1D 0.078 543 851 013 127 825 91

P2S 0.002 909 498 996 531 659 49
P2D 0.001 454 749 498 267 077 32

P2S /P2D 1.999 999 999 998 284 816 99

^Ne&S 0.081 453 350 009 668 224 29
^Ne&D 0.081 453 350 009 661 980 56

E11E2 20.038 245 115 666 578 047 11
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atom and thus give a conventional nonlinear phase s
~Kerr effect!. These effects are of no interest here but they
illustrate the relatively small magnitude of conventional no
linear interactions between individual photons. The eig
value calculations also showed thatP2S is proportional toN2

in the weak coupling limit (ANM/d«1), asexpected.
The fact thatP2S /P2D52 to such a high degree of accu

racy may be somewhat surprising, since the interferenc
probability amplitudes illustrated in Fig. 4 corresponds on
to the lowest-order Feynman diagram and it might theref
have been expected that Eq.~41! may only hold to lowest
order in perturbation theory. Our numerical results sugg
that Eq.~41! is satisfied exactly for all values ofANM/d in
the limit of largeN, at least up to the first level crossing. Th
fact thatP2SÓP2D shows that there is an effective intera
tion between the two photons and that they do not propa
independently through the medium.

An examination of Table I also shows that there are so
properties of the system that are the same whether the
photons propagate in the same medium or two different
dia. LetES be the energy of the two-photon dressed state
occurs when both photons propagate through the same
dium, and letE1 andE2 be the energies of the single-photo
dressed states that occur when each photon propagates
different medium. The numerical eigenvalue calculatio
show thatES5E11E2 to within a precision of 1/N, which
demonstrates that the eigenstates of the total system hav
same energy in both cases in the limit of largeN. If that were
not the case, there would be a nonlinear phase shift eve
the absence of any laser pulses or other perturbations, w
is not allowed by the symmetry arguments of Appendix
The higher-energy eigenstates~those that do not correspon
to uc0&) also have the same energies in both cases.

A similar situation can also be observed if we defi
^Ne&S and^Ne&D to be the mean number of excited atoms
the case in which the photons propagate in the same or
ferent media:

^Ne&S[P1S12P2S ,

^Ne&D[P1D12P2D . ~42!

The numerical results of Table I show that

^Ne&S5^Ne&D ~43!

in the limit of large N, which demonstrates that the mea
number of excited states is the same in the two cases; th
also required by the symmetry arguments of Appendix
Equations~41!–~43! can be combined to obtain the diffe
ence in the probabilities of having exactly one excited ato

P1S2P1D52P2S , ~44!

which shows that the probability of a single-excited-ato
state is reduced when both photons propagate through
same medium. This result can be understood~in the context
of perturbation theory! from the fact that the generation of
two-excited-atom state must come at the expense of de
ing the probability amplitudes for the one-excited-ato
states.
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Although the numerical calculations leave little doubt th
P2S /P2D52 in the limit of largeN, we have also obtained
analytic solutions for the eigenvectors and related probab
ties using Mathematica@22#. The resulting expressions ar
sufficiently complex and lengthy that they are of little pra
tical use and have not been included here. These ana
solutions also satisfy Eqs.~41! and~43! in the limit of large
N, at least to the extent that those results are obtained w
any set of numerical values of the parameters are inse
into the analytic expressions; we have not yet succeede
simplifying the analytic expressions to obtain Eqs.~41! and
~43! directly. The factor of 2 can be easily derived for th
case of equal detunings (d15d2), as described in Appendix
C.

V. INDIVIDUAL LASER PULSES

The factor of 2 increase in the probability of there bei
two virtually-excited atoms can be exploited in a variety
ways to produce a nonlinear phase shift. This section
scribes the effects of a single laser pulse, which is the s
plest approach, while the next section considers the us
sequences of laser pulses to produce nonlinear phase shi
arbitrary magnitude with minimal loss. A number of le
effective approaches are described in Appendix B, includ
collisions with a buffer gas@6#, Berry’s geometric phase
@14#, and avoided level crossings@21#.

It will be assumed for now that a single laser pulse
applied to the medium when the photon wave packets
centered on it. The electric field of the laser pulse will pr
duce a change in the energy of level 2 of any excited ato
via the ac Stark shift@23# while giving a negligible transfer
of population into level 3, as illustrated in Fig. 6. The dur
tion of the laser pulse is assumed to be much shorter than
relevant time scales over which the population of the qu
tum states of the system can change in accordance with
Schrödinger equation andHeff . In that case, the net effect o
the laser pulse will be to produce an impulsive phase s
Dwe in the excited states of the atoms that is given by

Dwe52E DE~ t !dt/\, ~45!

whereDE(t) is the change in the energy of the excited sta
that is produced by the application of the field. The intens
and duration of the laser pulse can be adjusted to give
desired value ofDwe , which will be chosen to bep/2 for
now.

If the state vectoruc& had the form shown in Eq.~25!
immediately before the laser pulse, then immediately a
the laser pulse the system will be in a new stateuc8& given
by

uc8&5S c~g1 ,g2!

eip/2c~g1!

eip/2c~g2!

eipc~0!

c~g1 ,g1!

c~g2 ,g2!

D . ~46!
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The second and third components of the state vector co
spond to a single excited atom and are subjected to ap/2
phase shift, while the fourth component corresponds to
excited atoms and experiences a total phase shift ofp.

The new state vectoruc8& can be conveniently expresse
as a linear combination of the original state vector and
other vectoruc'& that is orthogonal touc&:

uc8&5reiwuc&1uc'&, ~47!

wherer andw are both real. The coefficient of theuc& term is
given by the projection ofuc8& onto uc&:

reiw5^cuc8&5r 81 i „uc~g1!u21uc~g2!u2
…. ~48!

Here

r 85uc~g1 ,g2!u22uc~0!u21uc~g1 ,g1!u21uc~g2 ,g2!u2
~49!

is a real number that includes the contributions from
terms that were unaffected by the laser pulse as well as
contribution from the two-excited-atom state. For simplici
we will consider the weak coupling limit in whichr 8 is ap-
proximately equal to unity and the other terms, includingw,
are much smaller in comparison. Expanding the left-ha
side of Eq.~48! to first order@24# in w then gives

w5uc~g1!u21uc~g2!u25P1 . ~50!

Equation~50! applies to the case in which both photons a
propagating in the same medium, while a similar result
plies when the photons are propagating in two different m
dia, so that

wS5P1S ,

wD5P1D , ~51!

where wS and wD are the overall phase shifts in the tw
cases. The nonlinear phase shiftDwnon is then equal to the
difference of the two

Dwnon5P1S2P1D ~52!

and Eq.~44! gives

Dwnon52P2S ~53!

in the limit of weak coupling.
Equation~53! shows that the nonlinear phase shift is d

rectly proportional to the probability that two atoms will b
virtually excited at the same time, which is a factor of
larger when the two photons propagate in the same med
due to the exchange interaction shown in Fig. 4. Based
the eigenvalue calculations of the preceding section, the n
linear phase shift is thus expected to be proportional toN2 in
the weak coupling limit, which makes it much larger than t
phase shift from conventional mechanisms such as
shown in Fig. 1. The nonlinearity depends on the fact that
two-excited-atom states undergo a phase shift ofp, which is
equivalent to a minus sign, and contribute tor 8 rather than to
the phase shift as a result. No nonlinear phase shift would
obtained if the contribution tow from the two-excited-atom
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states was simply twice the contribution from a single e
cited atom, as is the case in the limit of weak laser pul
(Dwe!1); the net phase shift would then depend only on
mean number of excited atoms, which is the same in b
cases from Eq.~43!. This dependence on the overall phase
the two-excited-atom state can be viewed as a nonlocal p
erty of the system, as is discussed in more detail in Sec.

VI. SEQUENCES OF LASER PULSES

The construction of quantum logic gates will require
nonlinear phase shift ofp, which cannot be produced by
single laser pulse from Eq.~53!. The probability of generat-
ing the orthogonal stateuc'& in Eq. ~47! must also be mini-
mized, since it corresponds to a loss mechanism in which
system makes a transition out of the basis of states that
resent the qubits in a quantum computer. For a single la
pulse, the probability of such a transition is on the order
P1 and is larger thanDwnon. Both of these difficulties can be
avoided by using an appropriate sequence of laser pu
designed to give a phase shift ofp with uc'&50. The opti-
mal design of pulse sequences of this kind is a nonlin
optimization problem that is still under investigation. He
we will describe two different approaches, one based o
sequence of short laser pulses as described above and a
ond, more efficient approach that makes use of longer pu
with narrow bandwidths.

In the first approach, a sequence ofnp short pulses is
applied at timest j with amplitudesaj . The time intervals
between the pulses were assumed to be sufficiently s
compared totp that E0(t) was approximately constan
throughout the pulse sequence. The value ofnp was chosen
to be sufficiently large~;10! that there were more tha
enough degrees of freedom to cancel all of the compon
of uc'&. A Monte Carlo approach was used in which a set
initial values for thet j and aj were chosen at random an
used as the starting point for a numerical algorithm that v
ied the t j and aj to minimize the ratio of the loss~squared
modulus ofuc'&) divided by the net nonlinear phase shi
where the time evolution of the Schro¨dinger equation was
calculated numerically. A random set of initial values m
only lead to a local minimum, but the process was repea
many times until the optimal solution was obtained. Most
the randomly-chosen starting points lead to a solution w
uc'&50 but the corresponding values ofDwnon varied con-
siderably.

During a laser pulse, the system will be excited into
virtual state in which the atom is in level 3 and one or bo
of the photons have been absorbed, as illustrated in Fig
The detuning of this virtual state will be different for stat
ug1& andug2&, which causes the phase shift forug2& to differ
from that of ug1& by a factorf that could be controlled by
adjusting the frequency of the laser pulse. We included
possibility in the analysis by taking the phase shifts to
given by

w15Dwe ,

w25 f Dwe , ~54!

w05~11 f !Dwe ,
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928 PRA 60J. D. FRANSON AND T. B. PITTMAN
which generalizes Eq.~45!. Here w1 , w2 , and w0 are the
phase shifts in the statesug1&, ug2&, andu0&, and the value of
Dwe depends on the amplitude of the laser pulses~all the
pulses were assumed to have the same duration!.

The optimal results obtained for a sequence of 10 la
pulses are summarized as a function off in Table II, where
the squared modulus ofuc'& after the sequence of pulse
was zero in all cases. It can be seen that the optimal valu
the nonlinear phase shift decreases asf approaches 1, and n
solution could be found withuc'&50 for the case off 51.
This suggests that an asymmetry between the effects of
ton 1 and photon 2 is required in order to obtain nonlin
phase shifts with no loss.~A similar asymmetry is also re
quired for the case in which collisions with a buffer gas a
used instead of laser pulses, as is discussed in Appendix!
The magnitude ofDwnon from a sequence of short pulses
relatively small in any case and this approach is straight
ward but may be of limited practical value.

We have therefore investigated a more complex but m
more efficient five-pulse approach that uses longer la
pulses with narrow bandwidths to produce transitions
tween specific states of the system. In this method, the
incident photons are assumed to be closer to resonance
level 3 than level 2, as illustrated in Fig. 7, but the detun
is still sufficiently large that the population in level 3 is rel
tively small. The frequency of the laser pulses can then
tuned to produce resonant transitions into level 2, where
frequency will produce a resonant absorption of photon
and another frequency will produce a resonant absorptio
photon 2. Since level 3 is again a virtual state, the net ef
can be represented as an effective matrix element for ph
absorption into level 2.

The frequency and amplitude of the first laser pulse
chosen to produce a resonant absorption of photon 2~a Rabi
oscillation @23,25# of p!, so that the system makes a com
plete transition from stateug1 ,g2& to stateug1& as illustrated
in Fig. 8. A comparison of the matrix elements ofHeff in Eq.
~31! with H2 eff of Eq. ~35! shows that the Rabi frequency fo
this transition is the same whether the two photons are in
same medium or in two different media, so that this tran
tion occurs in either case.

TABLE II. Optimal results obtained from a sequence of 10 sh
laser pulses as a function of the parameterf. The conditionuc'&
50 was satisfied in all cases.

f Dwnon

2.0 0.318
1.1 0.125
1.01 0.022
1.00 no solution

FIG. 7. A laser-induced transition, in which photon 1 or 2
off-resonance from level 3, but the application of a laser pu
allows a resonant transition into level 2.
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The frequency of the second pulse is then chosen to b
resonance for photon 1 transitions and its amplitude is
justed to produce a complete~2p! Rabi oscillation back into
the initial stateug1& for the case in which the two photons a
in separate media. A comparison ofHeff with H1 eff now
shows that the relevant matrix element is a factor of& larger
for the case in which the two photons are in the same me
due to the quantum interference of Fig. 4. As a result,
probability amplitude for stateu0& oscillates through zero an
the system is left in a superposition ofug1& and u0& in the
latter case, as illustrated in Fig. 9~a!. These results were ob
tained by numerical integration of Schro¨dinger’s equation for
a gaussian laser pulse with a width~standard deviation! of 30
ns.

The fact that the system is now in a superposition of sta
if and only if the photons are propagating in the same m
dium allows a third pulse to produce an arbitrary phase s
in that case. The frequency of pulse 3 is chosen to be slig
off-resonance from a photon 1 transition and its amplitude
chosen, once again, to return the system to stateug1& for the
case in which the two photons are in different media~another

t

e

FIG. 8. A five-pulse sequence producing a nonlinear phase s
of p. ~a! Pulse 1 produces a transition from the initial stateug1 ,g2&
to the stateug1& in which only photon 1 is present.~b! Pulse 2 has
no net effect when the photons are in two different media but p
duces a superposition of statesug1& and u0& when both photons are
in the same medium.~c! Pulse 3 produces a phase shift in the st
ug1& when both photons are in the same medium.~d! Pulse 4 returns
the system to stateug1&. ~e! The last pulse returns the system to
initial state aside from a relative phase shift ofp.
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PRA 60 929QUANTUM LOGIC OPERATIONS BASED ON PHOTON- . . .
2p Rabi oscillation!. The effects of this pulse on the prob
ability amplitude of stateug1& for the case in which both
photons propagate in the same medium can be seen from
10, where the radius of the dashed circle is equal to
modulus of the probability amplitude of this state just befo

FIG. 9. Plots of the real partR of the probability amplitude of
stateu0& as a function of time for the case in which both photo
propagate in the same medium, illustrating the effects of a sequ
of five laser pulses.~a! Effects of pulse 2, which produces a supe
position of statesug1& andu0&. ~b! Effects of pulse 4, which reverse
the effects of pulse 2 and returns the system to stateug1&, aside
from a phase shift that can be controlled by pulse 3.

FIG. 10. Real and imaginary parts of the probability amplitu
of state ug1& as a result of pulse 3, for the case in which bo
photons propagate in the same medium. The radius of the da
circle represents the magnitude of the probability amplitude of s
ug1& before the pulse, while vectora represents the contributio
from that probability amplitude alone after the pulse has partia
coupled it into stateu0&. Vector b represents the contribution from
the initial probability amplitude of stateu0&, which is partially
coupled intoug1& by the pulse. The phase and detuning of the pu
can be adjusted to make the resultant vector lie anywhere on
dashed circle, which gives an arbitrary phase shift.
ig.
e

the pulse. The vector labeleda in the figure represents th
contribution from the probability amplitude of stateug1& be-
fore the pulse, which is reduced in magnitude by its coupl
into stateu0& during the pulse. The vector labeledb repre-
sents the contribution from the probability amplitude of sta
u0& before the pulse, which is coupled back into stateug1&
during the pulse. The magnitude of vectorb can be adjusted
by varying the detuning of the pulse, while the phase of
pulse can be used to ensure that the sum of the two vec
lies on the dashed circle. This allows the modulus of
amplitude of stateug1& to be maintained at its original valu
while an arbitrary phase shift can be introduced by mov
the resultant vector to an arbitrary point on the dashed cir

The reason for maintaining the modulus ofug1& during
pulse 3 is that it allows a fourth pulse to act as the inverse
pulse 2, since the state of the system is now the same
was after pulse 2 except for a phase shift. The amplitude
frequency of pulse 4 are therefore chosen to be the sam
pulse 2, which applies a 2p Rabi oscillation and leaves th
system inug1& once again for the case in which the tw
photons are in separate media. At the same time, the pha
this pulse can be adjusted to eliminate theu0& component and
leave the system entirely inug1& for the case in which the
two photons are in the same medium, as shown in Fig. 9~b!.

A fifth pulse that is identical to pulse 1 is then applied
produce ap Rabi oscillation and transfer the system back
the original stateug1 ,g2&, aside from the phase shift that wa
generated during pulse 3. Once again, the matrix elem
and the Rabi frequency are the same for this transit
whether the photons travel in the same or different medi

A numerical algorithm was used to determine the corr
parameters for the five-pulse sequence described above
net effect of the resulting pulse sequence was to produc
phase shift ofp for the case in which both photons trav
through the same medium relative to the case in which t
travel through two different media. Alternatively, an arb
trary nonlinear phase shift could be produced using a dif
ent choice of the frequency, amplitude, and phase of puls
This approach does not produce any losses~in the form of an
orthogonal state vectoruc'&) to within the approximations
that were described above.

The above analysis assumed once again that the only
evant modes of the electromagnetic field are those gener
by a1

† anda2
† . It is expected that this condition can be sat

fied experimentally by using a thick medium and appropri
phase matching conditions, in which case conservation
energy and momentum can greatly suppress the emissio
photons into other modes. More detailed numerical calcu
tions that include the effects of scattering and dispersion
planned.

VII. NONCLASSICAL NATURE OF THE RESULTS

One question that naturally arises is whether or not th
nonlinear phase shifts can be understood classically or if t
are inherently quantum-mechanical in nature. In this sect
we consider the possibility of describing the photons as
ther classical particles or as classical waves, and conc
that neither description is consistent with the observed
fects. We then show that nonlinear phase shifts of this k
cannot be produced by a local polarizability of the mediu
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930 PRA 60J. D. FRANSON AND T. B. PITTMAN
and suggest that the only correct interpretation must invo
nonlocal correlations between fluctuations in the polarizat
of the medium at two distant locations.

Any consistent classical interpretation would have to
clude the particlelike nature of light and the fact that a m
surement could, at least in principle, be performed to de
mine which photon interacted with which atom. If w
assume that the photons are classical particles, then the p
ability that both photons will interact with the same atom
negligible for a typical medium, as discussed above. T
places a fundamental limitation on the ability of one phot
to control the state of the other in any classical theory sin
in general, the control of one classical system by anothe
only possible if there is some physical interaction~force!
connecting the two systems, either directly or through
chain of interacting systems as illustrated in Fig. 11~a!. No
control is possible if each system interacts only within tw
disconnected sets of systems, as illustrated in Fig. 11~b!. The
sequence of physical interactions connecting the two sys
in Fig. 11~a! provides a path for the flow of information from
one system to the other and is consistent with the assump
that there must be a specific cause for every effect~determin-
ism!. In contrast, the quantum-mechanical exchange inte
tion of Fig. 4 has the same form as the two disconnec
systems in Fig. 11~b!, which suggests that one photon c
control the state of another photon even when there is
sequence of physical interactions connecting the two p
ticles @26#.

Although the exchange interaction of Fig. 4 has the sa
form as the two disconnected systems in Fig. 11~b!, we do
not know which photon will interact with which atom. From
a classical point of view, that uncertainty is irrelevant: if t
photons never interact with the same atom, there is no p
for the flow of information, regardless of which photon i
teracted with which atom. In quantum mechanics, the in
ference of these probability amplitudes gives us the poss
ity of a control process even though there is no class

FIG. 11. ~a! Two classical systems,S1 and S2 , that are con-
nected by a sequence of physical interactions that may involve
or more auxiliary systems labeledA. ~b! Two classical systems tha
are not connected by a sequence of physical interactions. The
no path for the flow of information in the latter case and a class
control process cannot occur.
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interaction between the two photons. In the quantu
mechanical exchange interaction illustrated in Fig. 2, atomA
absorbs photon 1 and reemits photon 2, while atomB ab-
sorbs photon 2 and re-emits photon 1, which suggests
both photons must interact with both atoms in some sens
a quantum-mechanical description. This is once again ir
evant from a classical point of view, since the photons ne
have a causal effect on the same atom and no path for
flow of classical information can be identified as a result.

If we were to simply ignore the particlelike nature of ligh
and represent the photons by classical waves, the intensi
the light beams would be so low that they would have n
ligible effect on the properties of the atoms and they co
not produce a significant change in the index of refraction
the medium. For example, suppose that an absorptive filte
placed in front of the two incident beams of light in order
reduce their intensities by a large factorf a . In a classical
theory in which the nonlinear effects are proportional to t
product of the intensities, the nonlinear phase shift would
reduced by a factor off a . In contrast, the nonlinear phas
shifts of interest here would be unaffected by such an atte
ation process, provided that we only accept events in wh
both photons are transmitted through the attenuator and
tually detected. The persistence of nonlinear effects at a
trarily low intensities is a hallmark of nonclassical behav
@27,28#.

More generally, it is possible to give a simple proof th
the predicted phase shifts are inconsistent with any class
theory in which the medium responds locally to an appl
field. To show this, we make the usual assumption@7–9# that
the nonlinear response of the medium can be described
series of nonlinear susceptibility coefficients. Since there
four electric fields involved here~two incoming and two out-
going!, the relevant dipole momentP(r ,t) induced at loca-
tion r and timet is given @7–9# by

P~r ,t !5x~3!
•E~r ,t !3, ~55!

where E(r ,t) represents the classical field andx(3) is the
third-order susceptibility coefficient. The changedE(r 8,t8)
in the electric field produced in the forward direction c
then be found by integrating over the volume of the medi

dE~r 8,t8!5E G~r 8,t8;r ,t !P~r ,t !d3r dt, ~56!

where G(r 8,t8;r ,t) is the appropriate Green’s function
E(r ,t) in Eq. ~55! can be replaced by the incident fie
E0(r ,t) in the limit of weak fields, which gives

dE~r 8,t8!5E G~r 8,t8;r ,t !x~3!
•E0~r ,t !3d3r dt. ~57!

All of the volume elements contribute with the same phase
the forward direction, in which case the integral of Eq.~57!
is proportional to the volume of the medium. Since the
duced phase shift is proportional tod E, this gives a nonlin-
ear phase shift proportional toN, not N2, which shows that
the local nature of the induced dipole moment precludes
description of these effects in terms of nonlinear susceptib
ties.
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Equation~57! shows that the nonlinear phase shift cann
be due to a local polarization of the medium, which sugge
that the correct interpretation must involve nonlocal corre
tions between the polarizations induced at two different
cations in the medium. This is consistent with the factor o
increase in the probability of there being two excited atom
each of which has a dipole moment. Since the classical ph
associated with a single photon is totally random, these
duced dipole moments have zero mean, while the factor
indicates a nonlocal correlation between the two.

These nonlinear phase shifts are due to the interferenc
quantum-mechanical probability amplitudes, which refle
the fact that we do not know which photon interacted w
which atom. This dependence on quantum interference
vides an interesting example of complementarity in quant
mechanics: In principle, a measurement could be perform
to determine which photon interacted with which atom, a
such a measurement would always show a negligible p
ability for both photons to have interacted with the sa
atom. On the other hand, any such measurement would
destroy the quantum interference that is responsible for
nonlinear phase shift. In that case, can we really say that
phase shift is due to photons that never interacted with
same atom? What we can say is that there is no clas
interaction between the two photons, as in Fig. 11~b!, and
that the effect is not due to a sequence of interaction term
the quantum-mechanical Hamiltonian, just as is the case
the usual exchange interactions.

The random nature of the quantum theory is clearly
compatible with the classical assumption that every eff
must have a specific cause~determinism!. This is especially
true of the nonlocal correlations between the random res
of measurements made on pairs of distant particles, wh
are inconsistent with any deterministic interpretation
which information does not travel faster than the speed
light @29#. Our results show that the inconsistency betwe
quantum mechanics and classical determinism is not lim
to random events; a quantum control process of this kind
a definite result even though, from a classical point of vie
it is not possible to identify a path for the flow of informatio
or a specific cause for the outcome of the process.

Finally, it can be seen from Eq.~46! that these effects ar
inherently dependent on the overall phase of a two-pho
state, which is a nonlocal property of the system. As a res
there are some analogies between this effect and the
photon interferometer@30,31#, which does violate Bell’s in-
equality. Although this system does not violate Bell’s i
equality and the two photons have uncertain positions
overlapping beams, it seems apparent that these effect
inherently nonlocal as well as nonclassical.

VIII. DISCUSSION AND CONCLUSIONS

In this paper, we have shown that exchange interacti
can be used to obtain nonlinear phase shifts at the t
photon level. The origin of the nonlinear phase shifts can
understood from the fact that quantum interference effe
can produce a factor of 2 increase in the probability of th
being two virtually-excited atoms when two nonresona
photons propagate through the same medium, in ana
with the Hanbury-Brown and Twiss effect~photon bunch-
t
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ing!. The application of one or more laser pulses will th
produce a nonlinear phase shift, since the effects of
pulses are dependent on the number of excited atoms. N
linear optical effects from conventional mechanisms are n
mally very weak at the two-photon level because of the we
electric field associated with the photons and the requirem
that both photons interact with the same atom. The use
exchange interactions avoids this difficulty, since the t
photons can interact with two different atoms, which is mu
more likely to occur.

The question naturally arises as to whether or not th
effects are similar to any of the nonlinear mechanisms t
have been discussed by earlier authors who may not h
emphasized the role of exchange interactions. For examp
four-wave mixing experiment@23# at low intensities is simi-
lar to the extent that there are two incoming and two out
ing beams, and a nonlinear phase shift proportional toN
should be expected from coherent forward scattering via c
ventional mechanisms such as that illustrated in Fig. 1.
the effects of interest here are proportional toN2 whereas
Eq. ~57! shows that phase shifts of that kind cannot be o
tained from conventional approaches@7–9# based on the use
of nonlinear susceptibility coefficients. In addition, the r
sults of Appendixes A and B suggest that exchange inte
tions cannot give rise to any nonlinear phase shifts unless
system is non-adiabatically perturbed by an additional fie
which is not the case in most conventional nonlinear op
experiments. Finally, the results obtained here require
the two incoming beams of light be sufficiently well coll
mated that they satisfy Eq.~1!, as in the Hanbury-Brown and
Twiss effect @4#, which is certainly not a feature of mos
other effects in nonlinear optics. For these reasons, the us
exchange interactions to produce nonlinear phase shifts
pears to be qualitatively different from earlier mechanism

Our approach involves pairs of atoms whereas, to the b
of our knowledge, all of the previous mechanisms@1,10–12#
for the production of nonlinear phase shifts at single-pho
intensities have involved the interaction of two photons w
the same atom. For example, the nonlinear phase shifts
served by Turchetteet al. @1# were obtained using a high-Q
cavity and a ‘‘V’’ system in which one photon could depopu
late the ground state of an atom, thereby preventing any
teraction with that atom by a second photon. Their expe
ments were performed under conditions in which there w
typically only one atom in the cavity at any given time, s
that both photons must have interacted with the same at
Schmidt and Imamoglu@11# have proposed a mechanism
which electromagnetically induced transparency~EIT! @32#
could be used to greatly reduce absorption near an ato
resonance, which would allow an incident beam of light
undergo a large phase shift by being tuned very near re
nance; the phase shift could then be modulated~Kerr effect!
using a control beam that produces a ‘‘shelving’’ transiti
into a fourth atomic state. The effect can be further enhan
by confining the photons to a resonant cavity@12#. Their
approach clearly requires that at least one photon from
control beam and a second photon from the probe must b
interact with the same four-level atom, while the probabil
of such an event is greatly enhanced by the small detun
and the use of a cavity. Harris and Yamamoto@33# have
described a similar optical switch using EIT and the sa



a
en
nc

to
os
wi
ve
th
ic
a

la
an

ex
h

s
w
-

nt
nd
-

t
er

g

le
n
ic
al

ng
jo

m
to

ffi
on
b

ur
o
e
p

d
er
um
fo

t
als

ic
to

the
ibed
rs
ed

ly
ion
this
tal
n a

that
he
be-
re.
mis-
m-

u-
d.
is
rol
een
-
nism
to

has
of
f
nt.

ll’s
or-
e-
n-
ct’’
ro-

f-
al

in-
ion
cur
mit

ast
be
d in

this
try

st
ber

eld.
ng

932 PRA 60J. D. FRANSON AND T. B. PITTMAN
four-level scheme but with controlled absorption rather th
a phase shift, while other mechanisms involving coher
population trapping and other forms of quantum interfere
have also been suggested@34,35#. Harris and Yamamoto@33#
showed that, in their approach at least, the minimum pho
flux in the control beam corresponds to one photon per cr
sectional area, which is sufficient to ensure that there
always be an interaction between a control photon and e
atom in the medium. In contrast, our approach eliminates
need for both photons to interact with the same atom, wh
allows the use of a single control photon even when there
a large number of atoms in the medium.

Cooperative effects involving two or more atoms can p
an important role in a number of other phenomena in qu
tum optics, such as superradiance@36# and two-photon ab-
sorption @37–40#. Superradiance can be viewed as an
treme case of photon bunching and is thus somew
analogous to the effects discussed here, although it doe
produce nonlinear phase shifts nor does it involve only t
photons. Teich and Wolga@37# showed that the rate of two
photon absorption by a single atom~or any pointlike ab-
sorber! is twice as large for chaotic light as it is for cohere
light, which is analogous to both the Hanbury-Brown a
Twiss effect and to Eq.~41!. Cooperative effects in two
photon absorption have been considered in detail@38–41#,
but most discussions either assumed a single mode of
field @38,40–41#, in which case there are no exchange int
actions as shown in Figs. 2 and 4, or Eq.~1! did not hold
@39#. Multiatom effects can also be produced by long-ran
dipole-dipole interactions@39,40# or local field effects@42#,
but these are physical interactions rather than exchange
teractions.

Nonlinear phase shifts of this kind can be used to imp
ment quantum logic gates@13# that may be of practical use i
quantum computing. One of the advantages of an opt
approach is the fact that the logic gates would be physic
independent from each other and could be connected as
sired using optical fibers, whereas the difficulty in providi
a logical connection between arbitrary devices is a ma
drawback in other approaches being considered@43#. One
potential difficulty in any optical approach to quantum co
puting is the need to produce large numbers of single-pho
input states on demand. We have previously suggested@44#
that large numbers of single-photon states could be e
ciently produced by starting with a weak coherent state c
taining an average of one photon in each of a large num
of optical fibers. The opticalXOR quantum logic gates could
then be used to perform a quantum nondemolition meas
ment of the number of photons, after which a series
electro-optic switches could select the output of those fib
containing one and only one photon. Optical fiber loo
could be used as memory storage devices; although the
trinsic storage time would be at most a few microsecon
the switching time of the logic gates would be many ord
of magnitude faster, which may allow the use of quant
error correction techniques. Highly efficient methods
single-photon detection would also be required in order
read out the results at the end of a calculation; this could
be accomplished by using theXOR gates to perform quantum
nondemolition measurements of the photon number, wh
could be repeated to obtain very high overall single-pho
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detection efficiencies. The practical issues involved in
implementation of a quantum computer have been descr
in more detail elsewhere@44#, where the conclusion appea
to be that all of the necessary functions could be perform
provided only that theXOR gates themselves are sufficient
efficient. The practical issues involved in the implementat
of a quantum computer are beyond the intended scope of
paper, which is primarily concerned with the fundamen
physical implications of the use of exchange interactions i
quantum control process.

There are a number of areas of physical importance
still need to be investigated in more detail, including t
potential effects of dispersion and scattering, which are
lieved to be relatively small but have been neglected he
The use of phase-matching techniques to suppress the e
sion of photons into other modes of the field appears pro
ising but will require further analysis. A more detailed n
merical investigation of these and other issues is planne

In our opinion, the most significant conclusion from th
work is that it is possible to implement a quantum cont
process even when there is no physical interaction betw
two systems, as in Fig. 11~b!. This shows that the discrep
ancy between quantum mechanics and classical determi
is not merely a question of randomness, nor is it limited
random events: a quantum control process of this kind
a definite outcome, even though, from a classical point
view, it is not possible to identify a path for the flow o
information or a specific cause for the outcome of the eve
Although these nonlinear phase shifts do not violate Be
inequality, they can be viewed as being due to nonlocal c
relations between fluctuations in the polarization of the m
dium at two different locations. Our most fundamental u
derstanding of the nature of control and ‘‘cause-and-effe
may have to be revised to include nonclassical control p
cesses of this kind.
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APPENDIX A: SYMMETRY CONSIDERATIONS

There are a number of other Feynman-like diagrams
volving pairs of atoms in addition to the exchange interact
shown in Fig. 2. For example, the various events can oc
in a different time order or each atom may absorb and ree
the same photon. We showed in an earlier paper@6# that the
contributions from all of these processes cancel out, at le
to lowest order in perturbation theory, and that there will
no net nonlinear phase shift unless the system is perturbe
a way that eliminates the cancellation. The reason for
cancellation can be understood from the following symme
considerations.

It will be assumed that the atomic transitions of intere
are between a ground state with magnetic quantum num
m50 and three excited states, corresponding tom51, 0, or
21, that are degenerate in the absence of any external fi
The absorption of a photon that is linearly polarized alo
the x axis and incident along thez axis will induce a transi-
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tion to an atomic stateuwx& that is a linear combination o
states withm561; in the forward direction, such a state ca
only reemit anx-polarized photon. In a similar manne
y-polarized photons propagating along thez direction are
only coupled to an orthogonal atomic stateuwy&. As a result,
the exchange interaction of Fig. 2 can only occur if the t
photons have the same polarization and there will be no n
linear phase shift of this kind for two photons of differe
polarizations.

Consider the case in which photon 1 is linearly polariz
along thex direction while photon 2 is linearly polarize
along a direction that is midway between thex andy axes, so
that the initial state of the field can be written as

uc0&5ux1&~ ux2&1uy2&)/&. ~A1!

The nonlinear phase shift due to exchange interactions
be assumed to have a magnitude ofp, so that, in the absenc
of any external fields, the state of the photons after pas
through the medium will be

uc&5ux1&~eipux2&1uy2&)/&, ~A2!

where the nonlinear phase shift has been applied only to
term in which both photons have the same polarization
can be seen from Eq.~A2! that the polarization of photon 1
remains unchanged while that of photon 2 has been rot
through an angle of 90°.

Now consider a new coordinate framex8,y8 that has been
rotated by 45° with respect to the originalx,y coordinate
frame. The initial state of the system can now be written

uc0&5~ ux18&1uy18&)uy28&/& ~A3!

and the final state becomes

uc&5~ ux18&1eipuy18&)uy28&/&. ~A4!

In this case, the polarization of photon 2 remains unchan
while the polarization of photon 1 is rotated by 90°. Equ
tions ~A2! and ~A4! are inconsistent with each other, whic
shows that a nonlinear phase shift of this kind is not poss
for a medium with rotational symmetry and degener
atomic states. This explains why the Feynman diagrams
cancel in the absence of an external perturbation and it
shows that the mean number of excited atoms must be
same whether the photons propagate in the same or two
n-

d

ill
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he
It

ed

s

d
-

le
e
ll

so
he
if-

ferent media, as in Eq.~43!, since a nonzero energy differ
ence and nonlinear phase shift would be obtained if that w
not the case.

APPENDIX B: ALTERNATIVE APPROACHES

Perhaps the simplest way to eliminate the rotational sy
metry of the system would be to apply a linearly polariz
laser beam as illustrated in Fig. 6, where the laser intensit
assumed to be constant in time rather than pulsed. Since
population in level 3 may play a significant role here, w
explicitly included those states in the system rather than
proximating their effects with an effective coupling Ham
tonian and energy shift, as was done for the pulse seque
described in the text. This gives an 11-dimensional effect
state vector and Hamiltonian, which were derived in t
same way as the six-dimensional state vector used for
two-level system. The nonlinear phase shift was once ag
determined numerically by calculating the corresponding
genvalues, also in analogy with the six-state calculatio
The results of this analysis showed that the application o
continuous laser beam does not produce any nonlinear p
shifts proportional toN2, despite the breaking of the rota
tional symmetry. Conventional linear phase shifts prop
tional toN were obtained, however, and it was apparent t
the application of the laser beam could be used to ‘‘contro
the state of the photons by producing a rotation of the po
ization of the photons, as was independently observed
cently by Wielandy and Gaeta@45#. We also considered a
number of other configurations, such as the commonly-u
‘‘ V’’ and ‘‘ L,’’ but were unable to obtain any nonlinea
phase shifts that would be significant at the two-photon lev
The conclusion appears to be that steady-state perturba
of the system are not sufficient to eliminate the cancellat
of the Feynman diagrams discussed above.

Since time-independent perturbations do not suffice,
also considered slowly-varying perturbations where the ti
evolution of the system would be given by the adiaba
approximation and the associated Berry phase might prod
a nonlinear phase shift. Berry@14# considered the case i
which the HamiltonianH„R(t)… depends on two paramete
that can be considered to be the components of a t
dimensional, time-dependent vectorR(t). If the system is
slowly propagated in one of the eigenstatesun(R)& of the
Hamiltonian around a closed pathC in this two-dimensional
parameter space, the system will undergo a geometric p
shift Dwg that is given by the surface integral

Dwg52E E
C
dS•Vn~R!, ~B1!

where the vectorVn(R) is defined as
Vn~R!5Im (
mÞn

^n~R!u“RH~R!um~R!&3^m~R!u“RH~R!un~R!&
@Em~R!2En~R!#2 . ~B2!
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HereEn(R) is the energy of eigenstateun(R)&. We consid-
ered a set of possible parameters that included the ti
dependent amplitude and phase of the external laser bea
well as the photon gaussian envelope functionE0(t). The
vector Vn(R) was found to be zero for all combinations
two of these parameters. Although it is possible that we
not consider some relevant set of parameters, the conclu
appears to be that a Berry phase cannot be used to pro
nonlinear phase shifts of this kind. We also investigated
possibility of adiabatically varying the parameters in suc
way as to pass through a region of an avoided level cross
and we found that this also did not produce a nonlinear ph
shift proportional toN2.

The above results suggest that the perturbation that is
quired to break the rotational symmetry of the system m
also be nonadiabatic, as it is for the two types of laser
quences discussed in the text. The remaining possibility
we have considered in some detail is the use of a static
to break the symmetry in combination with collisions with
buffer gas to produce random phase shifts in the exc
states of the atoms. This analysis was also based on the
dimensional effective state vector described in the text,
here a density matrix calculation was required since we w
no longer dealing with pure states. The simplest assump
that one can make with regard to the effects of the collisi
is that they are instantaneous events, that they randomiz
phase of the excited states of the atoms, and that they o
at random times at a rate that is independent of the detu
~energy unbalance! of the virtual atomic states. Given thos
assumptions, it can be shown that the off-diagonal term
the density matrix involving statesug1&, ug2&, andu0& decay
at ratesb1 , b2 , andb0 that are related by

b15b25 1
2 b0 . ~B3!

The decay rateb0 is twice as large as the other two becau
it corresponds to a state with two excited atoms, wh
doubles the probability that a collision event will occur in
small time interval.

A numerical calculation of the time-evolution of the de
sity matrix gave the result that no nonlinear phase shift p
portional toN2 will be produced by atomic collisions if Eq
~B3! is satisfied. The assumption that the collision rate
independent of the detuning of these virtual atomic sta
does not seem plausible, however, for an inelastic collis
process with a final state energy exchange that is reso
with the energy of stateug1& but not in resonance with th
energy ofug2&, for example, which would enhance the ra
of collisions for ug1&. The same can be said for a collisio
process that is elastic but has a virtual state whose en
difference is close to resonance withug1& or ug2&. We there-
fore performed additional density matrix calculations
which b1Ób2 , where it was assumed that

b05b11b2 . ~B4!

The results of a typical calculation of this kind are shown
Fig. 12, which is a plot of the nonlinear phase shift as
function of the average detuning,d5(d11d2)/2. The aver-
age detuning was varied while the difference in detunin
d22d1 , was held fixed at a constant value of 5 GHz, whi
may be typical of experiments of this kind. The resu
e-
as

d
ion
uce
e
a
g,
se

e-
st
e-
at
ld

d
ix-

ut
re
n
s
the
ur

ng

of

e
h

-

s
s
n
nt

gy

a

s,

shown in the figure correspond tob1523109 s21, b251
3109 s21, andb0533109 s21. The magnitude of the non
linear phase shift as a function of the number of atoms, fo
fixed average detuning ofd521/2, is shown in Fig. 13;
these results are consistent with a nonlinear phase shift
portional toN2.

The calculations described in Ref.@6# had assumed tha
the details of the collision process were not crucial and h
simply taken equal damping rates for all of the virtual stat
which is inconsistent with Eq.~B3!. On the other hand, simi
lar results are obtained provided thatb1Ób2 . This condition
may occur, for example, if a magnetic field produces a Z
man shift in the atomic energy levels whose magnitude
comparable to the difference in the detunings of the t
photons, as was the case in the preliminary experiments
scribed in Ref.@44#. In that case, an inelastic collision pro
cess that transfers angular momentum to the atoms ma
closer to resonance withug1& than ug2&, which would be
expected to giveb1Ób2 . In any event, it is now clear tha
the details of the collision process do play an important r
and that the effects of a laser pulse are much easier to
lyze and control, which is why we are now concentrating
the effects of sequences of laser pulses.

Finally, we note that all of the mechanisms that we ha
investigated and found to produceN2 nonlinear phase shifts
~without substantial loss! involve nonadiabatic perturbation
that are asymmetric with respect to the role of the two p
tons. The impulsive phase-shift approach requires that
laser pulses be detuned an unequal distance fromug1& and
ug2&, the longer laser-pulse approach allows the selec
absorption of one photon or the other, and the buffer-
approach requires thatb1Ób2 . The need for this kind of

FIG. 12. Nonlinear phase shift as a function of the avera
photon detuning for the case of collisions with a buffer gas.
nonzero phase shift is only obtained ifb1Ób2 ; hereb152b2 .

FIG. 13. Nonlinear phase shift as a function of the number
atoms in the medium for the case of collisions with a buffer ga
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asymmetry appears to be related to the fact that the co
bution from the exchange process shown in Fig. 2 will ha
the opposite sign if photon 2 is absorbed first instead
photon 1; in a perturbation theory treatment, the lack of
ergy conservation in the second intermediate state is equ
magnitude but opposite in sign, which causes the contr
tions from these two diagrams to cancel in the limit of lar
detunings@17,41#. It is possible to give examples of variou
‘‘gedanken experiments’’ in which there would be an app
ent violation of causality if this kind of cancellation did no
occur for two distant atoms.

APPENDIX C: EQUAL DETUNINGS

It was suggested during the review of this paper that
crucial factor of 2 in Eq.~41! could be derived in a very
simple way ifd15d2 . In that case, there are two linear com
binations of states that are not coupled to the initial state
the Hamiltonian and are therefore unexcited or ‘‘dark.’’ T
see this, we introduce a new set of basis states defined

u1&5ug1 ,g2&,

u2&5~ ug1&1ug2&)/&,

u3&5u0&,

u4&5~ ug1 ,g1&1ug2 ,g2&)/&, ~C1!

u5&5~ ug1&2ug2&)/&,

u6&5~ ug1 ,g1&2ug2 ,g2&)/&.

Statesu5& and u6& are then uncoupled from the other fo
states and can be neglected:

^ i uHeffu j &50 ~ for i .4, j <4!. ~C2!

This gives a four-dimensional Hamiltonian in this basis
the remaining states, which is given by

Heff5F 0
&M 8

0
0

&M 8
2d
2M 8
&M 8

0
2M 8
22d

0

0
&M 8

0
0

G ~C3!

in the limit of large N, where M 85ANM. The coupling
between these four states is illustrated in Fig. 14.

To lowest order in perturbation theory, the probabil
amplitude of stateu3&, in which there are two excited atom
is given by

A25
^3uHeffu2&^2uHeffu1&

~e12e3!~e12e2!
, ~C4!
ri-
e
f
-
in

u-

-

e

y

r

where e1 , e2 , and e3 are the unperturbed energies of th
states. Using the matrix elements from Eq.~C3! gives the
probability of there being two excited atoms when both ph
tons pass through the same medium:

P2S5A2
252

M 84

d4 . ~C5!

In contrast, perturbation theory applied to the Hamiltonia
of Eqs.~33! and ~55! gives

P2D5
M 84

d4 ~C6!

for the probability of there being two excited atoms when t
two photons pass through two different media. A comparis
of Eqs.~C5! and~C6! gives the factor of 2 in Eq.~41!. Since
the characteristic equation associated with this eigenva
problem corresponds to a fourth-order polynomial, expli
expressions for the exact eigenvalues and eigenvectors
but are sufficiently lengthy that they have not been includ
here.

For the more general case in whichd1Þd2 , there is no
linear combination of states that are uncoupled in this w
and the dimension of the Hamiltonian cannot be reduced
result. This can be shown by considering a sequence of s
vectors in which each successive vector is generated by
ting the Hamiltonian act on the previous state in the
quence, with the first state taken to be the initial st
ug1 ,g2&, and then subtracting off the projection of that sta
onto each of the preceding states. Ford15d2 , the fifth vec-
tor in the sequence is zero after subtracting its project
onto the previous four states, which shows that two states
uncoupled; the fifth and sixth vectors in the sequence
nonzero ford1Þd2 .

FIG. 14. Four-state system for the case of equal detuningsd1

5d2). The dashed lines represent the coupling of the states by
Hamiltonian. The remaining two states are not coupled to the in
state and can be ignored.
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