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Quantum logic operations based on photon-exchange interactions
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Nonlinear interactions between two photons are required for the construction of optical quantum logic gates,
but those interactions are normally very weak due to the small magnitude of the electric field associated with
a single photon. We note that exchange interactions can have a large effect even when there is no physical
interaction between two particles, and we exploit this property for the construction of optical quantum logic
gates. We show that the probability of there being two virtually-excited atoms in a medium can be a factor of
2 larger when two nonresonant photons propagate through the same medium as compared to the case in which
they propagate through two separate media, in analogy with photon bunching. As a result, the application of
one or more laser pulses will produce a nonlinear phase shift that can be used to conskoRtc@antum
logic gate. This provides an example of a quantum control process in which one photon can control the state
of another photon even when there is no sequence of physical interactions linking the two photons. From a
classical point of view, it is not possible to identify a path for the flow of information or a specific cause for
the outcome of the control proce$§1050-29479)03508-9

PACS numbd(s): 03.67—a

[. INTRODUCTION ing. This difference in the population of the excited atomic
states can be exploited by applying a sequence of laser pulses
Nonlinear optical effects normally require high-intensity to produce phase shifts in the excited states of the atoms.
beams of light containing many photons. Roughly speakingSince the effects of the laser pulses are dependent on the
this is because the electric field associated with a single phgeopulation of the excited states, a different phase shift is
ton is very weak, which causes the physical interaction of abtained when the two photons are in the same medium than
single photon with another particle to be correspondinglyis obtained when they propagate through two separate media,
small. One way to avoid this difficulty is to confine two which corresponds to a nonlinear effect. We have also con-
photons to a small cavity with a higQ-factor, which in-  sidered several other approaches that appear to be less effec-
creases both the magnitude of the electric field and the intetive, as described in one of the appendices, including an ear-
action time. Although nonlinear phase shifts at the two-lier suggestion that relied on collisions with a buffer gas
photon level have been demonstrated in this Waly the rather than laser pulsés].
complexity of the required higk cavities and atomic traps The difficulty in obtaining nonlinear interactions at the
may limit the practical value of these techniques in the contwo-photon level by conventional meafig-9] can be seen
struction of full-scale quantum computel®,3] containing by considering the probability that an off-resonant photon
large numbers of qubits. passing through a medium, such as an atomic vapor cell, will
Even when there is no physical interaction between twdnteract with an atom in the medium. This probability can be
identical particles, the requirement that the wave function benade to be on the order of unity by simply increasing the
symmetric or antisymmetric under their exchange can pronumber of atoms in the medium, but the probability that two
duce an apparent tendency of the particles to either repel grhotons will interact with thesameatom in such a medium
attract each other, the simplest example being that of photowill typically be very small. For example, if the medium
bunching[4,5]. There can be no real attraction or repulsioncontains 18 atoms and the total probability of an interaction
in such a case, since there is no actual force between the tvi® on the order of unity, then the probability that two photons
particles, but in many respects the net effect is much thevill interact with the same atom will be on the order of
same as if there were. Exchange interactions have a majd0~°. Any nonlinear optical process that requires both pho-
impact in many systems, where relatively strong physicatons to interact with the same atom might therefore be ex-
forces would be required to produce any equivalent effectpected to be negligibly small. In contrast, the exchange in-
such as is the case in a neutron star. teraction of interest here involves pairs of atoms and does
The relatively large magnitude of exchange interactionsnot require both photons to interact with the same atom.
suggests that it may be possible to construct optical quantum As an example, a conventional process for the production
logic gates in such a way that the required nonlinear interacef nonlinear phase shift&err effec) is illustrated in Fig. 1.
tion is derived from exchange interactions rather than thdédere two photons with frequencies andw, interact with a
relatively weak physical interactions of the photons. As wethree-level atom. The frequency of photon 2 is relatively
will show below, the probability of there being two virtually- close to the transition frequency between atomic levels 2 and
excited atoms in a medium can be a factor of 2 larger wher3, so that virtual transitions in which photon 2 is absorbed
two off-resonant photons propagate through the same mend then reemitted would produce a phase shift for photons
dium as compared to the case in which they propagatef that frequency. Virtual transitions of that kind can only
through two separate media, in analogy with photon buncheccur if photon 1 has previously been absorbed by the atom,
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FIG. 1. A conventional mechanism for the production of non- _
linear phase shift&err effecd, in which virtual transitions between (b) different media

ic levels|2 ill h hift for ph f
atomic levels|2) and|3) will produce a phase shift for photons o FIG. 3. (@) Two photons passing through an optical medium,

frequencyw,, provided that a photon at frequengy is present to . .
produce a virtual transition from levél) to level|2). Mechanisms f‘#rCh a; tsvn atomlrc tvafnor d(i:e(l?lthhr? z?rr?e rtw?l photc;]ril; ipassmgl ¢
of this kind require both photons to interact with the same atom,h 03% 0 S?paha eh edia. he onlinear p i_sehs bs equa IO
which is unlikely to occur at single-photon levels. the difference in the phases in the two cases, which can be strongly

affected by exchange interactions.

since the atom would otherwise be in its ground state and NQfmit. whereas conventional mechanisms in which both pho-

in level 2 at room temperature. The net result is that thi&ns interact with the same atom give a nonlinear phase shift

presence 0(; r;\)bseﬂce ofzph_?rt]c_m 1 can con:]rol the 1[:)has(,je25h oportional toN. We previously showe@6], however, that
experienced by photon 2. This requires photons 1 an fhe contributions from all Feynman diagrams of this kind

mr:e;act.wtlth tht_e samedatom, W?'Ch IIS veryr/]un.llkely a;ttﬁ[ngl(lg- ancel out and give no net effect unless the system is per-
photon intensilies, and conventional mechanisms Of this KNG, peq in some way, such as by collisions with a buffer gas.

are usually not significant at single-photon |nt¢nS|t|es aS Ryore detailed calculations have subsequently shown that the
re;sult. To the best of our k.nowledge,.all Previous meCha'use of a buffer gas for this purpose is strongly dependent on
nisms(1,7-12 for the production of nonlinear phase shifts at the nature of the collision process, as is discussed in more
low intensities require two photons to interact With the SaM&atail in Appendix B, and that thé random nature of the
atom. CIaSS|caI.arguments based on the flow of mf.ormat'q%ollisions would also introduce undesirable phase noise.
suggest that this must always be the case, as will be dis- ¢ gifficulties associated with the use of collisions can

cussed in more detail pelow. . . . be avoided by using laser pulses to perturb the excited states
We are concern_ed, mste_ad, with Processes in V\_’h'Ch WQf the atoms, and the remainder of this paper will concentrate
phatons interact with two d'ff_eref“ atoms in a _medu@&j, on that approach. Perhaps the simplest way to understand
such as those labeleandB in Fig. 2. In_th|s virtual pro- _this mechanism is to consider the probabilRy that two
cess, atomA absorbs photon 1 and reemits photon 2, Wh'leatoms will be in virtually-excited states at the same time

atom B absorbs photon 2 aer reemits photon 1. Th.is EXWhen two non-resonant photons pass through the same me-
change of the two photons will produce an energy shift tha'dium, as illustrated in Fig.(@). We show below thaP, is a

can be calculated using perturbation theory, for example
which in turn will produce a shift in the overall phase of the factor of 2 larger when both photons pass through the same

system. If the numbeN of atoms in the medium is suffi- medium than is the case when the two photons pass through

’ . - two separate but otherwise identical media, as illustrated in
ciently high that each photon has a probability on the Orde'i:ig. 3(b). This increased probability is due to the fact that

of un.ity of being absorbed by an atom, then the probability tom A may have been excited by photon 1 while atém
amplitude for a process of this kind would also be expecte as excited by photon 2, or atom A may have been excited

to be on the ord_er of unity. Since the numbe_r of pairs Ofby photon 2 while atonB was excited by photon 1, as illus-
atoms is proportional t\", the expected nonlinear phase trated in Fig. 4. The probability amplitudes for these two

. B 2 . .
shift should also be proportional " in the weak coupling processes will constructively interfere provided that

2> T
ok-or< -, (D)
2
photon 1 ———— —» + atomA
[1> __:j::>=:::::
Atom A Atom B photon 2 —=== = + atomB
- FIG. 4. A virtual state in which atom& andB are both excited
Time may have been produced in two ways: Photon 1 may have excited

atom A while photon 2 excited atonB, or photon 1 may have
FIG. 2. An exchange interaction in which atolmabsorbs pho- excited atomB while photon 2 excited atorA. Constructive inter-
ton 1 and reemits photon 2, while atoBhabsorbs photon 2 and ference between these two probability amplitudes can produce a
reemits photon 1. A mechanism of this kind is expected to be relafactor of 2 enhancement in the probability of there being two ex-
tively strong at single-photon intensities because the two photonsited atoms, in analogy with the Hanbury-Brown and Twiss experi-
are not required to interact with the same atom. ment.
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wheredk is the difference in th& vectors of the two photons i ) (@)
and ¢r is the difference in the positions of the two atoms. |
This is the same condition that is required for the observation | h
of the Hanbury-Brown and Twiss effegbhoton bunching
and Fig. 4 is analogous to that effect if atoysand B are (b)
viewed as two ‘“detectors” placed in front of a well- o I A
collimated source. L L L
The factor of 2 difference ifP, can be exploited by ap- ‘ T z

plying a laser pU|Se.to producg a phase Sh?ﬂ in the excited FIG. 5. (a) An atomic medium whose densiy is a slowly
states of the atoms in the medium. As mentioned above, tr'\(Zauying function of positionz and sufficiently thin thatskéz

eﬁe_cts of the_laser pulse will dgpend on the popl_JIati(_)n of the< /2, wheredz is the thickness(b) A periodic medium satisfying
excited atomic states and a different phase shift will thereg,o conditionskAz=2p, whereAz is the periodicity ang is an

fore be produced when the two photons propagate togethgfieger. in either case, there is constructive interference between the
through the same medium than when they propagate througfopability amplitudes of Fig. 4.
two different media. This corresponds to a nonlinear phase

shift whose origin ultimately derives from the exchange in-Here the thin structure of Fig(& is repeated at intervalsz

teraction of Fig. 4. A suitable sequence of such laser pulseg). \\hich Azsk=2p, wherep is an integer. This approach
can give a nonlinear phase shift of which can then be used 5 somewhat similar to the commonly-used technique of
in_an interferometer arrangemgr[tl3] to produce a qguasiphase matchiid5] and would allow moderate values
ControIIed-_NOT(xoR)_quantum logic gate. __of L even for relatively large differences in the frequencies of
We begin by defining the system of interest and descrlbfhe two photons. For simplicity, we will assume the geom-

ing the corresponding state vector and Hamiltonian. By e of Fig. 5a) throughout this paper, but the results can be
glecting scattering and dispersion, which are both small fo?eadily extended to the periodic case.

large photon detunings, and by making the adiabatic approxi- rpe effects of interest involve two-level atoms, as in Fig.

ma_tt;or:j, éhe q“a”t;m_‘ state ?f the egtire iystem call(n be db%_’ but it will be necessary to vary the energy of the upper
scribed by a set of six complex numbers that are taken to bg,mic evels in a time-dependent manner by applying exter-
the elements of an effective six-dimensional state vector. Thg, fields to the system. This could be done in a variety of
propagation of the photons through the medium and theif . s 1t o be specific, we will assume that a laser beam is

|nt|er.act|on .W'(tjh the Ifiserl pylses c,ian thegl be d:ftermmeq dszed to couple the second atomic level to a third atomic state
solving a six-dimensional eigenvalue problem. After consid-a¢ js of no other interest, as illustrated in Fig. 6. Here
ering the simplest case of a single laser pulse, the choice g

. ; ' hotons 1 and 2 are slightly off resonance with the atomic
an optimal sequence of laser pulses is described. We Co,pgitions between levels 1 and 2, while the laser beam is
ufficiently far from resonance with the atomic transition be-
ween levels 2 and 3 that no significant population transfer
into level 3 occurs. In that case, the net effect of the laser
beam is to shift the energy of level 2 by an amount that can

%e calculated using perturbation theory or other methads
Stark shifi. The lack of population in level 3 allows us to
use a two-level model for the atoms in which the enesgy
of level 2 is a function of time.
The incident photons are assumed to propagate along the
Il. STATE VECTOR AND HAMILTONIAN z direction and are represented by multimode Fock states
(not merely weak coherent statesrresponding to Gaussian
The optical medium will be assumed to be an atomic vawave packets. The temporal widiy of the wave packets is
por cell for simplicity, although the basic results should ap-assumed to be much longer than the transit tinhethrough
ply equally well to solid-state materials. Equati@i) can be  the medium, so that the magnitude of the electric field of the
satisfied for a medium with a moderate thicknés# the

clude with a discussion of the nonclassical nature of thes
results and their inconsistency with classical concepts su

as the flow of information and determinism. Appendix A
considers the limitations imposed by symmetry consider
ations while Appendix B discusses a number of less effectiv
approaches, including the use of collisions with a buffer ga
or Berry’s geometric phadd4]. Appendix C presents a sim-

plified derivation for the case of equal detunings.

difference in frequencies of the two incident photons is much _— —_— 3>

less than their average frequency and they propagate in the

same direction. For example,; — w, may be on the order of

a few GHz in a typical experiment, which would allow the o,

thickness of the vapor cell to be on the order of 1 cm. In

order to minimize reflections from the surface of the me- 12>
dium, it will be assumed that the density of atoms in the ©4

medium is slowly varying compared to the wavelength of the
photons, as illustrated in Fig.(&. The total numbeiN of
atoms in the medium will be assumed to be largel('9).

The thickness of the atomic medium can be substantially FiG. 6. The application of a laser pulse that is detuned from the
increased while still satisfying Eq1) by using a periodic transition between levels 2 and 3, which can be used to produce a
density of atoms as illustrated in Fig(§, where it is as-  Stark shift in the energy of level 2 and a corresponding phase shift
sumed that the photons are propagating in zhdirection.  in that state.

Atom A Atom B
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photons is essentially uniform throughout the medium. The 1

effects of interest require a multimode analysis, since the |2, 72) = — (a})?|0).

nonlinear phase shift depends on the expectation value of the V2

product of the intensities of the two photons, which would

vanish for plane-wave single photons in free space. The inAll of the atoms are assumed to be in their ground state
cident photons can be represented by two single-photon crénitially, so that the quantum state of the system is initially

ation operatorsa andaj, defined by given by

F_ +

a, =2, fi(k)a,,
=3 e i) =l 3T . @

(2

T_ t where| ;) represents atornin its ground state.
=2, fa(k)ay. | L . . oo

a2 ; 2(k)a It will be convenient to write the Hamiltoniakl as the

sum of two parts:
Here the operatoaﬂ: creates a plane-wave photfh6] with
wave vectork, andf,(k) andf,(k) are the Fourier coeffi-

cients of the Gaussian wave packets at the initial tigie H=Ho+Hin. (8)
These coefficients are chosen in such a way that the inverse
Fourier transforms are given by H, represents the energies of the field and the atoms in the
absence of any interaction and is given as usual by
Gl(Z)E 1 eik'ffl(k)d3k:gei;lze*(Z*ZO)Z/ZCZTE,
N2 t
3 Ho= ; (afax+ 1Dtw+ X, 12ep05;, 9
I
_ 1 ik 3L o oikozp— (2— 20)212¢272 " .
Ga(2)= n e fy(k)d k=ge e v P, where the atoms are labeled with index, is the energy of

the excited stat@evel 2) of an atom above its ground state,
and o, is one of the Pauli spin matrices in a two-

where g is a constant and, is the initial location of the € | : SN
center of the wave packets, which is taken to be far from théimensional Hilbert space consisting of the ground and ex-
cited states of atom (This does not imply any spin interac-

location of the atoms so that there is initially no interaction. ) i 2 /
ns) The interaction HamiltoniarH;,, in the Coulomb

Both wave packets have the same amplitude and width butO nd in the standard dinol roximafits is given
different values for their centrd vectors,k; andk,, which gauge a © standa pole approxima sgive

) . ; b
are related to the central frequencies of their Fourier spectray

by w;=ck; andw,=ck,. Both the medium and the photon

wave packets are assumed to have no significant spatial

variation in the transverse direction, so that the right-hand Hin= —qu ri- E(Ry).
side of Eqg.(3) involves only thez coordinate. The main

results of this paper depend only on the assumption that the ) ) )
modulus ofG,(z) andG,(z) is a slowly varying function of Here g is the charge of the electron amd is the relative

zand the exact shape of the wave packets is not essentialcoordinate of the electron in atomwhere we are assuming
The initial state of the field is then given by hydrogenlike atomic state€(R;) is the second-quantized

electric field operatof16,17] at the locatiorR; of the center
ot of mass of aton, which is given in the Schainger picture
| v1,72)=a125/0), 4 [5] and MKSA units by

(10

where |0) is the vacuum. We will also consider the single-
photon states defined by ( hck

1/2
i alk-Ry _ % o—ik-Ryt
E(R) |kZJ 2sov) [Aje™*Ra,—AFe™®Raf]. (11)

|71>:a1|0>a

(5) Here ¢, is the permittivity of free spacey is the volume
|72>=a£|0>, used for periodic boundary conditions, andrepresents the
two orthogonal polarization states of a photon. Except for the
as well as the following states containing two identical pho-discussion regarding symmetry considerations in Appendix
tons: A, both photons will be assumed to have the same state of
polarization and the polarization indices will be dropped,
1 since two photons of orthogonal polarizations cannot un-
|y, y1)=—(al)?|0), dergo an exchange interaction as shown in Figs. 2 and 4 by
V2 means of dipole transitions.

(6)
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ll. SCHRO DINGER’'S EQUATION &R, 1)=(0[E(R; ,1)| 72). (14)
AND THE CHOICE OF BASIS VECTORS

. Maki f Eqs(2), (5), and(11) all Ei(Rjt)tob
The photon wave packets are not eigenstatekl pfind W;’:ilttlenng;sse of Eqs(2), (5), and(11) allows £(R;.t) to be

they will propagate at the speed of light in the absence of any

interactions. As a result, it is much more convenient to work — 12
in the interaction pictur¢5], where the photon state vectors . 1 iHo(t—to)/i
remain constant in the absence of any interaction and thél(Ri D= 2e,V (Ole

electric field operator becomes time dependent. &thro

inger’'s equation then involves only the interaction Hamil- iK-Rin _ a—ik-RiaT1a—iHo(t—to)/h
tonianH' (t): ><§k: [ Tay—e a e Mot
dv +
iﬁ%:H’(t)l\p% (12) XEp: f1(p)ay|0). (15

) ) _ Here we have approximated the tefirok as a constant over
where H'(t) =exliHo(t~to)/iJHin X ~iHo(t~tg)/] aS  the narrow bandwidth of the photons, which allows it to be
usual.H'(t) will be found to be a slowly-varying function of taken outside of the sum. The commutation relations elimi-
the adiabatic approximatiofl8] to be used to reduce the can pe expressed as an integral that is proportional to the

solution of _the Schrdinger equation to an elgen\_/alue prob- densityp(?l) of photon states, antH,/% reduces tow,
lem. The eigenvectors can be computed numerically or ana-

lytically, but in either case we will need the matrix elements:Ckl when acting on the eigenstates to the right. Equation
L i . (15) then reduces to

of H'(t) in a suitable basis.

The postulates of quantum mechanics allow us to choose —
any set of orthonormal basis vectors in Hilbert spéeeck N w1 iTk-R;—ck(t—tg)] 3
space for the photonhsThe nonlinear phase shifts of interest &R O=ip(ky) 2gqV € fa(kdk.
correspond to a coherent process in which the photons propa- (16
gate out of the medium in the same state in which they i . )
entered it, aside from an overall phase factor. As a result, £omparison with Eq(3) shows that, aside from a constant,
will be convenient to choose a set of basis vectors in FockliS expression is equal to the Gaussian functiBn(Z;
space that includes the original statg ,y,) as well as the —C(t—to)). For simplicity, we take the center of the me-
states|y;) and|y,) that can arise as a result of virtual ab- d_|um to be az=0 and evaluate the matrix eIeme.n.ts there,.
sorption of the photons while they are in the medium. SinceSince the medium has been assumed to be sufficiently thin
we need a complete set of orthonormal basis vectors, wthat the modulus of the field is essentially uniform over that
define a set of modified plane-wave creation operabgrs distance[20]. We also choosg, andt, in such a way that
that are constructed in such a way that they generate stati€ Photon wave packets are centered on the medium at time
that are orthogonal to those generatedabyanda}: t=0. In that case, these matrix elements reduce to

— aiogta- 220 —iwgt
b} =cola)— 1 (ka3 (k)al]. (13 flt)=g'e e TER=E(he T, -
i 12492 i
Herec, is a normalization constant and the last two terms E(t)=g'e wte =g (t)e w2,

rovide the desired orthogonality. Bdth; ,a}] and
P 9 Y. Bl a;] {rilva) whereg’ is a constant andy(t) is a real function that cor-

trsesponds to the slowly varying envelope of the Gaussian
vave packet at the location of the atoms. It should be noted

which will be assumed to be the case, and the set of oper he f dof th kets is still refl d
torsal, a}, andb; obey the usual commutation relations '@t the frequency spread of the wave packets Is still reflecte

[16,19 in that limit. This allows us to choose a set of basis'" the time dependence &j(t) but does not appear in the

vectors that consists of all of the states that are generated x_ponentlal phase factor, which W'.” be important n consid-
¥ ring the effects of subsequent unitary transformations.

T t . e
ap, ay, and then, fit the initial tlmet'o. By defln'ltlon, th_ese . The matrix elements involving the modified plane-wave
basis vectors are |ndeper_1dent O.f time in the interaction P'Ctates can be evaluated in the same way, with the result that
ture whereas, in the Schdimger picture, they correspond to

freely-propagating wave packets that do not include the ef-
fects of interactions. [{OIE(O.t) [k)[<[(O[ECO0)[¥1) (18)

The relevant matrix elements can now be calculated i ) . .
this basis. For example, we will need the matrix element or times at which the wave packets overlap the location of

&(R; 1) and &(R; ,t) of the electric field operator defined the medium. Herék)=b}|0) is one of the modified plane-
by wave basis states. This reflects the fact that the fields of
photon 1 and photon 2 are concentrated in that region,
whereas the plane-wave states are not localized. We there-
E1(R; 1) =(0|E(R; ,t)] y1), fore make the approximation that the matrix elements in-
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volving the plane-wave states can be neglected and that there (¢ _ _

is no coupling into those modes. This corresponds to theiﬁaC(Vl,i):Me*"sztmc(n,ysz Me'*1""¢c(0}i,])
neglect of scattering and dispersion, which are expected to be J=!

small in the limit of large detunings, and it also neglects

small radiative corrections such as the Lamb dHifi]. The + 2 Me'1ic(0,j,i)
validity of this approximation when using a sequence of laser =
pulses will be discussed in Sec. VI. +v2Me ey, ),

The photon detunings, defined as=#w;—e, and &,
=hw,—ex, Will be assumed to be much smaller in magni-
tude thanw; or w,. The rotating wave approximatiofen- ifi 7 C(y2,0) = Me 1c(yy,y,)+ >, Me'%2c(0ji,])
ergy conservationthen ensures that the absorption of a pho- J<i
ton must be accompanied by the excitation of an afb.

Having neglected any coupling into the plane-wave states, +2 Me'%2Utc(0,j,i)
the only states of the field that can occur when both photons =
propagate in the same medium, as in Fi¢p)3are linear +VIMe 1020 (o ),

combinations of the statésy,v5), | v1), [v2), O | v1,71),

and|y,,y,). These six basis vectors span the occupied re- d

gion of Fock space for this system and the state of the field jz —c(0ji,j)=Me %1ic(y, i)+ Me 1%2Vc(y, i)

can be specified by its probability amplitudes in this basis, dt

which form the elements of a six-dimensional state vector.
If the photons are linearly polarized along theirection,

for example, then the atomic part of the relevant matrix ele- (20

ment is given by

+Me Ptic(y, i)+ Me 12hc(y, i),

d .
ih gr (1, 71) =2 VaMeie(yy i),
(@2lH' (D] @1y = — (@] e T0 e Holt =t R g ) I

— dgeieatt—to)/h (19) d ,
’ i 5 C(v2,72)= 2 VIME e ().
I

where d, is the magnitude of the dipole moment between
these two states. For the case of degenerate hydrogenli
atomic states,g,;) corresponds to the linear combination of
states that is excited by the absorption of a linearly polarized
photon, as discussed in more detail in Appendix A.

Since there are only two incident photons, there can be
most two excited atoms, which will be labelédndj with
i>] to avoid counting the same state twice. The total num

ereM is a brief notation for the basic matrix element de-
ined by

M (t)=dg&(t) (21)

alnd it will be a real number for an appropriate choice of the
relative phase between the two atomic states. The factors of
V2 that appear in these equations are due to stimulated emis-

ber of atomic states is thus on the order. The basis o into states containing two photons or absorption from
vectors for the combined system of electromagnetic field angh, )e states.

atoms consist of the tensor products of the various atomic Because the atoms are all subjected to the same field, the
states with the six field states described above. In that baSiﬁnllowing probability amplitudes will all be equal: ’

we definec(y4,7y,) to be the probability amplitude to have
both of the original photons and no excited atoms. The prob-
ability amplitude for atomi to be excited with photon 1
remaining will be denoted bg(yq,i), while c(y,,i) will

c(yr,i)=c(yp,i'),

denote the probability amplitude for atoimto be excited C(yz,i)=C(y2,i"), (22)
with photon 2 remaining. The probability amplitude for at- o o
omsi andj to be excited with no photons remaining will be c(0i,j)=c(0J",j")
denotedc(0,i,j), with i>]j. The probability amplitudes to S, ., .
have two identical photons and no excited atoms will befs?rrnzllifi\(/;ilut?ysir?gétljljcjihgrf# éngéSt ;lk\),\évﬁaﬁfg(sz-o) to be
denoted byc(y1,y1) andc(yz,v2). '
The time dependence of these probability amplitudes can .
be found from the Schibnger equation, Eq(12), and the c(yp)=VNe(ys,i),
corresponding matrix elements Bif (t):
c(y2)=VNc(y2,i), (23)
d . -
ifi g C(y1,72)= 2 Me?c(y,,i) ¢(0)=VN(N—=1)/2¢(0ji, ).
i
These new variables have been chosen in such a way that the
+E Meio1ie(y, i) squared modulus o€(y,) gives the total probability that
i

photon 1 is present and photon 2 has been absorbed, regard-



PRA 60 QUANTUM LOGIC OPERATIONS BASED ON PHOTON. .. 923

less of which atom is excited, with a similar role fofvy,). o d )

The squared modulus @f0) similarly gives the total prob- it ac( Y1, Y1) = V2NMeé o1t Y1),
ability of there being two excited atoms and no photons.

With this change of variables, ER0) becomes

d . ) d )
it g C(y1.v2)= INME %2 ic( )+ NMEtc(y,), it g1 C(¥2,72)= V2NME 2 (),

d )
i7i —c(y;)=NMe %2ic(y, v,

dt which involves a total of six complex variables.

il An inspection of Eq(24) reveals that it is equivalent to
+V2(N—-1)Me'*1""¢c(0) Schralinger’'s equation for a six-dimensional vector whose
n \/mMe,iglt,ﬁc(yl,yl), components are taken to be

d

i — —i6qt/h
'ﬁdtc(Yz)—\/ﬁMe re(y1,v2) (1, 72)
. c
+\2(N—1)Me' 2 0) ng
. = , 25
+2NMe 22c(y,, ), (24) Ve c(0) 25
c(y1,71)
d _ c(72,72)
i gic0)= V2(N—1)Me e y,)
+2(N=1)Me 1%tc(y,), provided that the Hamiltonian is chosen to be
r 0 \/Nei(szt \/Nei(slt 0 0 0 =
\/ﬁe—iﬁzt 0 0 2(N_l)ei51t \/mefiﬁlt 0
Her=M YNetor 0 0 V2(N-1)e'?! 0 V2Ne 1%t -
e 0 V2(N-1e 't J2(N-1)e "% 0 0 0 . (29
0 V2Ne“u! 0 0 0 0
| O 0 V2Ne %! 0 0 0o |

where7 has been omitted to make the notation more com-and all of the other linear combinations are unexcited or
pact. Since the six components |af). completely deter- “dark” and can be ignored. Similar comments can be made
mine the state of the system and their squared moduli givevith regard to the other components|@f)e«, Which corre-
the total probabilities of the various photon states, we refer t@pond to the probability amplitudes of the only linear com-
| ) e @s the effective state vector for the system. binations of states that can evolve from the initial state under
The physical meaning of the effective state vector can béhe action of the Hamiltonian. The Hamiltonian of Eg6)
understood by considering the state of the full system thatould be derived in a somewhat simpler way by arbitrarily
corresponds to each of its elements. For example, the secou@fining these six state vectors and showing that the Hamil-

component of ¢) ¢ corresponds to the state tonian does not couple them to any other states, after which
the matrix elements in Eq26) could be written down by
inspection.

The exponential factors in Equatid®6) are rapidly vary-
27) ing functions of time. This time variation can be eliminated
by making a unitary transformation given by

|\P(71)>:\/iﬁzi |71:i>,

where each atom has an equal probability amplitude to be
excited. Although there are N other linear combinations of
the stategy;,i), the Hamiltonian couples the initial state
only to the particular linear combination shown in Eg7) where the matrixh, is taken to be

|’/’,>eff: eiihot|’r/’>effv (29)
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0 O 0 0 0 0
0 -6, O 0 0 0
N 0 0 -4 0 0 0 -
°lo o 0 —(8,+6,) 0 0 9
0 O 0 0 (81— 6) 0
|0 0 0 0 0 (82— 61) |
After this transformation, the effective state vector obeys the equation
H d ! ! !
ih ﬁw Det=Herl ¥ Vet (30
where the effective Hamiltonian now has the form
T 0 YNM YNM 0 0 0
JNM -5, 0 V2(N-1)M  2NM 0
, | VNM 0 — 61 J2(N—-1)M 0 J2NM 31
el 0 J2(N-1)M V2(N=1)M  —(8,+5,) 0 0
0 V2NM 0 0 (01— 62) 0
e 0 V2NM 0 0 (6= 61)
|
Equations(30) and (31) determine the time evolution of the 0 JNM 0
system for the case in which both photons propagate in the Hy o= JNM -6, JNM | 33)

same medium, as in Fig(&®, and they will form the basis 0 NM  (8,-6

for most of the remaining analysis. For simplicity, the primes (82— 81)

in Egs.(30) and(31) will be omitted below. For the case in which only photon 2 is incident on a medium,
For comparison purposes, we will also need to calculat¢he corresponding quantities are

the properties of the system when each photon propagates in

a separate medium, as in FigbR In this case, we have two c"(v2)
independent systems whose time evolution can be calculated |)err=| €"(0) |, (34
separately, after which the state vector for the overall system c"(yq)
will be equal to the tensor product of the two individual state
vectors. For the case in which only photon 1 is incident on a 0 JNM 0
medium, an analysis similar to that presented above gives an Hy o= JNM =6, JNM |, (35)
effective state vector with the following components: 0 JNM  (8,—65)
¢’ (v1) IV. TWO-PHOTON DRESSED STATES
|1//1>eff5( c’(0) ) (32 The photon wave packets have been assumed to be far
c'(y2) from the medium at the initial timg, so that their interaction

with the atoms will be exponentially small at that time. The
initial state vectol i) is then given in the above basis by

Herec'(y,) is the total probability amplitude that photon 1 1
remains with no excited atoms, (0) represents the prob-

ability amplitude that the incident photon has been absorbed

and there is one excited atom, and(y,) represents the o) =
probability amplitude that photon 1 has been absorbed and

another photon of frequenay, has been reemitted. The ef-

fective Hamiltonian for this system is

(36)

O OO oo
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which is an eigenstate dfi o with M(t)=0. It will be as- TABLE I. Numerical results of an eigenvector calculation of the
sumed that the Gaussian wave packets are sufficiently brod@o-photon dressed state for the case in whigh —2, §,=3, N
that &(t) is slowly varying on the time scale set by the =10 and \NM=1/2.

diagonal terms oHg;. In that case, the adiabatic approxi-

mation[18] is valid and the state vector will slowly evolve  ¢(71,72) 0.959 141 163 220 186 939 59
into the corresponding instantaneous eigenstaté.gf If no (1) 0.154292855116 767 13553
laser pulses are applied to the medium, the state vector will ¢(72) —0.227 657784 572637 029 94
evolve back intg ) as the wave packets propagate away ¢(0) —0.053939771 93622215801
from the medium, since we have neglected scattering and ¢(v1,71) 0.021 988 495 33784590576
dispersion. c(y2,v2) 0.031 951276598 403 394 29
We will primarily be interested in values afNM/ & that Es —0.038 245 115 666 580 845 33
e lrgecroug o proucea peruhed St veOON) 1 o715 s2soszssiz
y : 0 geaslo .. g —0.234 534 582 685 425 689 06
approach any level crossings, which would be nonadiabatic.

. . . . c'(v2) 0.022900 791 304 068 227 03

Values of\\NM/§ of this magnitude can be readily achieved
. . o . . E, —0.120665473 33151823461

in an atomic vapor cell under conditions in which the scat-
tering and absorption are relatively small. This strongly per- ¢”(y,) 0.986 558 239 421 311 819 62
turbed eigenstate can be thought of as a two-photon dressed ¢”(0) 0.162 624 965 900 796 428 55
state[21]. ¢"(v1) 0.015998 771 693 051 438 80
Since the nonlinear interaction between two single pho- g, 0.082 420 357 664 940 187 49

tons is usually negligible, it might be expected that two pho-
tons would propagate independently through a medium and Pis 0.075634 352 016 604 905 31
that the two-photon dressed state may be nothing more than Pip 0.078543851 01312782591
fche tenﬁor prodl(cht of two imgle—photon (_jressefd ﬁta:(gsa T;]at P)s 0.002 909 498 996 531 659 49
is not the case due to exchange interactions of the kind that , - 0.001 454 749 498 267 077 32

are illustrated in Figs. 2 and 4. In particular, Fig. 4 suggests
that there should be a factor of 2 increase in the probability P,s/P,p 1.999 999 999 998 284 816 99
of there being two virtually-excited atoms when two photons N
propagate in the same medium as compared to the case in< e)s
which they propagate through two separate media. In order Ne)o
to quantitatively investigate this possibility, we defifgs as E,+E, —0.038245115 666578047 11
the probability that there is exactly one excited atom in the
medium for the case in which both photons propagate in the
same medium, as in Fig.(&, and we defineP,5 as the results of a numerical calculation of the relevant eigenvectors
probability that there are two excited atoms under the sami the limit of largeN are summarized in Table | for the case
conditions. We also definB,p and P,y as the correspond- in which 8,=—2, 5,=3, and/NM=1/2. (We will specify
ing probabilities when the two photons propagate in differentimes in units of nanoseconds and energies in unit$ of
media, as in Fig. ®). In terms of the effective probability divided by 1 ns, which puts the various plots and numerical
amplitudes defined above, these probabilities are given by results on a scale that is typical of experiments of this Kind.
5 5 The results of Table | were calculated numerically to an ac-
Pis=lc(y)|*+]c(v2)]% (37 curacy of 40 significant digits but only the first 20 digits are
) shown in the table. Rather than simply taking the limit of
Pas=|c(0)[%, (38 JargeN by replacingyN—1 by yN in the Hamiltonians, the
numerical calculations were performed using a characteristi-
cally large value folN and a correspondingly small value of
M. The specific results shown in Table | were obtained using
P,o=|c’(0)|?c"(0)|2. (40) N_= 102 andM =0.5x 108, but equivalent results were ob-
tained for other values of these parameters. The advantage of
Constructive interference between the two processes shovihis approach is that it includes the usual mechanisms for
in Fig. 4 then suggests that nonlinear optics in which both photons interact with the
same atom, the magnitude of which will be seen to be a
factor of 1N smaller than the exchange interactions of inter-
est here.
It can be seen from Table | th&,5/P,p is equal to 2, as
should hold, at least to lowest order in perturbation theory. expected, to a precision of 12 significant digits. The discrep-
From the adiabatic approximation, these probability am-ancy in the twelfth decimal place is approximately equal to
plitudes can be found by calculating the instantaneous eigeriZN, which reflects the contribution from conventional ef-
vectors ofHq;, Hy e, @ndH, o that correspond to the per- fects in which both photons do interact with the same atom.
turbed form of the initial state vectors. For moderate values-or example, the absorption of photon 1 will depopulate the
of VNM/ &, the appropriate eigenvector in each case will beground state of one of the atoms, which in turn will prevent
the one whose energy is nearest the initial value of zero. Ththe virtual absorption and reemission of photon 2 by that

0.081 453 350 009 668 224 29
0.081 453 350 009 661 980 56

P1p=[c’(0)[?(1—[c"(0)[)+[c"(0)[*(1—c’ (0)[?),
(39

PZS _

Poo (41
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atom and thus give a conventional nonlinear phase shift Although the numerical calculations leave little doubt that
(Kerr effec). These effects are of no interest here but they ddP,5/P,5=2 in the limit of largeN, we have also obtained
illustrate the relatively small magnitude of conventional non-analytic solutions for the eigenvectors and related probabili-
linear interactions between individual photons. The eigenties using Mathematic22]. The resulting expressions are
value calculations also showed thRys is proportional toN?  sufficiently complex and lengthy that they are of little prac-
in the weak coupling limit ({NM/é«1), asexpected. tical use and have not been included here. These analytic

The fact thatP,s/P,p =2 to such a high degree of accu- solutions also satisfy Eq¢41) and(43) in the limit of large
racy may be somewhat surprising, since the interference d¥, at least to the extent that those results are obtained when
probability amplitudes illustrated in Fig. 4 corresponds onlyany set of numerical values of the parameters are inserted
to the lowest-order Feynman diagram and it might thereforénto the analytic expressions; we have not yet succeeded in
have been expected that E@l) may only hold to lowest simplifying the analytic expressions to obtain E¢1) and
order in perturbation theory. Our numerical results suggest43) directly. The factor of 2 can be easily derived for the
that Eq.(41) is satisfied exactly for all values ofNM/5in  case of equal detuning®{= &), as described in Appendix
the limit of largeN, at least up to the first level crossing. The C.
fact thatP,s# P,p shows that there is an effective interac-
tion between the two photons and that they do not propagate
independently through the medium.

An examination of Table | also shows that there are some The factor of 2 increase in the probability of there being
properties of the system that are the same whether the twevo virtually-excited atoms can be exploited in a variety of
photons propagate in the same medium or two different meways to produce a nonlinear phase shift. This section de-
dia. LetEg be the energy of the two-photon dressed state thagcribes the effects of a single laser pulse, which is the sim-
occurs when both photons propagate through the same mplest approach, while the next section considers the use of
dium, and letE, andE, be the energies of the single-photon sequences of laser pulses to produce nonlinear phase shifts of
dressed states that occur when each photon propagates irakbitrary magnitude with minimal loss. A number of less
different medium. The numerical eigenvalue calculationseffective approaches are described in Appendix B, including
show thatEs=E;+E, to within a precision of M, which  collisions with a buffer gag6], Berry’'s geometric phase
demonstrates that the eigenstates of the total system have tfiet], and avoided level crossing21].
same energy in both cases in the limit of laigdf that were It will be assumed for now that a single laser pulse is
not the case, there would be a nonlinear phase shift even iapplied to the medium when the photon wave packets are
the absence of any laser pulses or other perturbations, whiaentered on it. The electric field of the laser pulse will pro-
is not allowed by the symmetry arguments of Appendix A.duce a change in the energy of level 2 of any excited atoms
The higher-energy eigenstatéhose that do not correspond via the ac Stark shift23] while giving a negligible transfer
to | o)) also have the same energies in both cases. of population into level 3, as illustrated in Fig. 6. The dura-

A similar situation can also be observed if we definetion of the laser pulse is assumed to be much shorter than the
(Ng)s and({N)p to be the mean number of excited atoms forrelevant time scales over which the population of the quan-
the case in which the photons propagate in the same or difum states of the system can change in accordance with the

V. INDIVIDUAL LASER PULSES

ferent media: Schralinger equation an#li.;. In that case, the net effect of
the laser pulse will be to produce an impulsive phase shift
(Ng)s=P15+2P,g, A @ in the excited states of the atoms that is given by
(Ne)p=P1p+2Psp. (42)
Acpe=—J AE(t)dt/%, (45

The numerical results of Table | show that

(Ne)s=(Ng)p (43  whereAE(t) is the change in the energy of the excited states
that is produced by the application of the field. The intensity
in the limit of large N, which demonstrates that the meanand duration of the laser pulse can be adjusted to give any
number of excited states is the same in the two cases; this #sired value ofA ¢, which will be chosen to ber/2 for
also required by the symmetry arguments of Appendix A.NOW.
Equations(41)—(43) can be combined to obtain the differ-  If the state vectory) had the form shown in Eq25)

ence in the probabilities of having exactly one excited atomimmediately before the laser pulse, then immediately after
the laser pulse the system will be in a new s{até) given

P1s—Pip=—Pas, (44) by
which shows that the probability of a single-excited-atom c(y1,72)
state is reduced when both photons propagate through the e™2¢(y,)
same medium. This result can be understGodhe context 72 ,)
of perturbation theonyfrom the fact that the generation of a |y’ y= o ’Tc(O)Z (46)
two-excited-atom state must come at the expense of deplet-
ing the probability amplitudes for the one-excited-atom c(y1,71)

states. c(¥2,72)
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The second and third components of the state vector correstates was simply twice the contribution from a single ex-
spond to a single excited atom and are subjected #d2a  cited atom, as is the case in the limit of weak laser pulses
phase shift, while the fourth component corresponds to tw@A ¢.<1); the net phase shift would then depend only on the
excited atoms and experiences a total phase shift. of mean number of excited atoms, which is the same in both
The new state vectdis') can be conveniently expressed cases from Eq43). This dependence on the overall phase of
as a linear combination of the original state vector and anthe two-excited-atom state can be viewed as a nonlocal prop-

other vector i, ) that is orthogonal tdy): erty of the system, as is discussed in more detail in Sec. VII.
NN —ral®
[y =re'?l)+ [y, (47) VI. SEQUENCES OF LASER PULSES
wherer andg are both real. The coefficient of the) term is The construction of quantum logic gates will require a
given by the projection ofy’) onto |): nonlinear phase shift of,, which cannot be produced by a

single laser pulse from E@53). The probability of generat-

io__ I\ — ! 2 2
re'?=(yly)=r'+i(c(r)|*+le(y2)[). (48) ing the orthogonal states, ) in Eq. (47) must also be mini-

Here mized, since it corresponds to a loss mechanism in which the
system makes a transition out of the basis of states that rep-
r'=[c(y1,v2)?—1c(0)|?+|c(y1, y) |2+ |c( 2, ¥2)|? resent the qubits in a quantum computer. For a single laser

pulse, the probability of such a transition is on the order of

P, and is larger than ¢,,,,. Both of these difficulties can be
is a real number that includes the contributions from theavo|ded by using an appropriate sequence of laser pu|ses
terms that were unaffected by the laser pulse as well as thgesigned to give a phase shift efwith |, }=0. The opti-
contribution from the two-excited-atom state. For SlmpIICIty, mal design of pu|se sequences of this kind is a nonlinear
we will consider the weak coupling limit in which' is ap-  gptimization problem that is still under investigation. Here
proximately equal to unity and the other terms, including we will describe two different approaches, one based on a
are much smaller in comparison. Expanding the left-handequence of short laser pulses as described above and a sec-

side of Eq.(48) to first order[24] in ¢ then gives ond, more efficient approach that makes use of longer pulses
_ 2 2 with narrow bandwidths.
e=[c(yD[*+|c(y2)|*=Py. (50 In the first approach, a sequence mf short pulses is

Equation(50) applies to the case in which both photons are‘E)lpIOIiGd athtimestlj with amplitudesa(jj. Th; tim(faf.irllter\l/als I
propagating in the same medium, while a similar result ap- etween the pulses were assumed to be sufficiently sma

plies when the photons are propagating in two different meSOmpared tor, that &(t) was approximately constant

dia. so that throughout the pulse sequence. The valuapivas chosen
’ to be sufficiently large(~10) that there were more than
¢s=Pis, enough degrees of freedom to cancel all of the components
of |, ). A Monte Carlo approach was used in which a set of
©p=Pip, (51)  initial values for thet; anda; were chosen at random and

used as the starting point for a numerical algorithm that var-
where ¢s and ¢, are the overall phase shifts in the two jed thet; anda; to minimize the ratio of the losésquared
cases. The nonlinear phase shife,, is then equal to the modulus of|, )) divided by the net nonlinear phase shift,

difference of the two where the time evolution of the Sclinger equation was
calculated numerically. A random set of initial values may
Aenon=P1s—Pip (52 only lead to a local minimum, but the process was repeated

many times until the optimal solution was obtained. Most of

and Eq.(44) gives the randomly-chosen starting points lead to a solution with

__ |, )=0 but the corresponding values Afp,,, varied con-
A¢nor=—Pas 3 siderably.
in the limit of weak coupling. During a laser pulse, the system will be excited into a

Equation(53) shows that the nonlinear phase shift is di- virtual state in which the atom is in level 3 and one or both
rectly proportional to the probability that two atoms will be Of the photons have been absorbed, as illustrated in Fig. 6.
virtually excited at the same time, which is a factor of 2 The detuning of _thls virtual state will be qm‘erent for_ states
larger when the two photons propagate in the same mediuf¥1) @1d|¥2), which causes the phase shift for,) to differ
due to the exchange interaction shown in Fig. 4. Based offom that of|y,) by a factorf that could be controlled by -
the eigenvalue calculations of the preceding section, the nordjusting the frequency of the laser pulse. We included this
linear phase shift is thus expected to be proportion&lzen ~ POssibility in the analysis by taking the phase shifts to be
the weak coupling limit, which makes it much larger than thediven by
phase shift from conventional mechanisms such as that

shown in Fig. 1. The nonlinearity depends on the fact that the ¢1=Ae,
two-excited-atom states undergo a phase shift,aivhich is
equivalent to a minus sign, and contribute tarather than to p2=FApe, (54)

the phase shift as a result. No nonlinear phase shift would be
obtained if the contribution t@ from the two-excited-atom eo=(1+f)Ape,
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TABLE Il. Optimal results obtained from a sequence of 10 short Both photons in Each photon in a
laser pulses as a function of the paraméteFhe condition|y, ) the same medium separate medium
=0 was satisfied in all cases. i l

f A@non
2.0 0.318 — o> — 0>
1.1 0.125 (b) After pulse 1 - 7 - 17>
1.01 0.022 — —
1.00 no solution

. . < 0> — o>
which generalizes Eq45). Here ¢1, ¢,, and ¢, are the . - s
phase shifts in the statés; ), | v,), and|0), and the value of (b) After pulse 2 o :
A, depends on the amplitude of the laser pul&dbthe - 7 — P
pulses were assumed to have the same dupation

The optimal results obtained for a sequence of 10 laser
pulses are summarized as a functionf @i Table Il, where o 0 -
the squared modulus df/, ) after the sequence of pulses () After pulse 3 el o= Py Ralllle
was zero in all cases. It can be seen that the optimal value of — My — M
the nonlinear phase shift decrease$ agproaches 1, and no
solution could be found withy, y=0 for the case of =1.

This suggests that an asymmetry between the effects of pho- — 10> — o>
ton 1 and photon 2 is required in order to obtain nonlinear () after pulse 4 o o I -
phase shifts with no losgA similar asymmetry is also re- — —
quired for the case in which collisions with a buffer gas are
used instead of laser pulses, as is discussed in Appengix B.
The magnitude ofA ¢, from a sequence of short pulses is . —
relatively small in any case and t.hIS approach is straightfor- (e} After pulse 5 b —
ward but may be of limited practical value. v

el 8- |71,72> - |71,72>

We have therefore investigated a more complex but much

more efficient five-pulse approach that uses longer laser fig, 8. A five-pulse sequence producing a nonlinear phase shift
pulses with narrow bandwidths to produce transitions beuf 7. (a) Pulse 1 produces a transition from the initial statg, )
tween specific states of the system. In this method, the twg the statdy,) in which only photon 1 is presentb) Pulse 2 has
incident photons are assumed to be closer to resonance Wil net effect when the photons are in two different media but pro-
level 3 than level 2, as illustrated in Fig. 7, but the detuningduces a superposition of stajgs) and|0) when both photons are
is still sufficiently large that the population in level 3 is rela- in the same mediun{c) Pulse 3 produces a phase shift in the state
tively small. The frequency of the laser pulses can then béy;) when both photons are in the same medi@ih Pulse 4 returns
tuned to produce resonant transitions into level 2, where onthe system to statey;). (e) The last pulse returns the system to its
frequency will produce a resonant absorption of photon Jinitial state aside from a relative phase shiftzaf
and another frequency will produce a resonant absorption of
photon 2. Since level 3 is again a virtual state, the net effect The frequency of the second pulse is then chosen to be on
can be represented as an effective matrix element for photaresonance for photon 1 transitions and its amplitude is ad-
absorption into level 2. justed to produce a complet2w) Rabi oscillation back into

The frequency and amplitude of the first laser pulse arehe initial statg y;) for the case in which the two photons are
chosen to produce a resonant absorption of phot@mRabi  in separate media. A comparison Hf.; with H, . now
oscillation[23,25 of #), so that the system makes a com- shows that the relevant matrix element is a factordfarger
plete transition from statgy, ,y,) to state|y;) as illustrated for the case in which the two photons are in the same media
in Fig. 8. A comparison of the matrix elementstdf; in Eq.  due to the quantum interference of Fig. 4. As a result, the
(31) with H,  of Eq. (35) shows that the Rabi frequency for probability amplitude for stat{®) oscillates through zero and
this transition is the same whether the two photons are in ththe system is left in a superposition pf,) and|0) in the
same medium or in two different media, so that this transidatter case, as illustrated in Fig(ed. These results were ob-
tion occurs in either case. tained by numerical integration of Scldinger’s equation for

a gaussian laser pulse with a widgtandard deviatigmof 30

13> ns.

Photon ‘ﬁ laser The fact that the system is now in a superposition of states
tor2 12> if and only if the photons are propagating in the same me-
1>

dium allows a third pulse to produce an arbitrary phase shift

in that case. The frequency of pulse 3 is chosen to be slightly

FIG. 7. A laser-induced transition, in which photon 1 or 2 is Off-resonance from a photon 1 transition and its amplitude is
off-resonance from level 3, but the application of a laser pulsechosen, once again, to return the system to statefor the
allows a resonant transition into level 2. case in which the two photons are in different me@iaother
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(@) the pulse. The vector labelein the figure represents the
contribution from the probability amplitude of stdtg,) be-
fore the pulse, which is reduced in magnitude by its coupling
into state|0) during the pulse. The vector labelédrepre-
sents the contribution from the probability amplitude of state
|0y before the pulse, which is coupled back into stae)
during the pulse. The magnitude of vectocan be adjusted
by varying the detuning of the pulse, while the phase of the
pulse can be used to ensure that the sum of the two vectors
lies on the dashed circle. This allows the modulus of the
-1.00 . . . . ..
0.00 100.00 200.00 amplitude of stat¢y,) to be maintained at its original value
time (ns) while an arbitrary phase shift can be introduced by moving
the resultant vector to an arbitrary point on the dashed circle.
(b) The reason for maintaining the modulus |gf,) during
1.00 pulse 3 is that it allows a fourth pulse to act as the inverse of
pulse 2, since the state of the system is now the same as it
was after pulse 2 except for a phase shift. The amplitude and
frequency of pulse 4 are therefore chosen to be the same as
pulse 2, which applies a72Rabi oscillation and leaves the
system in|y;) once again for the case in which the two
photons are in separate media. At the same time, the phase of
100 this pulse can be adjusted to eliminate [B)ecomponent and
" 0.00 100,00 200,00 leave the system entirely ihy;) for the case in which the
time (ns) two photons are in the same medium, as shown in Fig). 9
A fifth pulse that is identical to pulse 1 is then applied to
FIG. 9. Plots of the real paR of the probability amplitude of produce amr Rabi oscillation and transfer the system back to
state|0) as a function of time for the case in which both photonsthe original statéy; ,y,), aside from the phase shift that was
propagate in the same medium, illustrating the effects of a sequenggenerated during pulse 3. Once again, the matrix elements
of five laser pulsesla) Effects of pulse 2, which produces a super- and the Rabi frequency are the same for this transition
position of state$y;) and|0). (b) Effects of pulse 4, which reverses \yhether the photons travel in the same or different media.
the effects of pulse 2 and returns the system to gtaf, aside A numerical algorithm was used to determine the correct
from a phase shift that can be controlled by pulse 3. parameters for the five-pulse sequence described above. The
net effect of the resulting pulse sequence was to produce a
27 Rabi oscillation. The effects of this pulse on the prob- phase shift ofrr for the case in which both photons travel
ability amplitude of statdy,) for the case in which both through the same medium relative to the case in which they
photons propagate in the same medium can be seen from Figiavel through two different media. Alternatively, an arbi-
10, where the radius of the dashed circle is equal to thé&rary nonlinear phase shift could be produced using a differ-
modulus of the probability amplitude of this state just beforeent choice of the frequency, amplitude, and phase of pulse 3.
This approach does not produce any loggeshe form of an
Imaginary orthogonal state vectdry, )) to within the approximations
that were described above.
The above analysis assumed once again that the only rel-
. . evant modes of the electromagnetic field are those generated
sb\ by a] anda}. It is expected that this condition can be satis-
/ fied experimentally by using a thick medium and appropriate
phase matching conditions, in which case conservation of
energy and momentum can greatly suppress the emission of
photons into other modes. More detailed numerical calcula-
tions that include the effects of scattering and dispersion are
planned.

1.00

o 0.00-

o 0.00 -

Real

FIG. 10. Real and imaginary parts of the probability amplitude
of state|y;) as a result of pulse 3, for the case in which both VII. NONCLASSICAL NATURE OF THE RESULTS
photons propagate in the same medium. The radius of the dashed . . i
circle represents the magnitude of the probability amplitude of state  ON€ question that naturally arises is whether or not these
|71) before the pulse, while vecta represents the contribution non[|near phase shifts can be un_ders_tood classmally orif t.hey
from that probability amplitude alone after the pulse has partially@re inherently quantum-mechanical in nature. In this section,
coupled it into staté0). Vector b represents the contribution from We consider the possibility of describing the photons as ei-
the initial probability amplitude of staté0), which is partially ~ ther classical particles or as classical waves, and conclude
coupled intdy,) by the pulse. The phase and detuning of the pulsethat neither description is consistent with the observed ef-
can be adjusted to make the resultant vector lie anywhere on tHects. We then show that nonlinear phase shifts of this kind
dashed circle, which gives an arbitrary phase shift. cannot be produced by a local polarizability of the medium
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interaction between the two photons. In the quantum-
@ mechanical exchange interaction illustrated in Fig. 2, afom
\f.'f_‘_'_\ absorbs photon 1 and reemits photon 2, while a®rab-
@ @ sorbs photon 2 and re-emits photon 1, which suggests that
both photons must interact with both atoms in some sense in
(a) Classical control allowed a quantum-mechanical description. This is once again irrel-
evant from a classical point of view, since the photons never
have a causal effect on the same atom and no path for the
flow of classical information can be identified as a result.
If we were to simply ignore the particlelike nature of light

and represent the photons by classical waves, the intensity of
@ the light beams would be so low that they would have neg-
A ligible effect on the properties of the atoms and they could
not produce a significant change in the index of refraction of
the medium. For example, suppose that an absorptive filter is
placed in front of the two incident beams of light in order to
(b) Classical control not possible reduce their intensities by a large facty. In a classical

theory in which the nonlinear effects are proportional to the
roduct of the intensities, the nonlinear phase shift would be
feduced by a factor of ;. In contrast, the nonlinear phase
Tc,hifts of interest here would be unaffected by such an attenu-
Estion process, provided that we only accept events in which
oth photons are transmitted through the attenuator and ac-
tually detected. The persistence of nonlinear effects at arbi-

and suggest that the only correct interpretation must invowirarilyalow intensities is a hallmark of nonclassical behavior
27,28

nonlocal correlations between fluctuations in the polarizatio " . . .
More generally, it is possible to give a simple proof that

of the medium at two distant locations. . . ; X . :
Any consistent classical interpretation would have to in-the pre_dlcteq phase sh|ﬁ§ are inconsistent with any classlcal
clude the particlelike nature of light and the fact that a meaN€ory in which the medium responds locally to an applied

surement could, at least in principle, be performed to deterfi€!d- T0 show this, we make the usual assumplioa9] that

mine which photon interacted with which atom. If we the-nonlinear_response of t_hg_medium can he Qescribed by a
assume that the photons are classical particles, then the pr ries of non]lnea( susceptibility co_efﬁme_nts. Since there are
ability that both photons will interact with the same atom is our electric fields mvc_)Ived heréwo Incoming and two out-
negligible for a typical medium, as discussed above. Thig0ing, the relevant dipole momeri(r,t) induced at loca-
places a fundamental limitation on the ability of one photontio I @nd timet is given[7-9] by

to control the state of the other in any classical theory since,
in general, the control of one classical system by another is
only possible if there is some physical interactidorce) i i ) -
connecting the two systems, either directly or through avhereE(r.t) represents the classical field antf IS tbe
chain of interacting systems as illustrated in Fig(@l1No  third-order susceptibility coefficient. The changg(r’,t")
control is possible if each system interacts only within two!" the electric field produced in the forward direction can
disconnected sets of systems, as illustrated in Figp)1The then be found by integrating over the volume of the medium
sequence of physical interactions connecting the two system

in Fig. 11(a) provides a path fpr the fI_ow of in_formation from_ SE(r' /)= f G(r' t":r,H)P(r,t)d’r dt, (56)
one system to the other and is consistent with the assumption

that there must be a specific cause for every efigetermin-

ism). In contrast, the quantum-mechanical exchange interadvhere G(r’,t";r,t) is the appropriate Green's function.
tion of Fig. 4 has the same form as the two disconnected(r,t) in Eqg. (55) can be replaced by the incident field
systems in Fig. 1(b), which suggests that one photon canEo(r,t) in the limit of weak fields, which gives

control the state of another photon even when there is no
sequence of physical interactions connecting the two par-
ticles[26].

Although the exchange interaction of Fig. 4 has the same
form as the two disconnected systems in Figbl,lwe do  All of the volume elements contribute with the same phase in
not know which photon will interact with which atom. From the forward direction, in which case the integral of Egj7)

a classical point of view, that uncertainty is irrelevant: if theis proportional to the volume of the medium. Since the in-
photons never interact with the same atom, there is no pattiuced phase shift is proportional &, this gives a nonlin-

for the flow of information, regardless of which photon in- ear phase shift proportional ¥, not N, which shows that
teracted with which atom. In quantum mechanics, the interthe local nature of the induced dipole moment precludes any
ference of these probability amplitudes gives us the possibildescription of these effects in terms of nonlinear susceptibili-
ity of a control process even though there is no classicaties.

FIG. 11. (a) Two classical systems$; and S,, that are con-
nected by a sequence of physical interactions that may involve o
or more auxiliary systems labeléd (b) Two classical systems that
are not connected by a sequence of physical interactions. There
no path for the flow of information in the latter case and a classica
control process cannot occur.

P(r,t)=x%-E(r,1)3, (55)

5E(r’,t’)=J G(r' t";r,t)x® - Eo(r,t)3d3r dt. (57
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Equation(57) shows that the nonlinear phase shift cannoting). The application of one or more laser pulses will then
be due to a local polarization of the medium, which suggestproduce a nonlinear phase shift, since the effects of the
that the correct interpretation must involve nonlocal correlapulses are dependent on the number of excited atoms. Non-
tions between the polarizations induced at two different lodinear optical effects from conventional mechanisms are nor-
cations in the medium. This is consistent with the factor of 2mally very weak at the two-photon level because of the weak
increase in the probability of there being two excited atomselectric field associated with the photons and the requirement
each of which has a dipole moment. Since the classical phaggat both photons interact with the same atom. The use of
associated with a single photon is totally random, these inaychange interactions avoids this difficulty, since the two

QUged dipole moments have.zero mean, while the factor of %hotons can interact with two different atoms, which is much
indicates a nonlocal correlation between the two. ore likely to occur

These nonlinear phase shifts are due to the interference 8? The question naturally arises as to whether or not these

quantum-mechanical probability amplitudes, which reflectSygo ts are similar to any of the nonlinear mechanisms that
the fact that we do not know which photon interacted W'thhave been discussed by earlier authors who may not have

Wh'Ch atom. Th'? dependence on quantum |n§erf9rence prcla'mphasized the role of exchange interactions. For example, a
vides an interesting example of complementarity in quantu ur-wave mixing experimeri23] at low intensities is simi-

mechanic_s: In pr_inciple, a measurement COUId_ be performe r to the extent that there are two incoming and two outgo-
to determine which photon interacted with which atom, an ng beams, and a nonlinear phase shift proportionaNto

su_ch a measurement would always show a nggllg|ble prObs'hould be expected from coherent forward scattering via con-
ability for both photons to have interacted with the Same,qional mechanisms such as that illustrated in Fig. 1. But
atom. On the other hgnd, any such megsurement. would al%ﬂe effects of interest here are proportionalNé whereas
destroy the quantum interference that is responsible for th%q. (57) shows that phase shifts of that kind cannot be ob-
nonlinear_ph_ase shift. In that case, can we really say that Bined from conventional approaché&s-9] based on the use
phase shift is due to photons th?‘t never mtergcted with t_hS nonlinear susceptibility coefficients. In addition, the re-
same atom? What we can say is that th?fe IS no classmgtlts of Appendixes A and B suggest that exchange interac-
Interaction bet'ween the two photons, as n Flg(t_ﬂ,land tions cannot give rise to any nonlinear phase shifts unless the
that the effect is not due to a sequence of interaction terms IBystem is non-adiabatically perturbed by an additional field,

the quantum-mechanical Hamiltonian, just as is the case fcWhich is not the case in most conventional nonlinear optics

the usual exchange interactions. _ __experiments. Finally, the results obtained here require that
The random nature of the quantum theory is clearly in-

compatible with the classical assumption that every effecme two incoming beams of light be sufficiently well colli-
o o L 4 ted that th tisfy E€l), as in the Hanbury-B d
must have a specific cauggeterminism. This is especially ated that they satisfy EL), as in the Hanbury-Brown an

- Twiss effect[4], which is certainly not a feature of most
true of the nonlocal correlatmns_ betwe_en the ran_dom resqlt ther effects in nonlinear optics. For these reasons, the use of
of measurements ”?ade on pairs OT (_Jlls_tan_t part|c|es_, Wh_'c xchange interactions to produce nonlinear phase shifts ap-
are inconsistent with any deterministic_interpretation 'nPears to be qualitatively different from earlier mechanisms.

V.VhiCh information does not travel fafster thgn the speed o Our approach involves pairs of atoms whereas, to the best
light [29]. Our results show that the inconsistency betwee f our knowledge, all of the previous mechanisihsl0—13

guantum mechanics and classical determinism is not _I|m|te r the production of nonlinear phase shifts at single-photon
to random events; a quantum control process of this kind ha;

- i . ) N3G tensities have involved the interaction of two photons with
g_defmlte re?“'t even thQUQh’ from a classical point of VIEWythe same atom. For example, the nonlinear phase shifts ob-
it is not po_s_S|bIe to identify a path for the flow of information served by Turchettet al. [1] were obtained using a higd-
or a'spe0|f.|c cause for the outcome of the process. cavity and a ‘V” system in which one photon could depopu-
. Finally, it can be seen from E¢46) that these effects are late the ground state of an atom, thereby preventing any in-
inherently dependent on the overall phase of a tWo'phomrﬁ‘eraction with that atom by a second photon. Their experi-
tments were performed under conditions in which there was
?ypically only one atom in the cavity at any given time, so
that both photons must have interacted with the same atom.
Schmidt and Imamogl{i11] have proposed a mechanism in
Which electromagnetically induced transpareEyT) [32]
6uld be used to greatly reduce absorption near an atomic
resonance, which would allow an incident beam of light to
undergo a large phase shift by being tuned very near reso-
nance; the phase shift could then be modulateetr effec)
using a control beam that produces a “shelving” transition
In this paper, we have shown that exchange interactionmto a fourth atomic state. The effect can be further enhanced
can be used to obtain nonlinear phase shifts at the twdsy confining the photons to a resonant ca\ify2]. Their
photon level. The origin of the nonlinear phase shifts can bapproach clearly requires that at least one photon from the
understood from the fact that quantum interference effectsontrol beam and a second photon from the probe must both
can produce a factor of 2 increase in the probability of therénteract with the same four-level atom, while the probability
being two virtually-excited atoms when two nonresonantof such an event is greatly enhanced by the small detuning
photons propagate through the same medium, in analoggnd the use of a cavity. Harris and Yamam¢@83] have
with the Hanbury-Brown and Twiss effe¢photon bunch- described a similar optical switch using EIT and the same

there are some analogies between this effect and the tw
photon interferometef30,31], which does violate Bell's in-
equality. Although this system does not violate Bell's in-
equality and the two photons have uncertain positions i
overlapping beams, it seems apparent that these effects
inherently nonlocal as well as nonclassical.

VIIl. DISCUSSION AND CONCLUSIONS



932 J. D. FRANSON AND T. B. PITTMAN PRA 60

four-level scheme but with controlled absorption rather thardetection efficiencies. The practical issues involved in the
a phase shift, while other mechanisms involving coherentmplementation of a quantum computer have been described
population trapping and other forms of quantum interferencén more detail elsewhergt4], where the conclusion appears
have also been suggesi{&d,35. Harris and YamamotfB3]  to be that all of the necessary functions could be performed
showed that, in their approach at least, the minimum photofrovided only that thexor gates themselves are sufficiently
flux in the control beam Corresponds to one photon per Cros§fﬁCient. The praCticaI issues involved in the implementation
sectional area, which is sufficient to ensure that there wilPf @ quantum computer are beyond the intended scope of this
always be an interaction between a control photon and every@Per. which is primarily concerned with the fundamental
atom in the medium. In contrast, our approach eliminates th@hysical implications of the use of exchange interactions in a
need for both photons to interact with the same atom, whicffuantum control process. L
allows the use of a single control photon even when there are.There are a ngmber_ of areas of phyS|ca! |rr_1porta_nce that
a large number of atoms in the medium. still nged to be |nve_st|gat_ed in more det_all, mcl_udlng the
Cooperative effects involving two or more atoms can playpotennal effects c_)f dispersion and scattering, which are be-
an important role in a number of other phenomena in quanl-'eved to be relatively Sma” but h_ave been neglected herg.
The use of phase-matching techniques to suppress the emis-

tum optics, such as superradiari@s] and two-photon ab- . ) .
sorption [37—40. Superradiance can be viewed as an exSion of photons into other modes of the field appears prom-

treme case of photon bunching and is thus somewhdp'M9 bIUt will tr_eqtj_lre ﬂ;r;[rt:er analélsi.] A more d_etallled n(ljj'
analogous to the effects discussed here, although it does n%lel”ca investga I(t)r? 0 (ise_ ar.]f. 0 ter |ss:Jes_ IS !coannt(;_.
produce nonlinear phase shifts nor does it involve only two f-our opinion, the most significant conclusion from this

photons. Teich and Wolg87] showed that the rate of two- work is that it is possible to implemgnt a quantum control
photon absorption by a single atofor any pointlike ab- process even when there is no physical interaction between

sorbej is twice as large for chaotic light as it is for coherent two systems, as in Fig. ). This shows that the discrep-

light, which is analogous to both the Hanbury-Brown and®"¢Y between quantum mechanics and classical determinism

Twiss effect and to Eq(41). Cooperative effects in two- is not merely a question of randomness, nor is it limited to
photon absorption have beén considered in dégg-41] random events: a quantum control process of this kind has

but most discussions either assumed a single mode of e definite outcome, even though, from a classical point of

field [38,40—-41, in which case there are no exchange inter-/ €W, it is not possible to identify a path for the flow of

actions as shown in Figs. 2 and 4, or Ed) did not hold information or a specific cause for the outcome of the event.

[39]. Multiatom effects can also be produced by Iong—rangéo‘lth(mg.h these nonlinear phase shifts do not violate Bell's
dipole-dipole interaction§39,4q or local field effectg42], inequality, they can be viewed as being due to nonlocal cor-

but these are physical interactions rather than exchange iﬁglanons betwgen fluctuathns in the polarization of the me-
teractions. dium at two different locations. Our most fundamental un-

Nonlinear phase shifts of this kind can be used to imlole_derstanding of the nature of control and “cause-and-effect”

ment quantum logic gaté&3] that may be of practical use in may have tq be_ revised to include nonclassical control pro-
guantum computing. One of the advantages of an optica(fesses of this kind.

approach is the fact that the logic gates would be physically

independent from each other and could be connected as de- ACKNOWLEDGMENTS

sired using optical fibers, whereas the difficulty in providing .

a logical connection between arbitrary devices is a major 1his work was supported by the U.S. Army Research Of-
drawback in other approaches being considd#g]. One fice, the National Security Agency, the U.S. Office of Naval
potential difficulty in any optical approach to quantum com-Research, and by IR&D funds.

puting is the need to produce large numbers of single-photon

input states on demand. We have previously suggegld _ APPENDIX A: SYMMETRY CONSIDERATIONS

that large numbers of single-photon states could be effi-

ciently produced by starting with a weak coherent state con- There are a number of other Feynman-like diagrams in-
taining an average of one photon in each of a large numberolving pairs of atoms in addition to the exchange interaction
of optical fibers. The opticator quantum logic gates could shown in Fig. 2. For example, the various events can occur
then be used to perform a quantum nondemolition measurén a different time order or each atom may absorb and reemit
ment of the number of photons, after which a series ofthe same photon. We showed in an earlier pdféthat the
electro-optic switches could select the output of those fibersontributions from all of these processes cancel out, at least
containing one and only one photon. Optical fiber loopsto lowest order in perturbation theory, and that there will be
could be used as memory storage devices; although the imo net nonlinear phase shift unless the system is perturbed in
trinsic storage time would be at most a few microsecondsa way that eliminates the cancellation. The reason for this
the switching time of the logic gates would be many orderscancellation can be understood from the following symmetry
of magnitude faster, which may allow the use of quantumconsiderations.

error correction technigues. Highly efficient methods for It will be assumed that the atomic transitions of interest
single-photon detection would also be required in order taare between a ground state with magnetic quantum number
read out the results at the end of a calculation; this could als;mm=0 and three excited states, correspondingitel, 0, or

be accomplished by using thke@Rr gates to perform quantum —1, that are degenerate in the absence of any external field.
nondemolition measurements of the photon number, whicifhe absorption of a photon that is linearly polarized along
could be repeated to obtain very high overall single-photorthe x axis and incident along theaxis will induce a transi-
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tion to an atomic statgp,) that is a linear combination of ferent media, as in Eq43), since a nonzero energy differ-
states withm= = 1; in the forward direction, such a state can ence and nonlinear phase shift would be obtained if that were
only reemit anx-polarized photon. In a similar manner, not the case.
y-polarized photons propagating along thedirection are
only coupled tq an orthogonal_ atomic stagg). As a 'result, APPENDIX B: ALTERNATIVE APPROACHES
the exchange interaction of Fig. 2 can only occur if the two
photons have the same polarization and there will be no non- Perhaps the simplest way to eliminate the rotational sym-
linear phase shift of this kind for two photons of different metry of the system would be to apply a linearly polarized
polarizations. laser beam as illustrated in Fig. 6, where the laser intensity is
Consider the case in which photon 1 is linearly polarizedassumed to be constant in time rather than pulsed. Since the
along thex direction while photon 2 is linearly polarized population in level 3 may play a significant role here, we
along a direction that is midway between thandy axes, so  explicitly included those states in the system rather than ap-
that the initial state of the field can be written as proximating their effects with an effective coupling Hamil-
tonian and energy shift, as was done for the pulse sequences
described in the text. This gives an 11-dimensional effective
[h0) = [X2)([x2) +|y2)) V2. (A1)  state vector and Hamiltonian, which were derived in the
same way as the six-dimensional state vector used for the

two-level system. The nonlinear phase shift was once again

The nonlinear phase shift due to exchange interactions Willetermined numerically by calculating the corresponding ei-
be assumed to have a magnitudenofo that, in the absence genyalues, also in analogy with the six-state calculations.

of any external fields, the state of the photons after passingpe results of this analysis showed that the application of a

through the medium will be continuous laser beam does not produce any nonlinear phase
shifts proportional toN?, despite the breaking of the rota-
tional symmetry. Conventional linear phase shifts propor-
tional to N were obtained, however, and it was apparent that
the application of the laser beam could be used to “control”

where the nonlinear phase shift has been applied only to thi§€ State of the photons by producing a rotation of the polar-
term in which both photons have the same polarization. 1{zation of the photons, as was independently observed re-
can be seen from EGA2) that the polarization of photon 1 cently by Wielandy and Gaeta5]. We also considered a

remains unchanged while that of photon 2 has been rotategiimber of other configurations, such as the commonly-used
through an angle of 90°. “V” and “A,” but were unable to obtain any nonlinear

Now consider a new coordinate framgy’ that has been phase shifts that would be significant at the two-photon level.
rotated by 45° with respect to the originaly coordinate The conclusion appears to be that steady-state perturbations

frame. The initial state of the system can now be written aLf the system are not sufficient to eliminate the cancellation
of the Feynman diagrams discussed above.

Since time-independent perturbations do not suffice, we
lho) = (IX1)+ |y | ys)/v2 (A3) also considered slowly-varying perturbations where the time
evolution of the system would be given by the adiabatic
approximation and the associated Berry phase might produce
and the final state becomes a nonlinear phase shift. Berfyl4] considered the case in
which the HamiltoniarH (R(t)) depends on two parameters
_ that can be considered to be the components of a two-
[Py =([xp)+eTlyD))lya)/v2. (A4)  dimensional, time-dependent vectB(t). If the system is
slowly propagated in one of the eigenstataéR)) of the
Hamiltonian around a closed pathin this two-dimensional

In this case, the polarization of photon 2 remains “nChangeBarameter space, the system will undergo a geometric phase
while the polarization of photon 1 is rotated by 90°. Equa-gpist A, that is given by the surface integral
tions (A2) and (A4) are inconsistent with each other, which g

shows that a nonlinear phase shift of this kind is not possible

for a medium with rotational symmetry and degenerate Agy= _f J dS-V,(R), (B1)
atomic states. This explains why the Feynman diagrams all c

cancel in the absence of an external perturbation and it also

shows that the mean number of excited atoms must be the

same whether the photons propagate in the same or two difwhere the vectoV ,(R) is defined as

[y =1X1)(€'7|X2) +|y2)) V2, (A2)

V,(R)=Im 2 (n(R)|VRH(R)|m(R))x(m(R)|VrH(R)|n(R)) .

2 [En(R)—Ex(R)T? B2)
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Here E,(R) is the energy of eigenstata(R)). We consid- 040 =
ered a set of possible parameters that included the time-
dependent amplitude and phase of the external laser beam as 0.20
well as the photon gaussian envelope functit). The
vector V,(R) was found to be zero for all combinations of
two of these parameters. Although it is possible that we did
not consider some relevant set of parameters, the conclusion -0.20
appears to be that a Berry phase cannot be used to produce
nonlinear phase shifts of this kind. We also investigated the -0.40 T T I |
possibility of adiabatically varying the parameters in such a -10.00 -5.00 000 500 10.00
. . . average detuning (GHz)

way as to pass through a region of an avoided level crossing,
and we found that this also did not produce a nonlinear phase FiG, 12. Nonlinear phase shift as a function of the average
shift proportional toN?. photon detuning for the case of collisions with a buffer gas. A

The above results suggest that the perturbation that is rgronzero phase shift is only obtaineddf= 3,; here8,=2p3,.
quired to break the rotational symmetry of the system must
also be nonadiabatic, as it is for the two types of laser seshown in the figure correspond 18,=2x10°s™%, B,=1
guences discussed in the text. The remaining possibility thaf 1 s7%, and B,=3x10°s" L. The magnitude of the non-

to break the symmetry in combination with collisions with @ fixeq average detuning of=—1/2, is shown in Fig. 13;

buffer gas to produce random phase shifts in the exciteghese results are consistent with a nonlinear phase shift pro-
states of the atoms. This analysis was also based on the si¥ortional toN2.

dimensional effective state vector described in the text, but The calculations described in R¢B] had assumed that
here a density matrix calculation was required since we Wergye details of the collision process were not crucial and had
no longer dealing with pure states. The simplest assumptiogimply taken equal damping rates for all of the virtual states,
that one can make with regard to the effects of the collisiongyhich is inconsistent with EB3). On the other hand, simi-

is that they are instantaneous events, that they randomize the esyits are obtained provided th@yt 3, . This condition
phase of the excited states of the atoms, and that they oCCHfay occur, for example, if a magnetic field produces a Zee-
at random times at a rate that is independent of the detuning,5n shift in the atomic energy levels whose magnitude is

(energy unbalangeof the virtual atomic states. Given those comparable to the difference in the detunings of the two
assumptions, it can be shown that the off-diagonal terms ofhotons, as was the case in the preliminary experiments de-
the density matrix involving states), |v,), and|0) decay  geribed in Ref[44]. In that case, an inelastic collision pro-
at ratesf;, B2, and g, that are related by cess that transfers angular momentum to the atoms may be
Bi=By=1p (B3) closer to resonance withy;) than|y,), which would be
1 P2 2P0 expected to givg8;# B,. In any event, it is now clear that

The decay ratgg, is twice as large as the other two becausethe details of the collision process do play an impo_rtant role
it corresponds to a state with two excited atoms, whichand that the effects .of a laser pulse are much easier to ana-
doubles the probability that a collision event will occur in a !yZe and control, which is why we are now concentrating on
small time interval. the effects of sequences of laser pulses.

A numerical calculation of the time-evolution of the den-  Finally, we note that all of the mechanisms that we have
sity matrix gave the result that no nonlinear phase shift prolnvestigated and found to produd¥ nonlinear phase shifts
portional toN? will be produced by atomic collisions if Eq. (without substantlal Ios}snvolve nonadiabatic perturbations
(B3) is satisfied. The assumption that the collision rate isthat are asymmetric with respect to the role of the two pho-
independent of the detuning of these virtual atomic state(ons. The impulsive phase-shift approach requires that the
does not seem plausible, however, for an inelastic collisio@ser pulses be detuned an unequal distance frgfhand
process with a final state energy exchange that is resonah2). the longer laser-pulse approach allows the selective
with the energy of statéy;) but not in resonance with the @absorption of one photon or the other, and the buffer-gas
energy of|y,), for example, which would enhance the rate @Pproach requires that,#j,. The need for this kind of
of collisions for|y;). The same can be said for a collision

0.00 —

phase shift

0.20 —

process that is elastic but has a virtual state whose energy
difference is close to resonance wjth,) or |y,). We there-
fore performed additional density matrix calculations in e
which ;% B,, where it was assumed that % 1o
Bo=B1t Ba. (B4) £
0.05 —
The results of a typical calculation of this kind are shown in
Fig. 12, which is a plot of the nonlinear phase shift as a 0.00 ‘ ‘ | |
function of the average detuning=(5,+ &,)/2. The aver- 000 025 050 075  1.00x10%

. . . . : ) ber of at
age detuning was varied while the difference in detunings, number ot loms

6,— 61, was held fixed at a constant value of 5 GHz, which  FIG. 13. Nonlinear phase shift as a function of the number of
may be typical of experiments of this kind. The resultsatoms in the medium for the case of collisions with a buffer gas.
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asymmetry appears to be related to the fact that the contri- Energy
bution from the exchange process shown in Fig. 2 will have

the opposite sign if photon 2 is absorbed first instead of A
photon 1; in a perturbation theory treatment, the lack of en- 3> ——
ergy conservation in the second intermediate state is equal in )
magnitude but opposite in sign, which causes the contribu- .
tions from these two diagrams to cancel in the limit of large 2> ——
detuningg17,41. It is possible to give examples of various
“gedanken experiments” in which there would be an appar- / \

ent violation of causality if this kind of cancellation did not 1> ’ 4>
occur for two distant atoms.

FIG. 14. Four-state system for the case of equal detunidgs (
=§,). The dashed lines represent the coupling of the states by the
APPENDIX C: EQUAL DETUNINGS Hamiltonian. The remaining two states are not coupled to the initial
state and can be ignored.
It was suggested during the review of this paper that the
crucial factor of 2 in Eq.41) could be derived in a very
simple way if 6= 8. In that case, there are two linear com-
binations of states that are not coupled to the initial state b
the Hamiltonian and are therefore unexcited or “dark.” To
see this, we introduce a new set of basis states defined by

Where e1, e,, ande; are the unperturbed energies of the
states. Using the matrix elements from EG3) gives the
probability of there being two excited atoms when both pho-
tons pass through the same medium:

|1>:|7’1,?’2>,
12)=(ly) +1v2))1V2, M4
Pas=A3=2—. (CH
13)=10),
|4>:(|71!71>+|72!72>)/‘/2! (Cl)

In contrast, perturbation theory applied to the Hamiltonians
15)=(|y2) — | 7)) IV2 of Egs.(33) and(55) gives
- 1 2 ’

16)=(|v1,71) —|v2,72)) V2. M4

Pop=—3 C6
States|5) and |6) are then uncoupled from the other four st (€8

states and can be neglected:

(i[Hetj)=0 (for i>4, j<4). (€2 . . .
for the probability of there being two excited atoms when the

two photons pass through two different media. A comparison
L . . S . . of Egs.(C5) and(C6) gives the factor of 2 in Eq41). Since
This gives a four-dimensional Hamiltonian in this basis foryhe characteristic equation associated with this eigenvalue

the remaining states, which is given by problem corresponds to a fourth-order polynomial, explicit
expressions for the exact eigenvalues and eigenvectors exist
0 v2M' 0 0 but are sufficiently lengthy that they have not been included
v2ZM' =68 2M' Vv2M' here.
Het=| o oM’ —-25 0 (C3 For the more general case in whidh# &,, there is no
0 VYL 0 0 linear combination of states that are uncoupled in this way

and the dimension of the Hamiltonian cannot be reduced as a
result. This can be shown by considering a sequence of state

in the limit of large N, where M’=NM. The coupling vectors in which each successive vector is generated by let-
between these four states is illustrated in Fig. 14. ting the Hamiltonian act on the previous state in the se-
To lowest order in perturbation theory, the probability dU€Nce, with the first state taken to be the initial state

amplitude of staté3), in which there are two excited atoms, |71,72), and then subtracting off the projection of that state
is given by onto each of the preceding states. Bgr= 5,, the fifth vec-

tor in the sequence is zero after subtracting its projection
onto the previous four states, which shows that two states are

(C4) uncoupled; the fifth and sixth vectors in the sequence are
nonzero ford; # &,.

:<3|Heff|2><2|Heff|l>
(e1—e3)(e;—ey)

2
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