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Multiparticle entanglement and its applications to cryptography
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Entanglement between three or more parties exhibits a realm of properties unknown to two-party states.
Bipartite states are easily classified using theSchmidt decomposition. The Schmidt coefficients of a bipartite
pure state encompass all the nonlocal properties of the state and can be ‘‘seen’’ by looking at one party’s
density matrix only. Pure states of three and more parties, however, lack such a simple form. They have more
invariants under local unitary transformations than any one party can ‘‘see’’ on their subsystem. These ‘‘hid-
den nonlocalities’’ will allow us to exhibit a class of multipartite states that cannot be distinguished from each
other by any party. Generalizing a result of Bennett, Popescu, Rohrlich, Smolin, and Thapliyal, and using a
recent result by Nielsen, we will show that these states cannot be transformed into each other by local actions
and classical communication. Furthermore, we will use an orthogonal subset of such states to hint at applica-
tions to cryptography and illustrate an extension to quantum secret sharing@using recently suggested
((n,k))-threshold schemes#. @S1050-2947~99!01408-0#

PACS number~s!: 03.67.2a, 03.65.2w
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I. INTRODUCTION

The entanglement properties ofbipartite pure stateshave
already been treated extensively. The analysis of entan
ment and its properties for these states is much easier
for three or more party-shared states due to a particul
convenient form that captures all nonlocal parameters:
~unique! Schmidt decomposition@1#.

An interesting question which arises in attempts to cl
sify entanglement is which states can be obtained from
given state if we allowlocal actions and classical commun
cation of the parties. By classical communication we me
an a priori unlimited amount of two-way classical commu
nications. We will call these transformations of ak-party
statek-LOCC (k-party local operations and classical com
munication!. The crucial difference between pure local un
tary action and LOCC is that each party may perform~gen-
eralized! measurements on its subsystem and broadcas
outcomes via classical channels between the parties.
other parties may choose their subsequent actions condit
on the outcomes of these measurements.

For bipartite pure states, Nielsen@2# has recently found
necessary and sufficient conditions for the process of
tanglement transformation via 2-LOCC to be possible. A k
tool in this result is the Schmidt decomposition of bipart
states and the conditions involve the Schmidt coefficients
the states only.

So once we are given the density matrix of one party
bipartite pure state no longer contains any secrets: The
genvalues of one party’s density matrix completely char
terize the state~up to equivalence under local unitary oper
tions! and give us complete knowledge about
entanglement transformation properties under local op
tions and classical communication between the parties
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other words, given a sufficient supply of copies of a cert
state shared by two parties, each of the parties is abl
determine~up to a certain precision! its equivalence class
under local unitariesand which other states it can be tran
formed into via 2-LOCC.

The situation is drastically different formultipartitestates
involving more than two parties. No convenient~locally in-
variant! form—analogous to the Schmidt decomposition
can be given. The number of invariants of a state under lo
unitaries grows exponentially with the number of parties~see
Sec. II!. Attempts to find canonical points on the orbits
multipartite states have been made@3#, but yield unwieldy
outcomes. We will say that two multiparty states areuni-
tarily equivalent(uC&;uF&) if they can be transformed into
each other by local~single-party! unitary operations only
~without classical communication!. Linden and Popescu@4#
have given a lower bound on the number of parame
needed to describe equivalence classes of multipartite st
To parametrize inequivalent states, they also exhibited
explicit polynomial form for invariants of a multipartite stat
under local unitaries~see Sec. III B!. Some of these invari-
ants are functions of the eigenvalues of the local den
matrices of all parties. For three~and more! parties, however,
the number of independent invariants under local unitarie
bigger than the number of independent eigenvalues of
local-density matrices. This means that if we get all possi
information from each party’s subsystem, there will be
variants under local unitaries that we cannot determine.
will call these parametershidden nonlocalitiesof our quan-
tum state. Complete knowledge of each local system t
does not give us complete information on the equivale
class of the multipartite state under local unitary operatio

Let us review Nielsen’s result to make the difference b
tween bipartite and multipartite states more precise: For
partite pure states and 2-LOCC, there is a partial ordering
the states that characterizes their mutual entanglement tr
formation properties@2#:

.
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uC& ˜

2-LOCC

uF& iff rA
CarA

F , ~1!

where rA is the density matrix of one party andrA
CarA

F

means that the eigenvaluesl1
C , . . . ,lk

C of rA
C are majorized

by the eigenvaluesl1
F , . . . ,lk

F of rA
F , i.e.,

(
i 51

k

l i
C↓<(

i 51

k

l i
F↓ , ;k. ~2!

The arrow indicates that the eigenvalues have to be put
decreasing order.

This gives a partial ordering in the space of all nonlo
parameters of bipartite states~remember that the nonloca
parameters are the independent eigenvalues of the de
matrix of one party!. In the case of just two qubits shared b
two parties, this even gives atotal ordering on the states,
meaning that given two states either the first can be tra
formed into the second or vice versa~there is only one inde-
pendent Schmidt coefficient!. Amonghigher dimensional bi-
partite states, however, we also find sets of states that can
be transformed into each other either way by LOCC. Th
states have been termedincommensurate. The smallest sys-
tem to provide us with two bipartite incommensurate pu
states is the nine-dimensional space of twoqutrits @2#. Also
note that the commensurateness or incommensuratene
two bipartite states can be immediately identified by look
at the density matrix of one subsystem.

Two bipartite pure states whose one-party density ma
ces have the same eigenvalues arealwaysmutually obtain-
able from each other via 2-LOCC. Also

1

n
I arA

F , ;uF& ~3!

implies that starting with an Einstein-Podolsky-Ros
~EPR!-type bipartite state~unique up to local unitaries with
the property that its density matrix obtained by tracing o
one party is proportional to the identity matrix!, we can ex-
tracteverygiven bipartite stateuF& with local operations and
classical communication. The partially ordered set of sta
under 2-LOCC has justone maximal state~up to unitary
equivalence!.

We will show that this structure is very different formul-
tipartite states. Bennett, Popescu, Rohrlich, Smolin, an
Thapliyal~BPRST! @5,6# have found two three-party states—
each party having two qubits—of dimension 26 that are in-
commensurate, although all of their subdensity matrices
identical. Following their argument, we will use Nielsen
result~1! to generalize their proof and show that even for t
smallest three-partite state~of dimension 8! there are incom-
mensurate states that haveidentical or similar local-density
matrices. Their incommensurateness cannot be ‘‘seen’’
looking at subsystems of the state~it is hidden!. We connect
hidden nonlocalitiesto hidden incommensuratenessto see
that two multipartite states with similar density matrices
each party are incommensurate if and only if they are
unitarily equivalent.

We give some examples oflocally equivalent k-LOCC
incommensurate states. We will suggest how to ‘‘encode
into hidden nonlocalities’’ with the help of an orthogon
to
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subset of such states. These states have the property tha
are totally indistinguishable from each other for each pa
alone and cannot be transformed into each other by lo
operations and classical communication between the par
Furthermore, we can find a set of such states that aremaxi-
mal in the sense that they cannot be obtained from any o
~unitarily not equivalent! state byk-LOCC. Only if the par-
ties perform a collective~orthogonal! measurement will they
be able to~perfectly! distinguish these states. This area nee
further exploration.

We will analyze a recently suggested cryptographic p
tocol @7# for quantum secret sharingto identify a class of
incommensurate and locally equivalent states in them.
((n,k)) threshold scheme (k,n) is a method to encode an
divide a secret quantum state betweenn parties such that
from any k shares the state can be perfectly recovered
from any k21 or fewer shares no information whatsoev
about the state can be inferred.

The scheme as introduced in@7# assumes that all partie
are honest when they participate in reconstructing the se
Allowing for the possibility of some parties being dishone
in order to retrieve the secret alone, we will show how t
scheme can be ‘‘misused’’ for cheating by one party if it
used to encode a ‘‘classical’’ bit and how this cheating c
be prevented by using incommensurate locally identi
states.

II. COUNTING HIDDEN NONLOCALITIES

Linden and Popescu@4# have classified the orbits of mul
tipartite states under local unitary operations and determi
the dimension of generic orbits and the number of para
eters needed to describe the location of such an orbit in
bert space.

In the case ofk parties each having one spin-1
2 particle

~qubit!, there are at least 2k112223k real parameters tha
characterize nonlocal properties. @Initially each
2k-dimensional state has 2k complex parameters and the r
quirement of unit norm leaves 2k1121 real parameters. The
group of equivalence transformations isU(1)3SU(2)
3SU(2)3•••3SU(2)—each local unitaryU(2).U(1)
3SU(2) but each local phase can be factored out to o
single global phase. The group~and the generic orbit! then
has dimension 3k11 or less.#

Furthermore, an explicit form for polynomial invariants o
an orbit has been given@4# ~see Sec. III B!. To get a picture
of how the number ofhidden nonlocalitiesgrows, let us
analyze the three-, four-, and five-party cases. We can ea
count parameters in the three-party spin-1

2 case: We have
five ~independent! nonlocal parameters but only three~in
general! different density matrices each characterized by o
eigenvalue. So there are two nonlocal parameters that
cannot ‘‘see’’ by only looking at various subsystems of o
entangled state. Now let us look at the four-party spin1

2

case. Here we have at least 18 nonlocal parameters b
most seven independent subdensity matrices where two
sity matrices areindependentif the eigenvalues of the firs
do not completely determine the eigenvalues of the seco
The four one-party matrices each have one nonlocal par
eter and the three independent density matrices of two j
parties have at most three parameters each thus leavi
total of at least 1824*123*355 hidden nonlocalities. Of
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912 PRA 60JULIA KEMPE
the 18 nonlocal parameters, 14 cannot be seen by only
party alone; they arehidden if we look at one-party sub-
systems only. For the five-party case, the number of nonlo
parameters that cannot be seen by looking only at each p
locally is <58. There are at least 18 nonlocal parameters
cannot be accessed by looking at any one- and two-p
subdensity matrices of the system.

In general, the number ofhidden nonlocalitiesgrows ex-
ponentially with the number of parties.

III. CLASS OF 3-LOCC INCOMMENSURATE STATES

We now want to show that there are 3-LOCC incomme
surate states for the three-spin-1

2 system. There are five inde
pendent invariants under local unitaries; three of them ar
the form trrp

2 (p5A,B,C) and completely characterize th
eigenvalues ofrp ~see Sec. III B!. Suppose that we have tw
statesuC& and uF& that differ only in the last twohidden
invariants, i.e., the three one-party density matrices ofuC&
and uF& have the same eigenvalues. For ease of argum
choose them such thatrA , rB , andrC have full rank 2.

Claim. uC& and uF& are 3-LOCC incommensurate.
Proof. What does a general 3-LOCC protocol look like

First one party, say Alice, will perform a generalized me
surement and broadcast her outcome. Then Bob and Ch
will continue with generalized measurements on their s
systems conditional on Alice’s outcome and broadcast t
outcomes. At a certain point, Alice will continue, and so o
Let us for a moment~mentally! merge Bob’s and Charlie’s
systems and look at the 3-LOCC protocol as a protocol
tween the systemsA andBC. Everything that Bob and Char
lie do after receiving Alice’s outcome and before Alice
next action can be viewed as a generalized measureme
the BC subsystem. So the whole 3-LOCC protocol can
viewed as a specific case of a 2-LOCC protocol betweeA
andBC. In particular, this means that ifuC& could be trans-
formed into uF& via 3-LOCC, it certainly could be trans
formed intouF& via 2-LOCC onA andBC.

Assume there was a 3-LOCC protocol that transformsuF&
to uC&. We have chosen the states such that

rA
C;rA

F;S cos2a 0

0 sin2a D . ~4!

Let uvA& anduvA
'& be the two eigenvectors ofrA

C and rewrite

uC&5cosauvA&uvBC&1sinauvA
'&uvBC

' &. ~5!

This is the Schmidt decomposition ofuC& as a bipartite
A-BC state. In particular,uvBC& anduvBC

' & are orthogonal in
the joint BC-Hilbert space. Alice performs the first gener
ized measurementM5$M1 ,M2 , . . . % ~with ( iM i

†Mi5I )
and obtains the outcomei. Hereby she transforms the sta
uC& to a stateuC8& with

uC8&5
1

N
@cos a~Mi uvA&!uvBC&1sina~Mi uvA

'&)uvBC
' &].

~6!

(N is the normalization factor.!
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From here Bob and Charlie will continueuC8&

——˜

32LOCC
uF& so in particular we know that uC8&

——˜

22LOCC on A,BC
uF&. From

uC& ——˜

22LOCC
uC8& ——˜

22LOCC
uF&. ~7!

Nielsen’s criterion~1! tells us

rA
CarA

C8arA
F;rA

C , ~8!

so rA
C5cos2auv&^vu1sin2auv'&^v'u has to have the sam

eigenvalues as

rA
C85

1

N2
~cos2aMi uv&^vuMi

†1sin2aMi uv'&^v'uMi
†!

5
Mi

N
rA

C
Mi

†

N
. ~9!

This implies that there is a unitary transformationU such
that

U†rA
CU5

Mi

N
rA

CS Mi

N D †

. ~10!

It follows that U(Mi /N) has to be unitary and diagonal i
the same basis asrA

C ~just pick a basis whererA
C is diagonal

and write out the matrix elements in their most general fo
using thatrA

C has full rank!. We see thatMi uvA& andMi uvA
'&

have to be orthogonal and that Alice’s generalized meas
ment reduces to a local unitary operation on her qubit.

Continuing this argument for each subsequent step of
3-LOCC protocol it follows that the whole protocol ends u
to be a succession of local unitaries. But we have chosen
states to be nonequivalent under local unitaries. This co
pletes the proof.

Note that the constraint to full-rank local-density matric
can be lifted if we only look at the restriction ofMi onto the
support ofrA , rB , rC . We have thus shown that even in th
simplest three-party case there are states that—having
same eigenvalues of all subdensity matrices—are 3-LOC
incommensurate. Furthermore, once we fix the eigenva
of rA , rB , rC , we have two additional parameters
specify different classes of 3-LOCC-incommensurate sta
In the five-dimensional space of unitarily nonequivale
states, we have found a two-dimensional subspace of m
ally incommensurate states.

This proof generalizes trivially to more than two dime
sions of each party’s Hilbert space and tok>3 parties. To
see the latter, we note that at each step of ak-LOCC protocol
we can divide the system into two parts—one party that p
forms a local operation and the otherk21 parties—and ap-
ply Nielsen’s criterion as in the three-party case.

It follows from our proof that throughout each step of
k-LOCC transformation protocol each party’s density ma
ces of the state obtained at a particular step have to majo
the corresponding density matrices of all states at previ
steps. In particular, we have the following.
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Corollary 1. If, say, Alice’s density matrix at the begin
ning and at the end of ak-LOCC protocol are similar, then
Alice’s action is restricted to local unitaries.

Corollary 2. Two k-partite statesuC& and uF& that have
similar density matrices (rp

C;rp
F , p5A,B, . . . ) on each

party’s subsystem arek-LOCC incommensurateif and only
if they arenot unitarily equivalent. After having proved the
existence of 3-LOCC incommensurate states, let us g
some specific examples.

A. The 2-GHZ–3-EPR example

BPRST@5,6# originally showed that the following three
partite states are incommensurate:

2-GHZ5
~ u0A10B10C1&1u1A11B11C1&)

A2

^
~ u0A20B20C2&1u1A21B21C2&)

A2
~11!

and

3-EPR5
~ u0A10B1&1u1A11B1&)

A2
^

~ u0A20C1&1u1A21C1&)

A2

^
~ u0B20C2&1u1B21C2&)

A2
. ~12!

In the 3-EPR state, the three parties Alice, Bob, and Cha
share three EPR pairs, one betweenA andB, one betweenA
and C, and one betweenB and C. In the 2 Greenberger
Horne-Zeilinger ~2GHZ! state, they share just share tw
GHZ states. In both cases the density matrices of Alice, B
and Charlie are identical:

r5
1

4
I . ~13!

So in any 3-LOCC transformation protocol from 2-GHZ
3-EPR and vice versa, Alice, Bob, and Charlie are restric
to local unitaries. It is, however, impossible to transfo
2-GHZ to 3-EPR via local unitaries. One simple way to s
this is to observe that 2-GHZ is a triseparable state—it gi
separable density matrices when tracing out any one par
whereas 3EPR is not triseparable.~Tracing outA in 3-EPR
gives 1

4 I ^ uEPRB2C2&^EPRB2C2u, which is obviously not
separable.!

Note that this proof generalizes trivially tok-partite states
andk-LOCC: (k21)GHZ and (2

k)EPRare k-LOCC incom-
mensurate.

B. Two locally nondistinguishable 3-LOCC incommensurate
states of dimension 8

Note that the smallest bipartite system that contains
incommensurate states has to have dimension 9 at least
each party possessing a qutrit. This is because two den
matrices that are not majorized either way have to have r
3 at least. But even for the smallest three-partite system
dimension 8, there are incommensurate states. We can
e

ie

b,

d

e
s
—

o
ith
ity
k

of
nd

states with identical local-density matrices that cannot
transformed into each other via 3-LOCC. To keep calcu
tions easier, we looked for particularly simple states of
following form:

uC&5a1u000&1a2uvvv&, ~14!

whereuv& is a normalized state. The equivalence classes
these states are characterized by two parameters—saya1a1*
and z^0uv& z—and have equivalent density matrices on
three subparties. So from the five independent invariant
~generic! states under local unitary transforms, in this ca
only ~at most! two are algebraically independent.

Let us look at the invariants in the general case for sta
of the form uC&5( i , j ,ka i jk ueiejek&. From the coefficients
a i jk we can form polynomials that are manifestly invaria
under local unitaries, like the degree 2 polynomial:

I 15(
i jk

a i jka i jk* , ~15!

which is the norm of the state. To fourth degree we get th
polynomials:

I 25 (
i jkmpq

aki jami j* ampqakpq* 5tr rA
2 ,

I 35 (
i jkmpq

a ik ja im j* apmqapkq* 5tr rB
2 , ~16!

I 45 (
i jkmpq

a i jka i jm* apqmapqk* 5tr rC
2 ,

which in general are algebraically independent. One of
higher degree invariants is

I 55 (
i jklmnopq

a i jka i lm* anloap jo* apqmanqk* , ~17!

which in general is not algebraically dependent ofI 2 ,I 3 ,I 4.
For the simple state in Eq.~14!, we haveI 25I 35I 4, and a
symbolic calculation~Groebner basis! shows thatI 5 and I 2
are algebraically independent. We now exhibit two states
the above simple form~14! which have similar one-party
density matrices~and the sameI 2) but differentI 5, thus be-
ing 3-LOCC incommensurate:

uC&52A 3

37
u000&2

5

A37
u111& ~18!

and

uF&54A 2

37
u000&2

5

A37
uvvv&, ~19!

whereuv&5(u0&1u1&)/A2 is the stateu1& rotated by 45°,

I 2
C5I 2

F5
769

1369
~20!

and
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914 PRA 60JULIA KEMPE
I 5
C'0.343ÞI 5

F'0.242. ~21!

So these two states are 3-LOCC incommensurate. We
apply a local unitary transformation on each subsystem
one of the states to make their density matrices diagona
the same basis so that they are completely indistinguish
for each party.

C. The „„3,2……-threshold states

In a recent paper@7#, an encoding of aqutrit into a tripar-
tite state has been given~see Sec. IV A!. The encoded state i
of the following form:

uF~a,b,g!&5a~ u000&1u111&1u222&)1b~ u012&1u120&

1u201&)1g~ u021&1u102&1u210&). ~22!

The density matrix of any one party is proportional to t
identity matrix. So all of these states have the same one-p
density matrices. Most of these states will differ in the h
den nonlocalities and be 3-LOCC incommensurate. Here
will give a set of three locally indistinguishableorthogonal
states of the above form:

uF1&5uF~1,0,0!&5~ u000&1u111&1u222&),

uF2&5UFS 0,
1

A2
,

1

A2
D L 5

1

A2
~ u012&1u120&1u201&)

1
1

A2
~ u021&1u102&1u210&), ~23!

uF3&5UFS 0,
1

A2
,2

1

A2
D L 5

1

A2
~ u012&1u120&1u201&)

2
1

A2
~ u021&1u102&1u210&).

These states differ in the value ofI 5 ~17!, which takes on1
9 ,

1
18 , and 0 for the three states, respectively. They are t
3-LOCC incommensurate.

IV. CRYPTOGRAPHY—ENCODING INTO HIDDEN
NONLOCALITIES

We have exhibited states that cannot be transformed
each other by local operations and classical communica
involving three parties and shown that there is a large nu
ber of them. We think that these states can have a fru
application in~quantum!-cryptographic protocols like three
party quantum bit commitment schemes. We can prod
states that for each subsystem are indistinguishable and
have some hidden nonlocal property that makes them dif
ent.

How could weencode information into the hidden nonlo
calities and how can we access them? One possibility is
find orthogonal statesthat have the same respective subpa
density matrices and differ only in these hidden paramet
Encode a bit-string into each of those and give a part of
corresponding state to the three parties,A, B, andC, without
an
to
in
le

rty
-
e

s

to
n
-

ul

e
yet
r-

o
y
s.
e

telling them which specific state they share. While the par
are locally separated and only allowed to perform local
tions and classical communication they have no way to tra
form the states into each other. Only when they get toge
~or send their share of the state through a quantum chan!
can they perform an orthogonal measurement and determ
the encoded bitstring. To ensure that there is no comm
stateV from which two differentstates can be obtained vi
k-LOCC, we can choose states with local-density matri
proportional to the identity. Since the identity matrix on
subsystem majorizes every other density matrix,rA

V would
have to be proportional to the identity as well. We ha
shown that in this case each party is restricted to local u
taries in their attempt to change the state via LOCC.

Another example of two tripartite states@apart from Eq.
~23!# that have identical one-party density matrices, a
3-LOCC-incommensurate, and orthogonalis the actual
2GHZ-3EPR example from Sec. III A if we use the singl
state

EPR85
1

A2
~ u00&2u11&) ~24!

instead of the EPR states. 3EPR8 and 2GHZ are 3-LOCC
incommensurate and orthogonal.

A detailed analysis of some cryptographic schemes for
potential use of incommensurate states should be done.
we will restrict ourselves to a rather illustrative example
volving quantum secret sharing.

A. How Bob can cheat using the„„3,2…… threshold scheme
and how to prevent that

The ~~3,2!! threshold scheme in@7# encodes a qutrit

uC&5au1&1bu2&1gu3& ~25!

into the stateuF(a,b,g)& ~22!. Each party obtains one qutr
of the encoded state: Alice the first, Bob the second,
Charlie the third. This scheme allows any two parties
gether to completely extract the secret stateuC& ~25!. But no
party alone can inferany information about the secret sta
uC&: each party’s local-density matrix is proportional to th
identity. The procedure to retrieveuC& from say the first two
qutrits is the following@7#: First the first register is added t
the second~modulo 3! and then the~resulting! second qutrit
is added to the first~mod 3!. These operations can be pe
formed without any measurement. This changes an enco
stateuF(a,b,g)& to

a~ u000&1u111&1u222&)1b~ u012&1u120&1u201&)

1g~ u021&1u102&1u210&)1a~ u000&1u021&1u012&)

˜

AB
b~ u112&1u100&1u121&)1g~ u221&1u212&1u200&)

5~au0&1bu1&1gu2&) ^ ~ u00&1u21&1u12&). ~26!

The secret state is completely restored in the first regis
Analogous decoding procedures apply forAC andBC.
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In the original scheme@7# it is assumed that the parties a
honest when they participate in reconstructing the se
quantum state. Now assume the president of the bank
this procedure to encode one of three~classical! ‘‘trits’’ ( b
50, 1, or 2!. He may want to use three orthogonal sta
uF0&, uF1&, uF2& that can be completely distinguished by
orthogonal measurement. So he distributes one of th
knownorthogonal states to his three vice presidents. He d
not want any of themalone to get knowledge about the en
coded trit, only two of them together should be able to fi
out what the secret was. For illustration, let us suppose
he uses the states

uC0&5u0&, uC1&5u1&, uC2&5u2& ~27!

to encodeb50, 1, and 2, respectively, and creates and d
tributes one of the three encoded statesuF(1,0,0)&,
uF(0,1,0)&, and uF(0,0,1)&. The three parties know the se
of encoded states but not the actual state they are shari

Now let us assume Bob decides to obtain the secret on
own without having to share his knowledge with Alice
Charlie. He thinks of the following strategy. He applies
unitary transformationU to his share of the encoded secr
state

U:u0&˜u1&, u1&˜u2&, u2&˜u0&. ~28!

The set of encoded states after this transformation will h
changed to

uF~1,0,0!&˜~ u010&1u121&1u202&),

uF~0,1,0!&˜~ u022&1u100&1u211&), ~29!

uF~0,0,1!&˜~ u001&1u112&1u220&).

Alice and Charlie have no way of detecting Bob’s dishon
action. Suppose now that at the time for two parties to fi
out what the secret was, Alice and Bob were the two
jointly retrieve the state. If they apply Eq.~26! to the
changed state, they obtain

b50:u1&,

b51:u2&

b52:u0&,
J ^ ~ u10&1u01&1u22&),

At the end of this procedure, Alice and Bob are suppose
know the value ofb. Assumeb50. Alice will think that b
51. Bob, however, having changed the state, knows tha
jointly with Alice he gets the outcome ‘‘b51,’’ the actual
trit b is 0. So he has obtained the actual secret alone
misled Alice. Bob can applyU21 afterwards to erase th
traces of his cheating completely. Similar misleading h
pens if Bob and Charlie retrieve the secret. Of course
Alice and Charlie were the two to recover the secret t
Bob’s action would not help and they will obtainb50.
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This type of cheating is possible, because the set of
thogonal states chosen to encodeb is equivalent under loca
unitaries. Bob has applied a local unitary transformationU to
changerAB

0
˜rAB

1 , etc. Hereby, he has changed the st
corresponding tob50 to a stateuC& with rAB

C 5rAB
1 . uC&

and the actual state corresponding tob51 are related by a
local unitary on Charlie’s system (uC& is a purification of
rAB

1 and so is the state corresponding tob51). This can only
be possible if the states encodingb50 and b51 are uni-
tarily equivalent.

To prevent this type of cheating by a dishonest mislead
party, the president of the bank has to select a set ofincom-
mensurateorthogonal states like Eqs.~23!. They are not
transformable into each other by any local action~and clas-
sical communication!. The class of incommensurate stat
has helped us tochoose a quantum secret.

V. CONCLUSION

We have exhibited a class of locally equivalent multipa
tite states that belong to an essential different class of
tanglement. Actuallyalmost all locally similar multiparticle
states cannot be transformed into each other either way
local operations and classical communication;they are in-
commensurate. The partial order induced on multipartit
states by transformation viak-LOCC is different from the
bipartite case: There is a multidimensional manifold of u
tarily nonequivalent states that are maximal in the sense
there is no other state from which they can be obtained
k-LOCC. The number of parameters to characterize differ
classes of entanglement grows exponentially with the nu
ber of parties involved. This space of locally indistinguis
able and yet incommensurate states suggests itself for c
tographic applications involving several parties. We ha
shown that a set of incommensurate orthogonal and loc
indistinguishable states can improve an ((n,k))-threshold
scheme against a form of cheating by a party.

Other possible applications in cryptography should be
vestigated. For instance, it is conceivable to find statesuV&
shared betweenk parties such that any of them by choosin
a local action could transform the whole state into eitheruF&
or uC&, where the last two states have the same local-den
matrices for each party. This shared state can then be us
share a secret between multiple users that none of them
reveal to an outsider. Only in getting together can they fi
out what the secret was. The partial order of multipart
states should be investigated beyond classes of loc
equivalent states.

Another way to follow would be to suggest ‘‘multipar
tite’’ quantum bit commitment schemes involving sets
incommensurate states. Note that all proofs of the ‘‘no-g
theorem @8,9# for two-party quantum bit commitmen
schemes~like @10#! use the Schmidt-decomposition of a b
partite state~or in other words, the nonexistence of hidde
parameters for two-party entanglement!. Multiparty proto-
cols do not obey their line of argument.
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