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Entanglement between three or more parties exhibits a realm of properties unknown to two-party states.
Bipartite states are easily classified using 8@hmidt decompositiohe Schmidt coefficients of a bipartite
pure state encompass all the nonlocal properties of the state and can be “seen” by looking at one party’s
density matrix only. Pure states of three and more parties, however, lack such a simple form. They have more
invariants under local unitary transformations than any one party can “see” on their subsystem. These “hid-
den nonlocalities” will allow us to exhibit a class of multipartite states that cannot be distinguished from each
other by any party. Generalizing a result of Bennett, Popescu, Rohrlich, Smolin, and Thapliyal, and using a
recent result by Nielsen, we will show that these states cannot be transformed into each other by local actions
and classical communication. Furthermore, we will use an orthogonal subset of such states to hint at applica-
tions to cryptography and illustrate an extension to quantum secret sharégg recently suggested
((n,k))-threshold schemés[S1050-294{©9)01408-0

PACS numbd(s): 03.67—a, 03.65-w

[. INTRODUCTION other words, given a sufficient supply of copies of a certain
state shared by two parties, each of the parties is able to
The entanglement properties lopartite pure statehiave  determine(up to a certain precisignits equivalence class
already been treated extensively. The analysis of entanglemder local unitariesand which other states it can be trans-
ment and its properties for these states is much easier thdarmed into via 2-LOCC.
for three or more party-shared states due to a particularly The situation is drastically different fonultipartite states
convenient form that captures all nonlocal parameters: thgwolving more than two parties. No convenigiacally in-
(unique Schmidt decompositidi]. varian) form—analogous to the Schmidt decomposition—
An interesting question which arises in attempts to clastan be given. The number of invariants of a state under local
sify entanglement is which states can be obtained from gnitaries grows exponentially with the number of partisse
given state if we allowocal actions and classical communi- ggc. I). Attempts to find canonical points on the orbits of

cation c_)f t.he parj[ies. By classical communicat_ion We meany iipartite states have been mad, but yield unwieldy
ana priori unlimited amount of two-way classical commu- g 0o \Wwe will say that two multiparty states are-

e e s ensfomalons @yt quivaien(|¥) ) f they can be uansformed o
- party local op . each other by localsingle-party unitary operations only
munication. The crucial difference between pure local uni- | . d RS
(without classical communicatignLinden and Popesci#]

tary action and LOCC is that each party may perfdgan- .
eralized measurements on its subsystem and broadcast tﬁbave given a Iqwer bo_und on the number Of. par_ameters
eded to describe equivalence classes of multipartite states.

outcomes via classical channels between the parties. THE¥ A ) .
other parties may choose their subsequent actions condition4P Parametrize inequivalent states, they also exhibited an
on the outcomes of these measurements. explicit polynomial form for invariants of a multipartite state
For bipartite pure states, Nielsef2] has recently found under local unitarie¢see Sec. Il B. Some of these invari-
necessary and sufficient conditions for the process of er@nts are functions of the eigenvalues of the local density
tanglement transformation via 2-LOCC to be possible. A keymatrices of all parties. For thréand mor¢ parties, however,
tool in this result is the Schmidt decomposition of bipartitethe number of independent invariants under local unitaries is
states and the conditions involve the Schmidt coefficients obigger than the number of independent eigenvalues of all
the states only. local-density matrices. This means that if we get all possible
So once we are given the density matrix of one party, danformation from each party’s subsystem, there will be in-
bipartite pure state no longer contains any secrets: The evariants under local unitaries that we cannot determine. We
genvalues of one party’s density matrix completely characwill call these parametersidden nonlocalitief our quan-
terize the statéup to equivalence under local unitary opera-tum state. Complete knowledge of each local system thus
tions and give us complete knowledge about itsdoes not give us complete information on the equivalence
entanglement transformation properties under local opereelass of the multipartite state under local unitary operations.
tions and classical communication between the parties. In Let us review Nielsen’s result to make the difference be-
tween bipartite and multipartite states more precise: For bi-
partite pure states and 2-LOCC, there is a partial ordering on
*Visiting the California Institute of Technology, Pasadena, CA.the states that characterizes their mutual entanglement trans-
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2.LOCC subset of such states. These states have the property that they
W) — |®) iff pg’<p§, 1) are totally indistinguishable from ee}ch other for each party
alone and cannot be transformed into each other by local
where p, is the density matrix of one party af‘r@fﬂ)i operations and classic_al communication between the p_arties.
means that the eigenvaluk%’, o J\E’ of p/{' are majorized Furthermore, we can find a set of such s_tates thatreme-
by the eigenvalues‘b, . ,7\(kb of pf, ie. marrn _the sense rhat they cannot be obtained f_rom any other
(unitarily not equivalentstate byk-LOCC. Only if the par-

k k ties perform a collectivéorthogonal measurement will they
SO AP vk (2)  be able taperfectly distinguish these states. This area needs
=1 =1 further exploration.

The arrow indicates that the eigenvalues have to be put in%c\(/)\{ewv]vrlfloilr;aﬂgﬁrtau%rzggpetltysshl;gr%?;t?éj eﬁ:i);stggé?;shfo?m
decre_asrr_rg order. . _— incommensurate and locally equivalent states in them. An
This gives a partial ordering in the space of all nonlocal((n'k)) threshold schemeki< n) is a method to encode and

parameters of bipartite statéseemember that the nonlocal ﬁivide a secret quantum state betweemarties such that

%argmetfri are rtthelr:rr[ﬂependen: .elgtet\rlrvvalue;tof rt]h? gebns om any k shares the state can be perfectly recovered and
twa ot.o etrﬁ’.a Y ecast;toljusd vo qu tﬁ N ?? Y from anyk—1 or fewer shares no information whatsoever
o parties, this even gives @tal orderingon the states, o 0 ciate can be inferred.

meaning that given two states either the first can be trans- The scheme as introduced [ifi] assumes that all parties

fo;rr:;jee%tmst?;r:ﬁ dstec%oer:‘:‘jicci)é)r:/bl:rengr?re:i‘errrirlsrji?rr:tleyngil:;;;%?—_ are honest when they participate in reconstructing the secret.
P ) ghig llowing for the possibility of some parties being dishonest

partite stateshowever, we also find sets of states that canno n order to retrieve the secret alone, we will show how the

B e L0 ToScheme can b "misused” forcheating by cne pary i 1

tem to provide us with two bipartite incommensurate pureused to encode a “clqssrc_al” bit and how this chearrng can
. . ) . . be prevented by using incommensurate locally identical

states is the nine-dimensional space of wudrits [2]. Also states

note that the commensurateness or incommensurateness of >

two bipartite states can be immediately identified by looking Il. COUNTING HIDDEN NONLOCALITIES

at the density matrix of one subsystem.

Two bipartite pure states whose one-party density matri- Linden and Popesdu] have classified the orbits of mul-
ces have the same eigenvalues aligays mutually obtain-  tipartite states under local unitary operations and determined

able from each other via 2-LOCC. Also the dimension of generic orbits and the number of param-
eters needed to describe the location of such an orbit in Hil-
1 @ bert space.
ﬁ' <px, Y|®) 3) In the case ok parties each having one spjnparticle

(qubit), there are at least“2'—2—3k real parameters that
implies that starting with an Einstein-Podolsky-Rosencharacterize  nonlocal  properties. [Initially — each
(EPR-type bipartite statéunique up to local unitaries with 2X-dimensional state hasZomplex parameters and the re-
the property that its density matrix obtained by tracing outquirement of unit norm leaves‘2—1 real parameters. The
one party is proportional to the identity matrixve can ex- group of equivalence transformations 19(1)XSU(2)
tracteverygiven bipartite statgd) with local operations and X SU(2)X - - - X SU(2)—each local unitaryU(2)=U(1)
classical communication. The partially ordered set of statex SU(2) but each local phase can be factored out to one
under 2-LOCC has jusbne maximal state(up to unitary single global phase. The groypnd the generic orbitthen
equivalencg has dimension B+ 1 or less]

We will show that this structure is very different forul- Furthermore, an explicit form for polynomial invariants of
tipartite states Bennett, Popescu, Rohrlich, Smolin, and an orbit has been gived] (see Sec. Il B. To get a picture
Thapliyal(BPRST) [5,6] have found two three-party states— of how the number ofhidden nonlocalitiesgrows, let us
each party having two qubits—of dimensiofi that are in-  analyze the three-, four-, and five-party cases. We can easily
commensurate, although all of their subdensity matrices areount parameters in the three-party spircase: We have
identical. Following their argument, we will use Nielsen’s five (independent nonlocal parameters but only thrém
result(1) to generalize their proof and show that even for thegeneral different density matrices each characterized by one
smallest three-partite statef dimension 8 there are incom- eigenvalue. So there are two nonlocal parameters that we
mensurate states that haidentical or similarlocal-density  cannot “see” by only looking at various subsystems of our
matrices. Their incommensurateness cannot be “seen” bgntangled state. Now let us look at the four-party spin-
looking at subsystems of the stdieis hidden. We connect case. Here we have at least 18 nonlocal parameters but at
hidden nonlocalitiesto hidden incommensurateness see  most seven independent subdensity matrices where two den-
that two multipartite states with similar density matrices onsity matrices aréndependentf the eigenvalues of the first
each party are incommensurate if and only if they are notlo not completely determine the eigenvalues of the second.
unitarily equivalent. The four one-party matrices each have one nonlocal param-

We give some examples dbcally equivalent LOCC  eter and the three independent density matrices of two joint
incommensurate state®Ve will suggest how to “encode parties have at most three parameters each thus leaving a
into hidden nonlocalities” with the help of an orthogonal total of at least 18 4*1 —3*3=5 hidden nonlocalities. Of
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the 18 nonlocal parameters, 14 cannot be seen by only one From here Bob and Charlie will continuéW¥’)

party alone; they ardiddenif we look at one-party sub- 3*'-O°°|q)> so in particular we know that|¥’)
systems only. For the five-party case, the number of nonlocab_ | occ on aBC P

parameters that cannot be seen by looking only at each party—— |®). From
locally is <58. There are at least 18 nonlocal parameters that
cannot be accessed by looking at any one- and two-party |7) 2-Locc v 2-Locc D) 7

subdensity matrices of the system.
In general, the number dfidden nonlocalitiegrows ex-

ponentially with the number of parties. Nielsen's criterion(1) tells us

v v’ O] v
lll. CLASS OF 3-LOCC INCOMMENSURATE STATES PA=PA =PATPA ®

We now want to show that there are 3-LOCC incommen-so p, =coSa|v)(v|+sirfa|v*)(v*| has to have the same
surate states for the three-sgirsystem. There are five inde- eigenvalues as
pendent invariants under local unitaries; three of them are of
the form trpfJ (p=A,B,C) and completely characterize the L1
eigenvalues op, (see Sec. Ill B. Suppose that we have two Pa ZQ(COSZCYMJV)(WMiT+Sin2aMi|VL><VL|MiT)
states|¥) and |®) that differ only in the last twdhidden
invariants, i.e., the three one-party density matrice$Jof Mi |\/|i’r
and|®) have the same eigenvalues. For ease of argument, “NPAN 9
choose them such thaly, pg, andpc have full rank 2.

Claim. |¥) and|®) are 3-LOCC incommensurate.

Proof. What does a general 3-LOCC protocol look like?
First one party, say Alice, will perform a generalized mea-
surement and broadcast her outcome. Then Bob and Charlie
will continue with generalized measurements on their sub- UTppu=
systems conditional on Alice’s outcome and broadcast their
outcomes. At a certain point, Alice will continue, and so on.

Let us for a momentmentally merge Bob’s and Charlie’s It follows that U(M;/N) has to be unitary and diagonal in
systems and look at the 3-LOCC protocol as a protocol bethe same basis as (just pick a basis wherg}, is diagonal
tween the system& andBC. Everything that Bob and Char- and write out the matrix elements in their most general form
lie do after receiving Alice’s outcome and before Alice’s using thatp, has full rank. We see thaM|v,) andM;|v)

next action can be viewed as a generalized measurement dave to be orthogonal and that Alice’s generalized measure-
the BC subsystem. So the whole 3-LOCC protocol can bement reduces to a local unitary operation on her qubit.
viewed as a specific case of a 2-LOCC protocol betw&en Continuing this argument for each subsequent step of the
andBC. In particular, this means that|if’) could be trans- 3-LOCC protocol it follows that the whole protocol ends up
formed into |®) via 3-LOCC, it certainly could be trans- to be a succession of local unitaries. But we have chosen our

This implies that there is a unitary transformatibnhsuch
that

M;
N PR

M\ T
v *

formed into|®) via 2-LOCC onA andBC. states to be nonequivalent under local unitaries. This com-
Assume there was a 3-LOCC protocol that transfojiins  pletes the proof.
to |¥). We have chosen the states such that Note that the constraint to full-rank local-density matrices
can be lifted if we only look at the restriction ™; onto the
cosa 0 support ofpa, pg, pc- We have thus shown that even in the
v P . .
PA=PAT sifal 4 simplest three-party case there are states that—having the

same eigenvalues of all subdensity matrices—are 3-LOCC-
incommensurate. Furthermore, once we fix the eigenvalues
of pa, pg, pc, We have two additional parameters to
specify different classes of 3-LOCC-incommensurate states.
In the five-dimensional space of unitarily nonequivalent

o . " L states, we have found a two-dimensional subspace of mutu-
This is the Schmidt decomposition ¢f’) as a bipartite ally incommensurate states.

A-BC state. In_partlculad,vBC)_and|v§c> are orthogonal in This proof generalizes trivially to more than two dimen-
the joint BC-Hilbert space. Alice performs the f|§st general-gions of each party’s Hilbert space andke 3 parties. To
ized measurement ={M,M,, ...} (with Z;M{M;=1)  gee the latter, we note that at each step leLOCC protocol
and obtains the outcomie Hereby she transforms the state we can divide the system into two parts—one party that per-
| V) to a statg V') with forms a local operation and the otHer 1 parties—and ap-
. ply Nielsen'’s criterion as in the three-party case.
N . L. L It follows from our proof that throughout each step of a
v)= N[COS a(Milva))lVec) +sina(Mi[vi))|vac)l. k-LOCC transformation protocol each party’s density matri-
(6) ces of the state obtained at a particular step have to majorize
the corresponding density matrices of all states at previous
(N is the normalization factor. steps. In particular, we have the following.

Let|v,) and|vx) be the two eigenvectors f and rewrite

|W)=cosa|va)|vec)+sina|va)|vee). 5
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Corollary 1. If, say, Alice’s density matrix at the begin- states with identical local-density matrices that cannot be
ning and at the end of BLOCC protocol are similar, then transformed into each other via 3-LOCC. To keep calcula-
Alice’s action is restricted to local unitaries. tions easier, we looked for particularly simple states of the

Corollary 2. Two k-partite state$¥) and |®) that have following form:
similar density matricesg(; ~py , p=A,B, ...) oneach
party’s subsystem are-LOCC incommensuraté and only
if they arenot unitarily equivalentAfter having proved the
existence of 3-LOCC incommensurate states, let us giv
some specific examples.

|¥)=a,|000) +a_|vvv), (14

where|v) is a normalized state. The equivalence classes of

these states are characterized by two parameterse-sas}

and [(O|v)|—and have equivalent density matrices on all

three subparties. So from the five independent invariants of
A. The 2-GHZ-3-EPR example (generig states under local unitary transforms, in this case

BPRST]5,6] originally showed that the following three- only (at mosj two are algebraically independent.

partite states are incommensurate: Let us look at the invariants in the general case for states
of the form |W)=X, ; \ajj|€iejex). From the coefficients
(]0a10810¢1) +]1a11g11c1)) ajjx we can form polynomials that are manifestly invariant
2-GHZ= 2 under local unitaries, like the degree 2 polynomial:
(10a20820c2) +|1a21B21c2)) 1= @i Ay s (15
® \/E (11 ijk
which is the norm of the state. To fourth degree we get three
and polynomials:
(10a1081) +1a1181)) _ (|0a20c1) +|1a21c1)) )
3-EPR= \/E ® \/E I2:ijl§pq akija;ijampqaﬁpq=trpA,
(10820c2) +[1821c2))
® \/E . (12 3= ijl;n:pq @ikj ai*mjapmqa;qu trpg , (16)
In the 3-EPR state, the three parties Alice, Bob, and Charlie . N 5
share three EPR pairs, one betw@eandB, one betweer ly=_> ijk Ajjm Xpgm®pqk= 1 PC »

ijk
and C, and one betweeB and C. In the 2 Greenberger- Jemea
Horne-Zeilinger (2GH2) state, they share just share two which in general are algebraically independent. One of the
GHZ states. In both cases the density matrices of Alice, Bobhigher degree invariants is
and Charlie are identical:

1 Is= > @jjk Uim Xnio@pjo @ pamPngks (17)
pzzl. (13 ijkimnopq

) ) which in general is not algebraically dependent ofl 5,1 ,.
So in any 3-LOCC transformation protocol from 2-GHZ 10 £or the simple state in Eql14), we havel ,=1,=1,, and a
3-EPR and vice versa, Alice, Bob, and Charlie are restrictedympolic calculationGroebner basjsshows thati s and |,
to local unitaries. It is, however, impossible to transformre gigebraically independent. We now exhibit two states of
2-GHZ to 3-EPR via local unitaries. One simple way to se€ne apove simple forn{14) which have similar one-party

this is to observ_e that 2_-GHZ isa trisgparable state—it giveﬁensity matricegand the samé,) but differentl s, thus be-
separable density matrices when tracing out any one party-ng 3-| OCCincommensurate

whereas 3EPR is not triseparab(&racing outA in 3-EPR

gives 31 ®|EPRsoc2)(EPRssco|, Which is obviously not 3 5
separable. |W)=2 \/3:7|000>— —|111 (19
Note that this proof generalizes trivially tepartite states V37
andk-LOCC: (k—1)GHZ and E)EPRare k-LOCC incom- and
mensurate
2 5
B. Two locally nondistinguishable 3-LOCC incommensurate |D)=4 \/3:7|OOO>— —|vvv), (19
states of dimension 8 \/3_7

Note that the smallest bipartite system that contains tWthere|v):(|0>+|1>)/\/§ is the staté1) rotated by 45°,
incommensurate states has to have dimension 9 at least with

each party possessing a qutrit. This is because two density v .o 169

matrices that are not majorized either way have to have rank l2 =12 =135¢ (20)
3 at least. But even for the smallest three-partite system of

dimension 8, there are incommensurate states. We can firahd



914 JULIA KEMPE PRA 60

|§’%0_343¢ I g’%o_242. (21  telling them which specific state they share. While the parties
are locally separated and only allowed to perform local ac-
So these two states are 3-LOCC incommensurate. We cdions and classical communication they have no way to trans-
apply a local unitary transformation on each subsystem tdorm the states into each other. Only when they get together
one of the states to make their density matrices diagonal ifor send their share of the state through a quantum channel
the same basis so that they are completely indistinguishablean they perform an orthogonal measurement and determine
for each party. the encoded bitstring. To ensure that there is no common
stateQ) from which two differentstates can be obtained via
C. The ((3,2)-threshold states k-LOCC, we can choose states with local-density matrices
proportional to the identity. Since the identity matrix on a
subsystem majorizes every other density matpi%,would
have to be proportional to the identity as well. We have
shown that in this case each party is restricted to local uni-
|D(a,B,7))=a(|000)+|111) +|222) + B(|012) +|120) taries in their attempt to change the state via LOCC.
Another example of two tripartite statgapart from Eq.
+]20D) + y(|02D) +|102+]210)). (220  (23)] that have identical one-party density matrices, are
3-LOCC-ncommensurate, and orthogonat the actual

The density matrix of any one party is proportional to theoGHz-3EPR example from Sec. Ill A if we use the singlet
identity matrix. So all of these states have the same one-paritate

density matrices. Most of these states will differ in the hid-

den nonlocalities and be 3-LOCC incommensurate. Here we

will give a set of three locally indistinguishabt@thogonal EPR’=i(|OO>—|11>) (24)
states of the above form: J2

In a recent papdi7], an encoding of gutrit into a tripar-
tite state has been givésee Sec. IV A The encoded state is
of the following form:

& )=|P(1,0,0)=(|000+|111)+|222), .
| v |2 )) ( o | & | 2) instead of the EPR states. 3EPBnd 2GHZ are 3-LOCC

11 1 incommensurate and orthogonal.
|D,)= q;( 0/=,——=| ) = —=(]012 +|120 +|201)) A detailed analysis of some cryptographic schemes for the
J2' 2 V2 potential use of incommensurate states should be done. Here
we will restrict ourselves to a rather illustrative example in-
1 . .
+ (|02 + |102 + |210), 23) volving quantum secret sharing.
V2
A. How Bob can cheat using the((3,2)) threshold scheme
®5)=| | 0 1 1 1 (|012)+| 120 + |201)) and how to prevent that
¥ 20 2l 2 The ((3,2) threshold scheme ifi7] encodes a qutrit
1 W)= a|1)+B|2)+ ¥3) (25
- E(|OZD+|102>+ |210)).

into the staté®(«,3,7)) (22). Each party obtains one qutrit
These states differ in the value kbf (17), which takes org, of the encoded state: Alice the first, Bob the second, and
=, and 0 for the three states, respectively. They are thu€harlie the third. This scheme allows any two parties to-

3-LOCC incommensurate. gether to completely extract the secret state (25). But no
party alone can infeany information about the secret state
IV. CRYPTOGRAPHY—ENCODING INTO HIDDEN |W): each party’s local-density matrix is proportional to the
NONLOCALITIES identity. The procedure to retriey@) from say the first two

quitrits is the following[ 7]: First the first register is added to

We have exhibited states that cannot be transformed intthe secondmodulo 3 and then thdresulting second qutrit
each other by local operations and classical communicatiois added to the firstmod 3. These operations can be per-
involving three parties and shown that there is a large numformed without any measurement. This changes an encoded
ber of them. We think that these states can have a fruitfustate|®(a, 8, 7)) to
application in(quantum-cryptographic protocols like three-
party quantum bit commitment schemes. We can producea(|ooo>+|111>+|222>)+B(|012>+|120>+|20]>)
states that for each subsystem are indistinguishable and yet
have some hidden nonlocal property that makes them differ- ~ +¥(|021)+|102) +[210)) + «(|000) +|021) +|012))
ent. AB
How could weencode information into the hidden nonlo-  — 8(|112+|100) +|121)) + y(|221) +|212) +|200))
calities and how can we access them? One possibility is to
find orthogonal stateshat have the same respective subparty — — ([0)+B[1)+¥]2))©(|00) +[21) +[12)). (26)
density matrices and differ only in these hidden parameters.
Encode a bit-string into each of those and give a part of thdhe secret state is completely restored in the first register.
corresponding state to the three parti&sB, andC, without  Analogous decoding procedures apply A€ andBC.
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In the original schem§7] it is assumed that the parties are  This type of cheating is possible, because the set of or-
honest when they participate in reconstructing the secrahogonal states chosen to encddis equivalent under local
guantum state. Now assume the president of the bank usesitaries. Bob has applied a local unitary transformaticio
this procedure to encode one of thr@éassical “trits” ( b changeplz—pig. etc. Hereby, he has changed the state
=0, 1, or 2. He may want to use three orthogonal statescorresponding td=0 to a statd¥) with pprg=pag. |¥)
|®o), |®1), |®,) that can be completely distinguished by an and the actual state correspondingbte 1 are related by a
orthogonal measurement. So he distributes one of threpcal unitary on Charlie’s systerr|¥) is a purification of
knownorthogonal states to his three vice presidents. He doelgj—AB and so is the state correspondingote 1). This can only
not want any of thenaloneto get knowledge about the en- pe possible if the states encodibg=0 andb=1 are uni-
coded trit, only two of them together should be able to findiayily equivalent.

out what the secret was. For illustration, let us suppose that Tq prevent this type of cheating by a dishonest misleading

he uses the states party, the president of the bank has to select a sé@tafm-
mensurateorthogonal states like Eqg23). They are not
|Toy=10), |P)=]1), [¥,)=]2) (27)  transformable into each other by any local actiand clas-

sical communication The class of incommensurate states

to encodeb=0, 1, and 2, respectively, and creates and dis—has helped us tohoose a quantum secret

tributes one of the three encoded statpB(1,0,0)),
|®(0,1,0)), and|®(0,0,1)). The three parties know the set V. CONCLUSION
of encoded states but not the actual state they are sharing.

Now let us assume Bob decides to obtain the secret on hitst Wf ?av?hei:htl)mlted atclass of Ioczti_llyl/ g_(]:jfU|vaI?ntl multlgar-
own without having to share his knowledge with Alice or Ite states that belong 1o an essential diiterent class ot en-

Charlie. He thinks of the following strategy. He applies atanglement. Actuallyalmost alllocally similar multiparticle

unitary transformatiorJ to his share of the encoded secret states cannpt be transformed into each' other either way by
state local operations and classical communicatitmey are in-

commensurateThe partial order induced on multipartite
states by transformation vieLOCC is different from the
U:[0)—[1), [1)—=[2), [2)—]0). (28)  pipartite case: There is a multidimensional manifold of uni-
tarily nonequivalent states that are maximal in the sense that
The set of encoded states after this transformation will havéhere is no other state from which they can be obtained by
changed to k-LOCC. The number of parameters to characterize different
classes of entanglement grows exponentially with the num-
|®(1,0,0)—(|010)+| 121 +|202), ber of parties_ involved. This space of locally indistinguish-
able and yet incommensurate states suggests itself for cryp-
tographic applications involving several parties. We have

|®(0,1,0)—(|022 +[100) +|211)), (29 shown that a set of incommensurate orthogonal and locally
indistinguishable states can improve am,{))-threshold
|®(0,0,1))—(]001) +|112) + | 220)). scheme against a form of cheating by a party.

Other possible applications in cryptography should be in-

] ) ) ) vestigated. For instance, it is conceivable to find stéfbs
Al|qe and Charlie have no way of _detectlng Bob’s _dlshon_estshared betweek parties such that any of them by choosing
action. Suppose now that at the time for two parties to find, |oca| action could transform the whole state into eifidey
out what the secret was, Alice and Bob were the two ;) where the last two states have the same local-density
jointly retrieve the state. If they apply E26) to the  mayices for each party. This shared state can then be used to

changed state, they obtain share a secret between multiple users that none of them can
reveal to an outsider. Only in getting together can they find
b=0:]1), out what the secret was. The partial order of multipartite
states should be investigated beyond classes of locally
b=1:2) ¢ ®(|10)+|01)+|22)), equivalent states.

Another way to follow would be to suggest “multipar-
tite” quantum bit commitment schemes involving sets of
incommensurate states. Note that all proofs of the “no-go”
At the end of this procedure, Alice and Bob are supposed ttheorem [8,9] for two-party quantum bit commitment
know the value ot. Assumeb=0. Alice will think thatb schemeglike [10]) use the Schmidt-decomposition of a bi-
=1. Bob, however, having changed the state, knows that ipartite state(or in other words, the nonexistence of hidden
jointly with Alice he gets the outcomeld=1,” the actual parameters for two-party entanglemen¥ultiparty proto-
trit b is 0. So he has obtained the actual secret alone ancbls do not obey their line of argument.
misled Alice. Bob can applyJ ! afterwards to erase the
traces of his cheating pomplt_ately. Similar misleading hap_— ACKNOWLEDGMENTS
pens if Bob and Charlie retrieve the secret. Of course, if
Alice and Charlie were the two to recover the secret trit, Above all | would like to thank Michael Nielson for in-
Bob’s action would not help and they will obtabn=0. troducing me to the topic of multipartite entanglement, and

b=2:/0),
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due to John Preskill for very helpful discussions and hospiChuang. This work was partially supported by DARPA
tality at Caltech, where this work was done, and to AlexeiDAAG 55-97-1-0341, and through the Quantum Information
Kitaev for critical comments. Thanks are also due to Danieland Computing InstitutdQUIC) administered through the
Lidar and Markus Grassl for improvements on the manu-ARO.
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