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Reduction criterion for separability
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We introduce a separability criterion based on the positive mapG:r˜(Tr r)2r, wherer is a trace-class
Hermitian operator. Any separable state is mapped by the tensor product ofG and the identity into a non-
negative operator, which provides a simple necessary condition for separability. This condition is generally not
sufficient because it is vulnerable to the dilution of entanglement. In the special case where one subsystem is
a quantum bit,G reduces to time reversal, so that this separability condition is equivalent to partial transpo-
sition. It is therefore also sufficient for 232 and 233 systems. Finally, a simple connection between this map
for two qubits and complex conjugation in the ‘‘magic’’ basis@Phys. Rev. Lett.78, 5022~1997!# is displayed.
@S1050-2947~99!00708-8#
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I. INTRODUCTION

The state of a quantum bipartite systemAB is described
asseparable~or classically correlated! if it can be obtained
by two partiesA andB that prepare their subsystem accor
ing to some common instructions~see, e.g., Refs.@1,2#!.
Mathematically, this means that the density operatorr char-
acterizing the state of the bipartite system can be written
convex sum of product states, that is,

r5(
i

wi~r i
(A)

^ r i
(B)! , ~1!

where the weightswi satisfy ( iwi51 and 0<wi<1. The
wi ’s can be viewed as the probability distribution of a cla
sical random variable that is known to both partiesA andB
and used by them to prepare their subsystem. Namely, if
subsystemA ~and B! is prepared in stater i

(A) ~and r i
(B))

when the classical variable takes on valuei, the state of the
joint systemAB is given by Eq.~1!. A separable stater
satisfies several interesting properties. The joint statistic
any pair of local observablesOA and OB ~measured sepa
rately on each subsystem! can be described classically, bas
on an underlying global ‘‘hidden’’ variable. For example, th
quantum expectation value of the productOAOB is given by

Tr@r~OA^ OB!#5(
i

wi^a& i^b& i , ~2!

where ^a& i5Tr@r i
(A)OA# and ^b& i5Tr@r i

(B)OB#. In other
words, the joint statistics ofOA and OB can be understood
classically, by assuming that the local statistics of the o
comes can be described separately for eachr i

(A) and r i
(B) ,

and that the correlations originate from a hidden variabi
distributed according towi . Moreover, a separable syste
always satisfies Bell’s inequalities~the converse is not true!,
so that the latter represent anecessarycondition for separa-
bility ~see, e.g., Ref.@1#!. Note that any joint probability
distribution can be represented as a convex combinatio
product distributions, so that classical probabilities are
ways separable in the above sense.

The decomposition of a separable stater into a convex
mixture of product states is not unique in general, but
PRA 601050-2947/99/60~2!/898~12!/$15.00
-

a

-

e

of

t-

of
l-

e

fact thatr is separable implies that there must exist at le
one such decomposition. If no such decomposition can
found, thenr is termed inseparable or entangled, and it c
be viewed asquantumcorrelated. Except for the special ca
wherer describes a pure state, the distinction between se
rable and inseparable states appears to be an extraordin
difficult problem. More precisely, some mixed states can
‘‘weakly’’ inseparable, in the sense that it is very hard
establish with certainty their inseparability. This is basica
due to the difficulty of enumerating explicitlyall the possible
convex combinations of product states in order to detect
a state is actually inseparable. Still, it is possible to find so
conditions thatall separable states must satisfy, therefo
allowing the detection of inseparability when a state viola
one such condition. The most common example of suc
necessarycondition for separability is the satisfaction o
Bell’s inequalities. A state that violates Bell’s inequalities
inseparable, while a state satisfying them may be separ
or weakly inseparable@1#.

More recently, a surprisingly simplenecessarycondition
for separability has been discovered by Peres@2#, which has
been shown by Horodeckiet al. @3# to be strong enough to
guaranteeseparability for bipartite systems of dimension
32 and 233. If the stater is separable, then the operat
obtained by applying apartial transposition with respect to
subsystemA ~or B! to r must be positive, that is,

rTA5~rTB!* >0. ~3!

Thus, this criterion amounts to checking that all the eige
values of the partial transposition ofr are non-negative,
which must be so for all separable states. In Hilbert space
dimensions 232 and 233, this condition is actuallysuffi-
cient, that is, it suffices for ruling outall inseparable state
@3#. In larger dimensions, however, it is provablynot suffi-
cient, in the sense that it does not detect some weakly ins
rable states@3,4#. A general necessaryand sufficient condi-
tion for separability in arbitrary dimensions has been fou
by Horodeckiet al. @3#, which states thatr is separable if
and only if the tensor product ofany positive map~a map is
defined as positive if it maps positive operators into posit
operators! acting onA and the identity acting onB mapsr
into a positive operator. Although very important
898 ©1999 The American Physical Society
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PRA 60 899REDUCTION CRITERION FOR SEPARABILITY
theory, this criterion is hardly more practical than the defi
tion of separability itself since it involves the characteriz
tion of the set of all positive maps. It appears to be use
mainly for 232 and 233 bipartite systems, where such
general characterization has been found@3#.

In this paper, we introduce a positive map,G:r˜(Tr r)
2r, inspired by the structure of the conditional amplitu
operator discussed in Refs.@5,6#. This map gives rise to a
simple necessarycondition for separability in arbitrary di
mensions. More specifically, it is shown in Sec. II that a
separable state is mapped by the tensor product ofG ~acting
on one subsystemA! and the identity~acting on the otherB!
into a non-negative operator. In other words, the eigenva
of the operator (G ^ I )r5(1A^ TrA r)2r must all be non-
negative if the~unit-trace! operatorr is separable, which
provides a simple test for separability calledreductioncrite-
rion. This separability criterion has been independently
rived by Horodecki and Horodecki in Ref.@7#. In the case
where G is applied to a two-state system~quantum bit or
spin-1/2 particle!, as studied in Sec. III, this criterion corre
sponds to the time-reversal operation applied on one sys
with respect to the other one. As Peres’ criterion has b
shown to be unitarily equivalent to such a ‘‘local’’ time
reversal by Sanperaet al. @8#, this reduction criterion is sim-
ply equivalent to Peres’ for 23n composite systems. There
fore, it also results in asufficientcondition for 232 and
233 systems, according to Ref.@3#. It also has a very simple
geometric representation in the Hilbert-Schmidt represe
tion of a 232 bipartite state. Finally, we demonstrate that t
mapG is connected to the complex conjugation operation
the ‘‘magic’’ basis for two qubits introduced recently by Hi
and Wootters@9#, which underlies an interesting connectio
with the entropy of formation@10#. In Appendix A, we illus-
trate the reduction separability condition by applying it
several separable or inseparable states, and compare it t
separability criterion based on partial transposition.

II. SEPARABILITY OF BIPARTITE MIXED STATES
OF ARBITRARY DIMENSION

We consider a bipartite quantum system characterized
the density operatorrAB defined in the joint Hilbert space
HAB5HA^HB , whereHA andHB have arbitrary dimen-
sionsdA anddB .

Definition 1.Define a linear mapL which maps Hermit-
ian operators onHAB into Hermitian operators onHAB :

L:rAB˜lAB[1A^ rB2rAB with rB5TrA@rAB#. ~4!

This map commutes with a unitary transformation acting
cally on A andB. Indeed, ifrAB undergoes a unitary trans
formation of the product form, i.e.,

rAB˜rAB8 5~UA^ UB!rAB~UA
†

^ UB
† ! , ~5!

it is easy to check thatrB85TrA@rAB8 #5UBrBUB
† , so that

lAB˜lAB8 5~UA^ UB!lAB~UA
†

^ UB
† !, ~6!

i.e., lAB transforms just likerAB . As a consequence, th
spectrum oflAB is invariant under aUA^ UB isomorphism
on rAB .
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Theorem 1.A necessarycondition for the separability of
the staterAB of a bipartite systemAB is that it is mapped by
L into a positive semidefinite operator, i.e.,LrAB>0.

We need to prove that any separable state is mapped
a positive semidefinite operatorlAB . Consider aseparable
bipartite systemAB characterized by a convex combinatio
of product states:

rAB5(
i

wi~rA
( i )

^ rB
( i )! with (

i
wi51 and 0<wi<1,

~7!

whererA
( i ) andrB

( i ) are states inHA andHB , respectively. It
is easy to verify that the operatorlAB5LrAB is positive
semidefinite,

lAB5(
i

wi@~1A2rA
( i )! ^ rB

( i )#>0 ~8!

since a sum of positive operators is a positive operator.
deed, the two terms in square brackets are each>0. j

In short, the mapL reveals nonseparability: iflAB>” 0,
then rAB is inseparable. This necessary condition for t
separability of mixed states is directly related to that ba
on the conditional amplitude operator~although it is simpler
as it does not require the calculation of the latter opera!
@6#. Moreover, it is easy to see thatL conserves separability
since it is linear and maps product states into product op
tors: if rAB is separable, thenlAB>0 is also separable~or, in
general, written as a convex sum of direct products!. Let us
now calculate the partial traces oflAB :

lA5TrB@lAB#51A2rA , ~9!

lB5TrA@lAB#5~dA21!rB , ~10!

wheredA is the dimension ofHA . This shows thatL does
not preserve the trace in general. Indeed, the trace is sc
by an integer factor underL, that is, Tr@lAB#5(dA
21)Tr@rAB#. Thus,L is trace preservingonly in the special
case whereA is a two-state system~i.e., dA52). It is also
interesting to note thatL is alwaysreversible, the inverse
map being given by

L21:lAB˜~dA21!21~1A^ lB!2lAB5rAB , ~11!

where lB is defined as above. Note thatL is equal to its
inverseL21 only if dA52. In that case, iflAB is separable,
thenL21:lAB˜rAB>0. ~The fact that the inverse map re
veals inseparability is true in this case only.!

The separability condition based onL is illustrated in
Appendix A, where we consider several separable and
separable states. As we will show in Sec. III,lAB>0 results
in the same condition as Peres’ in the case of two quan
bits, in which case it issufficient~see theorem 4!; for larger
dimensions, it is only necessary.

Remark 1.Following the approach of Horodeckiet al. @3#,
the mapL can be written as the tensor product of a posit
linear mapG and the identity, that is,

L5G ^ I with G:r˜~Tr r!2r, ~12!
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900 PRA 60N. J. CERF, C. ADAMI, AND R. M. GINGRICH
whereG acts on Hermitian operators inHA and the identity
acts on operators inHB . SinceG is a positive map,L5G
^ I mapsseparablestates intopositiveoperators@3#. It there-
fore results in anecessarycondition for separability, accord
ing to theorem 1. The mapG commutes with an arbitrary
unitary transformationU, that is,

G~UrU†!5U~Gr!U† , ~13!

which makes the separability condition based onL5G ^ I
independent on the basis chosen forA and B. In the same
manner, the inverse mapL21 can be written as

L215G21
^ I with G21:r˜

Tr r

d21
2r, ~14!

whered is the dimension of the Hilbert space ofr. Note that
G21 is not a positive map ford.2, so thatL21 is in general
useless as far as detecting inseparability is concerned.
emphasizes that the reduction separability criterion is q
special in two dimensions~e.g., for a spin-1/2 particle or a
quantum bit!, as will be studied in Sec. III. Specifically, w
will show thatG applied to a two-dimensional system can
interpreted as time reversal. Consequently, the mapL
amounts to applying time reversal on subsystemA, while
leaving subsystemB unchanged. Such a link between ‘‘lo
cal’’ time reversal and separability has recently been poin
out by Sanperaet al. @8#.

Remark 2.It is interesting to consider the classical anal
of the mapsG andL5G ^ I to gain some insight into thei
physical meaning. First, applyingG to a classical probability
distribution pi ~diagonalr) corresponds to the transforma
tion

pi˜qi5(
k

pk2pi . ~15!

~Obviously,qj>0 is not normalized except for a binary di
tribution.! The classical analog ofL5G ^ I is

pi j˜qi j 5S (
k

pku j2pi u j D pj5pj2pi j . ~16!

Sincepi u j is a probability distribution ini, we always have
12pi u j>0 so thatqi j >0 and the separability criterion i
fulfilled. This emphasizes that quantum inseparability~‘‘ qi j
,0’’ ! may be viewed as resulting from a conditional pro
ability that exceeds1 ~more precisely, an eigenvalue ofrAuB
which exceeds 1! @6#.

Definition 2.Two additional maps from operators onHAB
to operators onHAB can be defined: thedual map

L̃:rAB˜l̃AB5rA^ 1B2rAB ~17!

and thesymmetricmap

M :rAB˜mAB51A^ 1B2rA^ 1B21A^ rB1rAB , ~18!

whererA5TrB@rAB# andrB5TrA@rAB#.
The mapL which we considered until now is related

the conditional amplitude operator ofA conditionally onB,
that is rAuB @6#. Of course, a similar linear map can be d
his
te

d

-

fined using the amplitude operatorrBuA , and exactly the
same conclusions follow. This is thedual mapL̃ defined in
Eq. ~17!. It is trace preserving and self-inverse in the ca
wheredB52. It can obviously be written as the tensor pro
uct L̃5I ^ G, whereG now acts on operators onHB , and
therefore commutes with aUA^ UB isomorphism. SinceG is
positive, L̃ maps separable states into positive~separable!
operators, which results in another separability conditi
i.e., l̃AB>0. As we will see in Sec. III, the operatorslAB

and l̃AB can be shown to have the same spectrum whendA
5dB52, in which case they result in the same separabi
condition. However, this property does not hold in larg
dimensions, i.e.,lAB andl̃AB do not have the same spectru
in general~see Appendix A!.

We can also construct another linear map by cascadinL

andL̃ ~the order is irrelevant!, which results in thesymmet-

ric mapM5L̃L5G ^ G defined in Eq.~18!. Any separable
rAB is mapped byM into a separable operatormAB>0, as
expected. The symmetric map also commutes with aUA
^ UB isomorphism

M @~UA^ UB!rAB~UA
†

^ UB
† !#

5~UA^ UB!~MrAB!~UA
†

^ UB
† ! ~19!

so that the spectrum ofmAB5MrAB is invariant under local
transformations onrAB . It is also reversible, its inverse ma
M 215G21

^ G21 being given by

M 21:mAB˜1A^ 1B2~dB21!21~mA^ 1B!

2~dA21!21~1A^ mB!1mAB5rAB , ~20!

where mA5TrB@mAB#5(dB21)(1A2rA) and mB
5TrA@mAB#5(dA21)(1B2rB). As expected, this map is
trace preserving and self-inverse only in the case wheredA
5dB52. It corresponds then to a time-reversal operat
applied to thejoint systemAB. In this case,M by itself is not
useful as far as revealing inseparability is concerned sinc
is positive, i.e.,MrAB>0. Therefore, all inseparable state
of two quantum bits are mapped into positive operators
as are separable states. Still,M plays a role when analyzing
the separability of two quantum bits as it is equivalent to
complex conjugation operation in the ‘‘magic’’ basis intro
duced by Hill and Wootters@9# ~see theorem 6!. Whether the
positivity of M holds in arbitrary dimensions is not known

Theorem 2.The reduction separability criterion (LrAB
>0) is not a sufficient condition for the separability ofrAB .

In order to prove that this criterion is not sufficient, w
show that it is possible to find aninseparablesystem with
lAB>0, i.e., such that its inseparability isnot revealed byL.
We will construct such an inseparable system by extend
an inseparable component with a separable one, ‘‘dilutin
the inseparability@6#. Consider an inseparable systemA8B8
with lA8B8>” 0. Let us extendA8B8 with a separable system
A9B9, and apply the reduction criterion to the joint syste
AB whereA[A8A9 andB[B8B9. Since the joint system is
characterized byrAB5rA8B8^ rA9B9 , its associated operato
under the mapL is given by
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PRA 60 901REDUCTION CRITERION FOR SEPARABILITY
lAB5LrAB5~1A8^ rB8! ^ ~1A9^ rB9!2rA8B8^ rA9B9 .
~21!

Using the operatorslA8B85LrA8B851A8^ rB82rA8B8 and
lA9B95LrA9B951A9^ rB92rA9B9 corresponding toL ap-
plied to each component system, we obtain

lAB5lA8B8^ lA9B91lA8B8^ rA9B91rA8B8^ lA9B9
~22!

with lA8B8>” 0 andlA9B9>0 ~sinceA9B9 is separable!. The
dilution of entanglement comes from the fact that the th
term on the right-hand side of Eq.~22! is >0. As a conse-
quence, Eq.~22! cannotguarantee thatlAB>” 0 even though
the composite systemAB contains an inseparable compone
aslA8B8>” 0 @i.e., even though the sum of the first two term
on the right-hand side of Eq.~22! is >” 0#. j

Note that, even when both components are insepar
with lA8B8 ,lA9B9>” 0, thenlAB>” 0 is not necessarily true, s
that the inseparability of the joint systemAB is not always
revealed byL. This property contrasts with the situatio
prevailing when using the conditional amplitude matrix if t
conditional amplitude operator of each component admits
eigenvalue.1, then so does the corresponding operator
the whole system@6#!. Conversely, Eq.~22! implies that if
both components havelA8B8>0 and lA9B9>0, then lAB
>0.

It is not difficult to find examples of such inseparab
statesAB whose inseparability is masked~i.e., lAB>0) by
extending an inseparable componentA8B8 that satisfies
lA8B8>” 0 with a separable oneA9B9. For example, letA8B8
be one of the Bell states, e.g.,rA8B85uF1&^F1u with
uF1&5221/2(u00&1u11&), and letA9B9 be a product of two
random quantum bits, i.e.,rA9B95(1A9^ 1B9)/4. SincerB8
51B8/2, we havelA8B851A8B8/22rA8B8>” 0, as expected
Using lA9B95rA9B9 , we see that Eq.~22! yields

lAB5~1A8B82rA8B8! ^ rA9B9 , ~23!

which is obviously a non-negative operator, so that the
separability ofAB is hidden. The example of weakly insep
rable states with a positive partial transpose~see Ref.@4#! is
treated in Appendix A, to illustrate thatlAB>0 is not a
sufficient condition in general.

Remark 1.The mechanism of dilution of inseparabilit
can be understood by examining the action of the mapG on
product states. Indeed, when applyingL5G ^ I on the state
rAB5rA8B8^ rA9B9 , G acts on the staterA8^ rA9 ~B andB8
are left unchanged byI!. Let us consider a density operat
of the product form r5r8^ r9. Since we have Tr(r)
5Tr(r8)Tr(r9), we see that it is mapped to

G~r8^ r9!5Tr~r8!Tr~r9!2r8^ r9

5@Tr~r8!2r8# ^ @Tr~r9!2r9#

1Tr~r8! ^ r91r8^ Tr~r9!22r8^ r9

5Gr8^ Gr91Gr8^ r91r8^ Gr9 , ~24!

which implies the relation

G5G8^ G91G8^ I 91I 8^ G9, ~25!
t

le

n
r

-

whereG8 ~or G9) stands for the same map but acting on t
subspace ofr8 ~or r9) while G acts on the joint space. Usin
the same notation forL ~i.e., L8 acts on the subspace o
A8B8 while L9 acts on the subspace ofA9B9), the latter
equation gives

L5G ^ I 5L8^ L91L8^ I 91I 8^ L9 , ~26!

which implies Eq.~22!. The same reasoning can be appli
to the dual mapL̃5I ^ G and the symmetric mapM5G
^ G. Thus, even if the mapsL8 andL9 reveal inseparability
by themselves, the combined map, Eq.~26!, is not guaran-
teed to do so because the nonpositivity of (L8^ L9)r
5(L8r8) ^ (L9r9) can be masked by one of the last tw
terms~the one whereL is applied to the separable comp
nent!.

Remark 2.It is worth noting that the separability criterio
based on the partial transposition@2# doesnot suffer from
this dilution of inseparability~even though it is not a suffi-
cient condition in general!. Consider, as before, a systemAB
characterized byrAB5rA8B8^ rA9B9 , where theinseparable
componentA8B8 is detected by partial transposition, i.e
(rA8B8)

TA8>” 0. Since (rAB)TA5(rA8B8)
TA8^ (rA9B9)

TA9, we
have TrA9B9@(rAB)TA#5(rA8B8)

TA8>” 0. Since the partial
trace of a non-negative operator is a non-negative opera
this implies that (rAB)TA>” 0, so that the inseparability of th
extended systemAB is detected provided that the insepar
bility of a component of it~hereA8B8) is detected.

III. SEPARABILITY OF TWO
TWO-DIMENSIONAL SYSTEMS

Theorem 3.The mapG acting on a two-dimensional sys
tem corresponds to time reversal, and is therefore equiva
to applying the complex conjugation operatorK followed by
a rotationRy by an anglep about they axis, that is,G
5RyK.

Let us write the arbitrary state of a two-dimensional qua
tum system~a quantum bit! in the Bloch-sphere picture:

r5
1

2
~11rW•sW !, ~27!

wheresW represent the three Pauli matrices andrW5Tr(rsW ) is
a real vector in the Bloch sphere~of radius 1!. The vectorrW
describes the statistics of measurements on the system
for example, the quantum expectation value of the s
component along an axis defined by the vectorvW is
Tr@r(vW •sW )#5(vW ,rW). Using Eq.~27!, it is straightforward to
check that

Gr512r5
1

2
~12rW•sW !. ~28!

Thus, G performs aspin flip, or, equivalently, performs a
parity transformation on the Bloch vectorrW˜2rW. This can
be viewed astime reversal, and therefore can be decompos
into a complex conjugationK followed by a rotationRy of
an anglep about they axis, that is,G5T5RyK @11#. j
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Remark 1.In order to see this explicitly, consider th
action of the mapL5G ^ I on a product stateuc&5ua&
^ ub&. Using rAB5Pa^ Pb with Pa5ua&^au and Pb
5ub&^bu, we have

lAB5Pa
'

^ Pb , ~29!

where Pa
'5G(ua&^au)51A2ua&^au is the projector on the

subspace orthogonal toua&. In the case wheredA52, Pa
' is

a rank-one projector as the total trace is preserved. T
Pa

'5ua'&^a'u, where ua'& is a state vector orthogonal t
ua&. ~Note that it is impossible to construct a stateua'& that is
orthogonal to anarbitrary state ua& by applying aunitary
transformation alone.! It is easy to check thatua'& can be
obtained by applying a complex conjugationK on the com-
ponents ofua& followed by a rotationRy of anglep about
the y axis. Indeed, any stateua&5au0&1bu1& ~with uau2

1ubu251) is transformed intoua'&52b* u0&1a* u1& by
applying the rotation

Uy5exp~2 ipsy/2!52 isy5sxsz5S 0 21

1 0 D ~30!

~that is, a bit and phase flip! to the state vectora* u0&
1b* u1&. The transformed stateua'& is such that^a'ua&
50 and ua'&^a'u51A2ua&^au, as expected. Thus,G coin-
cides with time reversal for a spin-1/2 system (dA52) as the
latter is equal to complex conjugationK followed by the
rotationRy , i.e., T5RyK @11#. Consequently,G is ananti-
unitary operation on state vectors in a two-dimensional H
bert space~see Appendix B!. ~For any two state vectorsua&
and uã&, we havê ã'ua'&5^ãua&* .)

Corollary. For the Hilbert-Schmidt decomposition o
rAB , the mapL5G ^ I corresponds to a sign flip of the Pau
matrices acting onA while leaving those acting onB un-
changed.

Let us consider the Hilbert-Schmidt decomposition of
arbitrary state of two quantum bits~or spin-1/2 particles!
@12#:

rAB5
1

4 S 1A^ 1B1rW•sW A^ 1B11A^ sW•sW B

1 (
m,n51

3

tn,msA
(n)

^ sB
(m)D , ~31!

where sA
(n) and sB

(m) stand for the Pauli matrices~with n
51,2,3) in theA and B space, respectively. Equation~31!
depends on 15 real parameters, the two three-dimensi
vectorsrW andsW, and the 333 real matrixtn,m . The vectorsrW

andsW correspond to the reduced state ofA andB in the Bloch
sphere since we have

rA5TrB@rAB#5
1

2
~1A1rW•sW A!, ~32!

rB5TrA@rAB#5
1

2
~1B1sW•sW B!. ~33!
n,

-

al

They characterize the reduced systemsA andB, that is, the
local ~marginal! statistics of any observable onA or B. The
matrix tn,m5Tr@rAB(sA

(n)
^ sB

(m))# describes the joint statis
tics of A andB as it characterizes the correlation between
measured spin components along two axes~defined by the
vectorsaW andbW ): Tr@r(aW •sW A^ bW •sW B)#5(aW ,tbW ). Using Eqs.
~31! and ~33!, it is checked by straightforward calculatio
that L simply flips the sign of the terms insW A :

lAB5
1

4 S 1A^ 1B2rW•sW A^ 1B11A^ sW•sW B

2 (
m,n51

3

tn,msA
(n)

^ sB
(m)D . ~34!

This implies thatL5G ^ I applied to a 23n system corre-
sponds simply to ‘‘local’’ time reversalT^ I , that is, per-
forming time reversal on the subsystemA while leaving the
subsystemB unchanged@8#.

Remark 2.The dual mapL̃5I ^ G flips the sign of the
Pauli matrices acting onB while leaving the sign of those
acting onA unchanged. The action of the symmetric m
M5G ^ G on the Hilbert-Schmidt decomposition ofrAB is to
flip the sign of the Pauli matricessW A andsW B . This operation
corresponds therefore to time reversal applied toA and B
simultaneously, and is equivalent to complex conjugation
the ‘‘magic’’ basis~see theorem 6!. It is worth noting that the
set of states that remain invariant under the symmetric m
M are those withrW5sW50, that is, mixtures of generalize
Bell states~the latter being defined as the states obtained
applying any local transformation to the four Bell state!.
These states are called ‘‘T states’’ by Horodeckiet al. @12#,
and are such that the entropy ofA andB is maximal, that is
S(rA)5S(rB)51. ~The only pure states in this set are th
fully entangled states of two qubits, i.e., the generalized B
states.! Thus, in particular, the~generalized! Bell states are
left unchanged by the action ofM. In contrast, a~separable!
product staterA^ rB is mapped into the distinct~non-
negative! statemAB5(1A2rA) ^ (1B2rB). Because of this
property,mAB by itself is uninteresting as far as revealin
inseparability is concerned, as mentioned earlier.

Theorem 4.A bipartite system of two-dimensional com
ponentsA and B characterized by an arbitrary joint densi
operatorrAB is separableif and only if the operatorlAB
5LrAB is positive semidefinite.

It is enough to show thatL is equivalent to a partia
transposition up to a completely positive map~in fact, a uni-
tary transformation!, since Peres’ separability criterion i
known to benecessaryandsufficientin this case@3#. Since
we are dealing with Hermitian operators, the mapT^ I ,
whereT is the standard transposition of operators onHA , is
equivalent to the ‘‘partial conjugation’’ operationK ^ I ,
whereK is the complex conjugation operator acting on sta
on HA . ~Note that, althoughK is well defined, partial con-
jugation K ^ I is only defined for product state vectors i
HAB @4#.! Thus, theorem 3 readsG5RyT. We can now use
the fact that any positive mapP acting on density operator
in a two-dimensional Hilbert space can be written as@3#
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P5P1
CP1P2

CPT, ~35!

where P1
CP and P2

CP are completely positive maps~which
therefore do not reveal inseparability!. With the identifica-
tion P1

CP50 andP2
CP5Ry , we see that the mapG can be

used rather than the transposition operatorT ~or K! in order
to test the positivity of the operator resulting from applyi
any element of the set of mapsP ^ I on rAB ~this follows
from the reasoning used in Ref.@3#!. Thus, using the fact tha
the complex conjugation operatorK is unitarily equivalent to
G, we have shown thatLrAB>0 results in a necessaryand
sufficient condition for the separability of 232 systems. j

Remark 1.The mapG applied to a two-dimensional sys
tem is unitarily equivalent to the transposition operatorT.
Since the spectrum of an operator is conserved by a un
transformation (Ry), the spectrum of the operator obtaine
by partial transposition in subspaceA, (T^ I )rAB5rAB

TA , is
the same as the spectrum oflAB5LrAB . Therefore, testing
Peres’ separability condition or the positivity oflAB is op-
erationally equivalent, and these conditions can be used
terchangeably in the case of two quantum bits, as illustra
in Appendix A. Moreover,lAB andrAB

TA have the same spec
trum for 23n systems, so that the conditions are a
equivalent ifG is applied on the two-dimensional subsyste
As a consequence, the separability condition based onL is
necessaryand sufficient for 233 systems, while it is only
necessary for 23n systems with largern, just as Peres’ con
dition @3#. Numerical evidence suggests that, for syste
with dA ,dB.2, the reduction condition is weaker than~or
equivalent to! the one based on partial transposition~this has
been later proven in Ref.@7#!.

Remark 2.It is instructive to illustrate theorem 4 forT
states@12#, that is, in the case whereA andB have a maximal

reduced entropy. TheT states (rW5sW50) are such that the
reduced density operators are given byrA5rB51/2, so that
the reduced entropies areS(rA)5S(rB)51. These states ar
thus completely characterized by the matrixtn,m . It has been
shown in Ref.@12# that anyT state can be transformed by
unitary transformation of the product formUA^ UB into a
state for whichtn,m is diagonal. As far as separability is
concerned, we can thus restrict ourselves to the class o
states with diagonalt, since these are representative of t
entire set ofT states~up to aUA^ UB isomorphism!.

The class of states with diagonalt is a convex subset o
the set ofT states, and any state belonging to this subset

be characterized by the real vectortW5(t11,t22,t33) made out
of the diagonal elements oft. It was proven in Ref.@12# that
an operatorrAB of the form given by Eq.~31! with rW5sW
50 and diagonalt corresponds to a state~i.e., a positive

unit-trace operator! if and only if the vectortW belongs to a
tetrahedron with verticestW15(21,1,1), tW25(1,21,1), tW3

5(1,1,21), and tW45(21,21,21). In other words, any
state of this class can be represented by a point inside
tetrahedron. In this representation, the four Bell sta
uF6&5221/2(u00&6u11&) and uC6&5221/2(u01&6u10&)
correspond to the vertices of the tetrahedron, that is,
ry

n-
d

.

s

all

n

is
s

tW1 : uF2&^F2u5
1

4
~1A^ 1B2sA

(x)
^ sB

(x)

1sA
(y)

^ sB
(y)1sA

(z)
^ sB

(z)!,

tW2 : uF1&^F1u5
1

4
~1A^ 1B1sA

(x)
^ sB

(x)

2sA
(y)

^ sB
(y)1sA

(z)
^ sB

(z)!,

tW3 : uC1&^C1u5
1

4
~1A^ 1B1sA

(x)
^ sB

(x)

1sA
(y)

^ sB
(y)2sA

(z)
^ sB

(z)!,

tW4 : uC2&^C2u5
1

4
~1A^ 1B2sA

(x)
^ sB

(x)

2sA
(y)

^ sB
(y)2sA

(z)
^ sB

(z)!. ~36!

In Ref. @12#, it is also shown that a staterAB of this
T-diagonal class isseparableif and only if the vectortW char-
acterizingrAB belongs to an octahedron with verticesoW 1

6

5(61,0,0), oW 2
65(0,61,0), and oW 3

65(0,0,61). Let us
consider the action ofL in this representation. As show
earlier, L flips the ‘‘spin’’ sW A . Within the set ofT states,
this amounts to changing the sign of thetn,m matrix, that is,
to flipping the sign of the vectortW for T-diagonal states.
Therefore, the criterion for separabilitylAB5LrAB>0
translates, in this representation, to the condition that
‘‘parity’’ operation on the vectortW characterizing a separabl
state results in a positive operator~i.e., a legitimate state!.
Hence,2 tW must belong to the tetrahedron. It is easy to s
that the set of points of the tetrahedron which are such
their image under parity still belongs to the tetrahedron c
responds exactly to the octahedron defined above. There
no inseparable state exists that satisfiesLrAB>0, so thatL
provides a necessaryandsufficient condition for separability
within the class ofT states, as expected.

Theorem 5.The symmetric mapM acting on two two-
dimensional systems conserves the spectrum, so that
separability criteria resulting from the mapL and its dualL̃
are equivalent. j

As a consequence of theorem 3,M5G ^ G amounts to
performing a complex conjugationK ~or transposition! of the
joint density operator inHAB , followed by a tensor produc
of the rotationRy defined byUy5exp(2ipsy/2)52 isy ,
that is, Uy^ Uy52sy^ sy . Note that, as we are dealin
with Hermitian ~density! operators, their spectrum is un
changed byK. The same is true for the rotationUy^ Uy .
Therefore,mAB5MrAB has the same spectrum asrAB when
dA5dB52. As G is self-inverse (G25I ) whendA5dB52,
we have the relationI ^ G5(G ^ I )(G ^ G) or in short L̃
5LM . This implies that

L̃rAB5L@~Uy^ Uy!rAB* ~Uy
†

^ Uy
†!# , ~37!

which in turn results in
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l̃AB5~Uy^ Uy!lAB* ~Uy
†

^ Uy
†! ~38!

as L commutes withUy^ Uy and complex conjugation
SincelAB is Hermitian ~just asrAB), the latter expression
shows that the spectrum ofl̃AB andlAB are identical, so tha
the resulting criteria for separability are equivalent.

Theorem 6.The symmetric mapM applied to a bipartite
system of two-dimensional components~i.e., global time re-
versal! is equivalent to complex conjugation in the ‘‘magic
basis introduced in Ref.@10# ~this was pointed out indepen
dently in Ref.@13#, which was brought to our attention afte
completion of this work!.

SinceG5RyK, the symmetric mapM5G ^ G applied to
the staterAB of a bipartite system results in

MrAB5~Uy^ Uy!rAB* ~Uy
†

^ Uy
†!, ~39!

whereUy^ Uy52sy^ sy . SinceM is antiunitary and self-
inverse (M25I ), it is aconjugation@14#. It can be written as
the complex conjugation operator if expressed in a spec
basis. Let us assume thatV is the unitary operator~in the
joint space! that transforms the product states into the sta
$uei&% that form this specific basis, that is,

ue1&5Vu00&, ue2&5Vu01&,

ue3&5Vu10&, ue4&5Vu11&. ~40!

We would like to show thatM is equivalent to rotating the
statesuei& into the product states, taking the complex con
gation of the density matrix~in the product basis!, and then
rotating the product states back to theuei& ’s:

MrAB5V~V†rABV!* V†5~VVT!rAB* ~VVT!†, ~41!

whereVT is the transpose of the unitary matrixV. Identifying
Eqs.~39! and ~41!, we obtain

VVT5Uy^ Uy52sy^ sy5S 0 0 0 1

0 0 21 0

0 21 0 0

1 0 0 0

D .

~42!

It is easy to prove that, ifV is unitary, thenVVT is unitary
and symmetric~but not necessarily Hermitian!. In order to
find a solution forV that satisfies Eq.~42!, we first diagonal-
ize the matrixsy^ sy . Consider the unitary matrix

W[expS 2
ip

4
~12sx! ^ ~12sx! D

5~1^ 111^ sx1sx^ 12sx^ sx!/2. ~43!

It is in fact a real orthogonal matrix, so thatW215W†

5WT. It can easily be shown thatW diagonalizessy^ sy ,
that is,

W~sy^ sy!WT5sz^ sz . ~44!

It is not the only such matrix, assy^ sy is obviously also
diagonalized by exp@2i(p/4)sx# ^ exp@2i(p/4)sx#. How-
c

s

-

ever, we are looking here for a~real! rotation matrix rather
than a general unitary matrix. Note that the matrixW is self-
inverse, i.e.,W251, so that it is also symmetric (WT5W).
By multiplying Eq. ~42! by W on the left and the right, we
obtain

WV~WV!T52sz^ sz5S 21 0 0 0

0 1 0 0

0 0 1 0

0 0 0 21

D ~45!

which implies that the productWV can be written as a diag
onal matrixD:

WV5D[S 6 i 0 0 0

0 61 0 0

0 0 61 0

0 0 0 6 i

D . ~46!

This yields a~nonunique! solution for the unitary matrixV
5WTD5WD that defines the basis$uei&%. The statesuei& are
thus obtained by applying the rotation matrixW to the prod-
uct states6 i u00&, 6u01&, 6u10&, and 6 i u11&. It is worth
noticing at this point that the rotation matrix

W5
1

2 S 1 1 1 21

1 1 21 1

1 21 1 1

21 1 1 1

D ~47!

transforms the product states into the four maximally e
tangled states which are obtained by applying a local tra
formationH ^ 1 on the four Bell states, i.e.,

Wu00&5~H ^ 1!uF1&5~ u00&1u01&1u10&2u11&)/2,

Wu01&5~H ^ 1!uC1&5~ u00&1u01&2u10&1u11&)/2,

Wu10&5~H ^ 1!uF2&5~ u00&2u01&1u10&1u11&)/2,

Wu11&5~H ^ 1!uC2&5~2u00&1u01&1u10&1u11&)/2, ~48!

whereH is the Hadamard transform.~As a matter of fact, the
unitary transformationW corresponds simply to a controlled
NOT gate where the control is in the dual basis$u0&
1u1&,u0&2u1&% rather than the standard basis.! Therefore,
the unitary transformationV5WD is such that the produc
states are rotated into the four generalized Bell states w
the appropriate phases

ue1&5Vu00&56 i ~H ^ 1!uF1&,

ue2&5Vu01&561~H ^ 1!uC1&,

ue3&5Vu10&561~H ^ 1!uF2&,

ue4&5Vu11&56 i ~H ^ 1!uC2&. ~49!

These statesuei& are therefore equivalent, up to a loc
change of basisH ^ 1 and a phasei that are irrelevant here
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to the ‘‘magic’’ states introduced in Ref.@10#. ~Any four
states obtained from theuei& ’s up to an overall phase and
unitary transformation acting locally on each quantum bit
legitimate ‘‘magic’’ states.! This implies that, when ex-
pressed in this basis, the symmetric mapM5G ^ G reduces
the complex conjugation operation that was used in the c
text of the calculation of the entropy of formation of a pair
quantum bits~see Refs.@9,13#!. j

Theorem 7.A distinct necessary separability condition f
the bipartite staterAB is that its support can be spanned by
set of product states which are such that the correspon
product operators obtained by applyingG to the state vector
in HA span the support oflAB5LrAB .

We only consider this condition in the case wheredA
52. Let us first show that ifrAB is a separable state, the
lAB is a separable operator obtained by replacing the st
ua& in HA by projectorsPa

' orthogonal to them. Consider th
separable state

rAB5(
i

wi~ uai&^ai u ^ ubi&^bi u!, ~50!

where theuai& ^ ubi& are pure product states@using the spec-
tral decomposition ofrA

( i ) andrB
( i ) , it is easy to rewrite Eq.

~7! into this form#. As a result of theorem 3, we see thatrAB
it is mapped byL into the separable operator

lAB5(
i

wi~Pai

'
^ ubi&^bi u!. ~51!

The operatorlAB is a unit-trace operator in the casedA52
since each component pure stateua& ^ ub& is mapped into a
pure product state,ua'& ^ ub&, in which case it simply reads

lAB5(
i

wi~ uai
'&^ai

'u ^ ubi&^bi u!. ~52!

Let us show that Eq.~52! results in a simplenecessarycon-
dition for separability~distinct fromlAB>0), inspired from
the condition recently proposed by Horodecki@4#. The cen-
tral point is to note that ifrAB is separable, then the en
semble of product statesuai& ^ ubi& span the entire support o
rAB . ~Conversely, any stateuai& ^ ubi& must belong to the
support ofrAB and cannot have a nonvanishing compon
orthogonal to it.! From Eq.~52!, we see that the ensemble
statesuai

'& ^ ubi& span the entire support of the correspond
separable statelAB obtained by applyingL on rAB. Also,
any stateuai

'& ^ ubi& cannot be outside the support oflAB .
This results in anecessarycondition for separability which
can be stated as follows: if a staterAB is separable, then i
must be possible to span its support by a set of product s
ua&ub& which are such that their image~i.e., the product
states obtained by rotating the complex conjugate of s
vector ua& in the A space by an anglep about they axis
while leaving the state vectorub& in the B space unchanged!
span the support of the mapped statelAB5LrAB . j
e
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IV. CONCLUSION

Given a bipartite system characterized by a density op
tor rAB , we construct a simple separability criterion bas
on the positive linear mapG:r˜(Tr r)2r. Any separable
staterAB is mapped by the tensor product ofG ~acting onA!
and the identityI ~acting on B! into a positive operator.
Therefore, a necessary condition for separability is based
checking the non-negativity of the operator (G ^ I )rAB51A

^ rB2rAB . This reduction condition, along with the on
based on the dual mapI ^ G, can be shown to be nonsuffi
cient for a system of arbitrary dimension because entan
ment dilution can thwart the map’s sensitivity. SinceG com-
mutes with any unitary transformation, the spectrum of
operator (G ^ I )rAB is invariant under a local unitary trans
formationUA^ UB , making this reduction criterion indepen
dent of the basis in whichA andB are expressed.

In the case of a two-dimensional system,G is shown to be
the time-reversal operator, which flips the sign of the s
matrices~or, equivalently, reverses the Bloch vector chara
terizing the state of the quantum bit!, so that the mapG ^ I
amounts to changing the arrow of time for subsystemA with
respect to subsystemB. Such a relation between time
reversal and Peres’ partial transposition has been pointed
previously by Sanperaet al. @8#, who showed that the partia
transposition operator is unitarily equivalent to ‘‘local’’ tim
reversal. Thus, our reduction criterion for separability bas
on G ^ I is equivalent to Peres’ criterion@2# for 23n systems
~when applyingG on the two-dimensional subsystem!. As a
consequence, it is necessaryand sufficient for 232 and 2
33 systems while it is only necessary for larger system
just as is Peres’@3#. For systems withdA ,dB.2, however,
the reduction condition is generally weaker than the o
based on partial transposition.

Finally, we consider the symmetric map (G ^ G)rAB51A

^ 1B2rA^ 1B21A^ rB1rAB . The 232 states which are lef
invariant under this map are mixtures of generalized B
states, which include the maximally entangled pure state
well as the product of two independent~unentangled! ran-
dom bits. It can be seen thatG ^ G is related to quantum
nonlocality even though it does not directly reveal insepa
bility of two quantum bits. Indeed, it reduces to the compl
conjugation in the ‘‘magic’’ basis that has been introduced
the context of the entropy of formation of a pair of quantu
bits ~see Refs.@9,13#!. It might therefore be interesting to
look for a simple relation between the mapG ~related to the
reduction criterion for inseparability! and the entropy of for-
mation.
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APPENDIX A: EXAMPLES

Here we consider several examples illustrating the se
rability criterion lAB>0, and compare it to Peres’ criterio
@2#. Examples 1–4 deal with states of two quantum bits, a
illustrate the fact that theL criterion is necessary and suffi
cient ~the spectrum oflAB is identical to the spectrum o
rTA). Examples 5 and 6 illustrate that theL condition is not
sufficient for systems in larger dimensions (333 and 2
34) whose partial transpose is positive~cf. Ref.@3#!. In fact,
the L condition is equivalent to Peres’ condition for 23n
systems, so that it is also necessary and sufficient for 233
systems@3# while it is only necessary for largern.

Example 1.Consider a Werner state@1# with parameterx
(0<x<1), that is, a mixture of a fractionx of the singlet
stateuC2& and a random fraction (12x). We shall see tha
lAB>0 is equivalent to Peres’ criterion, and is therefore s
ficient. Indeed, the joint density matrix

rAB5xuC2&^C2u1
~12x!

4
~1^ 1!

5S 12x

4
0 0 0

0
11x

4
2

x

2
0

0 2
x

2

11x

4
0

0 0 0
12x

4

D ~A1!

is mapped byL into the matrix

lAB5S 11x

4
0 0 0

0
12x

4

x

2
0

0
x

2

12x

4
0

0 0 0
11x

4

D ~A2!

which admits three eigenvalues equal to (11x)/4 and a
fourth equal to (123x)/4. The latter becomes negative ifx
.1/3, so thatlAB is positive semidefinite only ifx<1/3,
which has been proven to be theexactthreshold for separa
bility ~any Werner state withx<1/3 is separable as it can b
written as a mixture of product states@15#!. As expected, the
spectrum oflAB is equal to the spectrum of the partial tran
pose ofrAB , so that theL condition is sufficient to ensure
separability for Werner states.

Example 2.Consider a mixed state that is made out o
fraction x of the entangled stateuc&5au01&1bu10&, and
fractions (12x)/2 of the separable product statesu00& and
u11& ~see Ref.@16#!. The joint density matrix is of the form
a-

d

-

rAB5xuc&^cu1
12x

2
u00&^00u1

12x

2
u11&^11u

5S 12x

2
0 0 0

0 xuau2 xab* 0

0 xa* b xubu2 0

0 0 0
12x

2

D ~A3!

with a andb satisfyinguau21ubu251. It is mapped byL into
the matrix

lAB5S xubu2 0 0 0

0
12x

2
2xab* 0

0 2xa* b
12x

2
0

0 0 0 xuau2

D . ~A4!

The eigenvalues oflAB are xuau2, xubu2, and (12x
62xuabu)/2. This implies thatrAB is inseparable ifx.(1
12uabu)21, exactly as predicted by Peres using the par
transpose ofrAB . Since we are dealing with two qubits, th
is the exact limit between separability and inseparabi
@2,3#.

Example 3.In the simpler case whererAB is a mixture of
a fractionx of the singlet stateuC2& and a fraction (12x) of
the separable product stateu00&,

rAB5xuc&^cu1~12x!u00&^00u

5S 12x 0 0 0

0 x/2 2x/2 0

0 2x/2 x/2 0

0 0 0 0

D , ~A5!

we obtain

lAB5S x/2 0 0 0

0 0 x/2 0

0 x/2 12x 0

0 0 0 x/2

D . ~A6!

The latter matrix admits two eigenvalues equal tox/2 and
two eigenvalues equal to@12x6A(12x)21x2#/2, so that
its determinant is equal to2(x/2)4. Thus, this state is in-
separable wheneverx.0, as expected.~It is separable only if
it is the pure product stateu00&.!

Example 4.Consider the class of two-qubit inseparab
states described by Horodeckiet al. @3#, a mixture of two
entangled states:

rAB5puc1&^c1u1~12p!uc2&^c2u, ~A7!

where uc1&5au00&1bu11& and uc2&5au01&1bu10&, with
a,b.0 and satisfyinguau21ubu251. The joint density ma-
trix
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rAB5S pa2 0 0 pab

0 ~12p!a2 ~12p!ab 0

0 ~12p!ab ~12p!b2 0

pab 0 0 pb2

D ~A8!

is mapped byL to

lAB5S ~12p!b2 0 0 2pab

0 pb2 ~p21!ab 0

0 ~p21!ab pa2 0

2pab 0 0 ~12p!a2

D . ~A9!

The latter matrix admits two eigenvalues equal to@p6Ap214a2b2(122p)#/2 and two eigenvalues equal to
@12p6A(12p)214a2b2(2p21)#/2, so that its determinant is equal to2a4b4(122p)2. This state is therefore
inseparable wheneverabÞ0 andpÞ1/2, in perfect agreement with Ref.@3#.

Example 5.Consider the 333 system in a weakly inseparable state introduced by Horodecki@4#,

rAB5
1

118a1
a 0 0 0 a 0 0 0 a

0 a 0 0 0 0 0 0 0

0 0 a 0 0 0 0 0 0

0 0 0 a 0 0 0 0 0

a 0 0 0 a 0 0 0 a

0 0 0 0 0 a 0 0 0

0 0 0 0 0 0
11a

2
0

A12a2

2

0 0 0 0 0 0 0 a 0

a 0 0 0 a 0
A12a2

2
0

11a

2

2 , ~A10!

where a is a parameter (aÞ0,1). As shown in Ref.@4#, the partial transpose of this state is positive, althoughrAB is
inseparable, which makes the inseparability ofrAB undetectable using Peres’ criterion. It is simple to check that theL-mapped
matrix

lAB5
1

118a

¨

113a

2
0

A12a2

2
0 2a 0 0 0 2a

0 2a 0 0 0 0 0 0 0

A12a2

2
0

113a

2
0 0 0 0 0 0

0 0 0
113a

2
0

A12a2

2
0 0 0

2a 0 0 0 2a 0 0 0 2a

0 0 0
A12a2

2
0

113a

2
0 0 0

0 0 0 0 0 0 2a 0 0

0 0 0 0 0 0 0 2a 0

2a 0 0 0 2a 0 0 0 2a

©
~A11!

is positive~with a trace equal to 2!, so thatL cannot reveal the inseparability ofrAB either. Accordingly, the determinant o
lAB is equal to 6a7(12a)(5a13)/(118a)9 and thus positive. Note that the dual map also yields a positive operatorl̃AB ~of



’

908 PRA 60N. J. CERF, C. ADAMI, AND R. M. GINGRICH
trace 2!, although the eigenvalues ofl̃AB are distinct from those oflAB , as is its determinant Det(l̃AB)524a7(12a2)/(1
18a)9. This example emphasizes thatL does not result in a sufficient separability condition for 333 systems, just as Peres
condition @3#.

Example 6.Following Horodecki@4#, we consider a 234 system in an inseparable state

rAB5
1

117b1
b 0 0 0 0 b 0 0

0 b 0 0 0 0 b 0

0 0 b 0 0 0 0 b

0 0 0 b 0 0 0 0

0 0 0 0
11b

2
0 0

A12b2

2

b 0 0 0 0 b 0 0

0 b 0 0 0 0 b 0

0 0 b 0
A12b2

2
0 0

11b

2

2 ~A12!

that has a positive partial transpose, whereb is a parameter (bÞ0,1). ApplyingL, we see that

lAB5
1

117b1
11b

2
0 0

A12b2

2
0 2b 0 0

0 b 0 0 0 0 2b 0

0 0 b 0 0 0 0 2b

A12b2

2
0 0

11b

2
0 0 0 0

0 0 0 0 b 0 0 0

2b 0 0 0 0 b 0 0

0 2b 0 0 0 0 b 0

0 0 2b 0 0 0 0 b

2 ~A13!
-

m

m
-

of

e

r

rd-
has eigenvalues 0, b, 2b, and @112b
6A(112b)222b(31b)#/2 so that it is always non
negative. Note that the spectrum oflAB is the same as the
spectrum of the partial transposerAB

TA ~cf. Ref. @4#!, as ex-
pected. This confirms that the condition based onL5G ^ I
and Peres’ separability condition are equivalent for 23n
systems~when G is applied to the two-dimensional syste
and I to the n-dimensional one!. In this example, applying
the dual mapL̃5I ^ G yields a positive operator which
traces to 3.

APPENDIX B: THE ANTIUNITARY MAP G

Consider the action of the mapG:r˜(Tr r)2r on the
density operatorr characterizing a two-dimensional syste
~i.e., a quantum bit!. Sincer can be written as a linear com
bination of the unit matrix and the three Pauli matricessW
with real coefficients, it is sufficient to consider the action
G on these~Hermitian! basis matrices. We find thatG is an
antiunitary operator that leaves the unit matrix unchang
 d

and flips the sign of the Pauli matricessx,y,z ,

1˜
G

1, sx˜

G

2sx , sy˜

G

2sy , sz˜

G

2sz . ~B1!

The complex conjugation operatorK ~or equivalently the
transposition, as we deal with Hermitian operators! corre-
sponds to anantiunitary operator which acts on the fou
basis matrices as

1˜
K

1, sx˜

K

sx , sy˜

K

2sy , sz˜

K

sz . ~B2!

~Remember that it is enough to consider the action ofK on
the basis matrices as the coefficients are real.! Also,Ry is a
rotation characterized by the unitary matrixUy5exp
(2ipsy/2)52 isy5sxsz which maps r into UyrUy

†

5syrsy , so that the basis matrices are transformed acco
ing to
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e

n
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1˜
Ry

1, sx˜

Ry

2sx , sy˜

Ry

sy , sz˜

Ry

2sz . ~B3!

It is straightforward to check, using Eqs.~B1!, ~B2!, and
~B3!, that G is the product ofK andRy . ~It is a general
property of an antiunitary transformation that it can be w
ten as the product of a unitary transformation and a fix
antiunitary operator such as time reversal.! This can also be
verified easily by applyingRyK to a system in a state give
by Eq. ~27!. We get
A

o.
-
d

Uyr* Uy
†5syr* sy

5
1

2
@11sy~rW•sW * !sy#

5
1

2
~12rW•sW !5Gr, ~B4!

where we have used the fact thatrW is a real vector and that
sysW sy52sW * . This generalizes what was shown in Sec.
for pure states, namely that ifua&5au0&1bu1& and ua'&
5Uy(a* u0&1b* u1&)52b* u0&1a* u1&, then we have

ua'&^a'u5G~ ua&^au!. ~B5!
.
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