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We introduce a separability criterion based on the positive fiap—(Tr p) — p, wherep is a trace-class
Hermitian operator. Any separable state is mapped by the tensor prodlicaoé the identity into a non-
negative operator, which provides a simple necessary condition for separability. This condition is generally not
sufficient because it is vulnerable to the dilution of entanglement. In the special case where one subsystem is
a quantum bit[" reduces to time reversal, so that this separability condition is equivalent to partial transpo-
sition. It is therefore also sufficient for22 and 2< 3 systems. Finally, a simple connection between this map
for two qubits and complex conjugation in the “magic” bapizhys. Rev. Lett78, 5022(1997] is displayed.
[S1050-294{@9)00708-9

PACS numbsdis): 03.67—a, 03.65.Bz, 89.7@:c

[. INTRODUCTION fact thatp is separable implies that there must exist at least
one such decomposition. If no such decomposition can be
The state of a quantum bipartite systé&B is described found, thenp is termed inseparable or entangled, and it can
as separable(or classically correlatedf it can be obtained be viewed agjuantumcorrelated. Except for the special case
by two partiesA andB that prepare their subsystem accord-wherep describes a pure state, the distinction between sepa-
ing to some common instructionsee, e.g., Refsl1,2]).  rable and inseparable states appears to be an extraordinarily
Mathematically, this means that the density operatahar-  difficult problem. More precisely, some mixed states can be
acterizing the state of the bipartite system can be written as ‘aveakly” inseparable, in the sense that it is very hard to

convex sum of product states, that is, establish with certainty their inseparability. This is basically
due to the difficulty of enumerating explicitgll the possible
convex combinations of product states in order to detect that
p=2 wilp(Vep{®), (1) P

a state is actually inseparable. Still, it is possible to find some

conditions thatall separable states must satisfy, therefore
where the weightsy; satisfy Z;w;=1 and Osw;<1. The allowing the detection of inseparability when a state violates
w;’'s can be viewed as the probability distribution of a clas-one such condition. The most common example of such a
sical random variable that is known to both partkeandB  necessarycondition for separability is the satisfaction of
and used by them to prepare their subsystem. Namely, if thBell's inequalities. A state that violates Bell's inequalities is
subsystemA (and B) is prepared in state(® (and p{®)  inseparable, while a state satisfying them may be separable
when the classical variable takes on valuéhe state of the or weakly inseparablgl].
joint systemAB is given by Eq.(1). A separable state More recently, a surprisingly simpleecessarycondition
satisfies several interesting properties. The joint statistics dbr separability has been discovered by P¢&swhich has
any pair oflocal observable€D, and Og (measured sepa- been shown by Horodeclet al. [3] to be strong enough to
rately on each subsysteman be described classically, based guaranteeseparability for bipartite systems of dimension 2
on an underlying global “hidden” variable. For example, the X2 and 2<3. If the statep is separable, then the operator
guantum expectation value of the prod@;Og is given by  obtained by applying partial transposition with respect to

subsystenA (or B) to p must be positive, that is,

TrLp(0a8 Og)]= 2 wi(a)(b);. @ pTA= (pTe)* =0, 3

where (a);=Tr[ p0,] and (b);=Tr{p!®Og]. In other Thus, this criterion amounts to checking that all the eigen-
words, the joint statistics 0D, and Og can be understood values of the partial transposition @f are non-negative,
classically, by assuming that the local statistics of the outwhich must be so for all separable states. In Hilbert spaces of
comes can be described separately for e;a{éﬁ and pi(B), dimensions X2 and 2x< 3, this condition is actuallysuffi-
and that the correlations originate from a hidden variable cient that is, it suffices for ruling ou&ll inseparable states
distributed according tav;. Moreover, a separable system [3]. In larger dimensions, however, it is provabipt suffi-
always satisfies Bell's inequalitigthe converse is not trjie  cient, in the sense that it does not detect some weakly insepa-
so that the latter representnacessancondition for separa- rable state$3,4]. A general necessamgnd sufficient condi-
bility (see, e.g., Ref[1]). Note that any joint probability tion for separability in arbitrary dimensions has been found
distribution can be represented as a convex combination dfy Horodeckiet al. [3], which states thap is separable if
product distributions, so that classical probabilities are aland only if the tensor product @ny positive map(a map is
ways separable in the above sense. defined as positive if it maps positive operators into positive
The decomposition of a separable statéinto a convex operators acting onA and the identity acting oB mapsp
mixture of product states is not unique in general, but thénto a positive operator. Although very important in
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theory, this criterion is hardly more practical than the defini- Theorem 1A necessarycondition for the separability of
tion of separability itself since it involves the characteriza-the statep,g of a bipartite systenAB is that it is mapped by
tion of the set of all positive maps. It appears to be usefulA into a positive semidefinite operator, i.App=0.
mainly for 2X2 and 2<3 bipartite systems, where such a  We need to prove that any separable state is mapped into
general characterization has been foi8H a positive semidefinite operatarg. Consider aseparable

In this paper, we introduce a positive mdp,p—(Tr p) bipartite systemAB characterized by a convex combination
—p, inspired by the structure of the conditional amplitudeof product states:
operator discussed in Refh,6]. This map gives rise to a
simple necessarycondition for separability in arbitrary di- i i .
mensions. More specifically, it is shown in Sec. Il that any pAB:Ei wi(ph'@p))  with Z wi=1and Oswi<I,
separable state is mapped by the tensor produkt @fcting (7)
on one subsyster) and the identityacting on the otheB)
into a non-negative operator. In other words, the eigenvaluewherep() andp)) are states ift{, andHg, respectively. It
of the operator [®1)p=(1a®Trap)—p must all be non- s easy to verify that the operatdrag=Ap,g is positive
negative if the(unit-trace operatorp is separable, which semidefinite,
provides a simple test for separability callestiuctioncrite-
rion. This separability criterion has been independently de- 0 0
rived by Horodecki and Horodecki in Réf7]. In the case )\ABZZi wWil(Ia—pa")®pg’]1=0 (8)
whereI is applied to a two-state systefquantum bit or

spin-1/2 particlg, as studied in Sec. lll, this criterion corre- gince a sum of positive operators is a positive operator. In-
sponds to the time-reversal operation applied on one Systeflbed, the two terms in square brackets are eadh ™

with respect to t_he _other one. As Peres’ criterion ha§ been |, short, the map\ reveals nonseparability: & xs#0,
shown to be unitarily equivalent to such a “local” time- o, is inseparable. This necessary condition for the
reversal by Sanperet al. (8], this reduction criterion is Sim- - ganarahility of mixed states is directly related to that based
ply equivalent to Peres’ for n composite systems. There- ' the conditional amplitude operaté@ithough it is simpler
fore, it also results in aufficientcondition for 22 and 55 it does not require the calculation of the latter opeator
2X 3 systems, according to R¢8]. It also has a very simple 6] Moreover, it is easy to see that conserves separability
geometric representation in the Hilbert-Schmidt representasiyce it is linear and maps product states into product opera-
tion of a 2<2 bipartite state. Finally, we demonstrate that the; <. jf pag is separable, then,g=0 is also separabl@r, in
mapl is connected to the complex conjugation operation i”general, written as a convex sum of direct produdtst us

the “magic” basis for two qubits introduced recently by Hill 5\ calculate the partial traces Dig:

and Wootterg9], which underlies an interesting connection

with the entropy of formatiofil0]. In Appendix A, we illus- Ma=Tra[Aasl=1a—pa, 9
trate the reduction separability condition by applying it to
several separable or inseparable states, and compare it to the Ng=Tra M ag]=(da—1)pg (10)

separability criterion based on partial transposition.

whered, is the dimension of{,. This shows that\ does
[l. SEPARABILITY OF BIPARTITE MIXED STATES not preserve the trace in general. Indeed, the trace is scaled
OF ARBITRARY DIMENSION by an integer factor underA, that is, TfAag]l=(da
—1)Tq pag]- Thus,A is trace preservingnly in the special
ase wheréA is a two-state systerfi.e., dy=2). It is also
interesting to note thad is alwaysreversible the inverse
map being given by

We consider a bipartite quantum system characterized b
the density operatop,g defined in the joint Hilbert space
Hag=Ha® Hg, Where H, and Hg have arbitrary dimen-
sionsd, anddg.

Definition 1.Define a linear map\ which maps Hermit- ~1. a1 Iy
ian operators ofi{,g into Hermitian operators oflg: AT Mg (Aa= 1) (1a®Ne) ~Map=pas, (1D
where \g is defined as above. Note that is equal to its
inverseA ! only if dy=2. In that case, if o5 is separable,
This map commutes with a unitary transformation acting |O_thenA_*1:)\AB—>P_AB?O. (The fact that the inverse map re-
cally on A andB. Indeed, ifps undergoes a unitary trans- Veals inseparability is true in this case ojly.

Aipag—=Mag=1a®ps—pas  With pg=Tra[pas]. (4)

formation of the product form, i.e., The separability condition based oh is illustrated in
Appendix A, where we consider several separable and in-
pAB—>pAB=(UA®UB)pAB(UL®UE) , (5 separable states. As we will show in Sec. Njg=0 results
in the same condition as Peres’ in the case of two quantum
it is easy to check thais=Tra[ pag]=UgpgUL, so that bits, in which case it isufficient(see theorem ) for larger
dimensions, it is only necessary.
Mag— M ap=(Ua®Ug)Aag(ULoUY), (6) Remark 1Following the approach of Horodeckt al.[3],

the mapA can be written as the tensor product of a positive
i.e., Nag transforms just likeppg. As a consequence, the linear mapl’ and the identity, that is,
spectrum ofA 5p is invariant under &J ,® Ug isomorphism
OoN pag- A=TI'®l with I':p—(Trp)—p, (12



900 N. J. CERF, C. ADAMI, AND R. M. GINGRICH PRA 60

wherel" acts on Hermitian operators i, and the identity fined using the amplitude operatpi 4, and exactly the
acts on operators ifi(g. Sincel’ is a positive mapA=I"  same conclusions follow. This is tfial mapA defined in
® | mapsseparablestates intgositiveoperatorg3]. It there-  Eq. (17). It is trace preserving and self-inverse in the case
fore results in anecessaryondition for separability, accord- \heredgz=2. It can obviously be written as the tensor prod-
ing to theorem 1. The map commutes with an arbitrary uct A=1®T, wherel' now acts on operators dHg, and

unitary transformatio, that is, therefore commutes withld,® Ug isomorphism. Sinc& is

I'(UpUh)=U(Tp)ut, (13 positive, A maps separable states into positigeparable
operators, which results in another separability condition,
which makes the separability condition based or T ®]I i.e., \ag=0. As we will see in Sec. Ill, the operatoks,g

independent on the basis chosen foand B. In the same

. > ) and\ g can be shown to have the same spectrum wdhen
manner, the inverse map~! can be written as AB ;

=dg=2, in which case they result in the same separability
condition. However, this property does not hold in larger

_ _ . _ rp . . . ~
A=T"'®l with T tp— g1 P (14  dimensions, i.eXasandX g do not have the same spectrum
in general(see Appendix A
whered is the dimension of the Hilbert space @f Note that We can also construct another linear map by cascadling

I' 1 is nota positive map fod>2, so thatA ! is in general andA (the order is irrelevant which results in thesymmet-
useless as far as detecting inseparability is concerned. Thig mapM=AA=I'®I defined in Eq(18). Any separable
emphasizes that the reduction separability criterion is quite 5 is mapped byM into a separable operat@,s=0, as

special in two dimensionge.g., for a spin-1/2 particle or a expected. The symmetric map also commutes withl a
quantum bit, as will be studied in Sec. Ill. Specifically, we Uz isomorphism
will show thatI” applied to a two-dimensional system can be

interpreted as time reversal. Consequently, the map MI(U.®U uteut
amounts to applying time reversal on subsystamwhile [(Ua®Us)pas(Un®Up)]
leaving subsystenB unchanged. Such a link between *“lo- =(Ua®Ug)(Mpag)(ULoUL) (19

cal” time reversal and separability has recently been pointed
out by Sanperat al. [8].

Remark 21t is interesting to consider the classical analog
of the mapsl” and A=T"®1 to gain some insight into their
physical meaning. First, applyirlg to a classical probability
distribution p; (diagonalp) corresponds to the transforma-
tion

so that the spectrum @i ,z=Mpag is invariant under local
transformations o g . It is also reversible, its inverse map
M~ 1=T"1@TI' ! being given by

M~ uap—1a® 1= (dg—1) " H(a®1p)

—(da—1) " (1a® up) + mag=pas, (20)
pi_’Qi:; Pk—Pi - (195
where  ua=Trgluagl=(dg—1)(Ia—pa) and ug
=Tra  wagl=(da—1)(1g—pg). As expected, this map is
trace preserving and self-inverse only in the case whgre
=dg=2. It corresponds then to a time-reversal operation
applied to thgoint systemAB. In this caseM by itself is not
Pij—Qij= ( > Pui— pm) Pj=pP;— Pjj - (16)  useful as far as revealing inseparability is concerned since it
: is positive, i.e.,Mp,p=0. Therefore, all inseparable states
of two quantum bits are mapped into positive operators just
as are separable states. Still,plays a role when analyzing
the separability of two quantum bits as it is equivalent to the
complex conjugation operation in the “magic” basis intro-
duced by Hill and Wootterf9] (see theorem)6 Whether the
positivity of M holds in arbitrary dimensions is not known.

Theorem 2.The reduction separability criterionAfpag
=0) is not a sufficient condition for the separability pfg.

In order to prove that this criterion is not sufficient, we
show that it is possible to find aimseparablesystem with
Mag=0, i.e., such that its inseparability i@t revealed byA.

We will construct such an inseparable system by extending
an inseparable component with a separable one, “diluting”
M:pag— uap=1a®lg— pa®lg—1a®pg+pag, (18  the inseparabilityf6]. Consider an inseparable systé&hB’

with N o/ #0. Let us extendA’B’ with a separable system
wherep,=Trg[ pag] andpg=Tra[ pag]- A"B", and apply the reduction criterion to the joint system

The mapA which we considered until now is related to AB whereA=A’A" andB=B’'B". Since the joint system is
the conditional amplitude operator &f conditionally onB, characterized by g=parg' ® pargr, itS associated operator
that ispag [6]. Of course, a similar linear map can be de-under the map\ is given by

(Obviously,q;=0 is not normalized except for a binary dis-
tribution,) The classical analog ok =I'®| is

Sincep;); is a probability distribution in, we always have
1-p;;=0 so thatq;;=0 and the separability criterion is
fulfilled. This emphasizes that quantum inseparability;;
<0") may be viewed as resulting from a conditional prob-
ability thatexceeds (more precisely, an eigenvalue pf|g
which exceeds )1[6].

Definition 2. Two additional maps from operators éthg
to operators orH,g can be defined: thdual map

K:pag—Xa=pa®ls—pap (17)

and thesymmetricmap
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AMp=Apap=1a @ pg )@ (1o ® pgr) — parg: @ pargr - wherel’’ (or I'") stands for the same map but acting on the
(21)  subspace op’ (or p”) while I" acts on the joint space. Using
the same notation foA (i.e., A’ acts on the subspace of
Using the operatorsprgr=Apag=Ia®pg —pagr @and  A’B’ while A” acts on the subspace &B"), the latter
A argr=Apargr=1p® pgr—pargr cOrresponding toA ap- equation gives
plied to each component system, we obtain
A=TRI=A"@A"+A'@1"+1"® A", (26)
Apg=AarB @ Nargr T Aargr @ pargr T pargr @ N angr
(22)  \which implies Eq.(22). The same reasoning can be applied

with A a5/ #0 and\ oig=0 (sinceA”B" is separable The [0 the dual mapA=I®I" and the symmetric map =T"
dilution of entanglement comes from the fact that the third®T- Thus, even if the maps” and A" reveal inseparability
term on the right-hand side of E@2) is =0. As a conse- PY themselves, the combined map, E26), is not guaran-
quence, Eq(22) cannotguarantee thak ,5#0 even though (€€d to do so because the nonpositivity of’@A")p
the composite syste®B contains an inseparable component = (A'p")®(A"p") can be masked by one of the last two
ash g #0 [i.e., even though the sum of the first two terms terms(the one where\ is applied to the separable compo-
on the right-hand side of E§22) is #0]. m nend , _ o
Note that, even when both components are inseparable Remark 21t is wprth noting t_hgt the separability criterion
With Mg A arer#0, thenh 450 is not necessarily true, so Pased on the partial transpositig2] doesnot suffer from
that the inseparability of the joint systeAB is not always thls dllutlo_n_ of !nseparablllt)(ev_en though it is not a suffi-
revealed byA. This property contrasts with the situation Ci€Nt condition in generalConsider, as before, a systevB
prevailing when using the conditional amplitude matrix if the characterlzeq b}"AB:PA’B@PA”B’“ where thenseparable
conditional amplitude operator of each component admits afOMPONENtA’B” is detected by partial transposition, i.e.,
eigenvalue>1, then so does the corresponding operator fofPa's’) #'#0. Since pap) A=(pars) ¥ ®(parer) *', We

Tal— Tar : :
the whole systenfi6]). Conversely, Eq(22) implies that if have Thel(pas) A1=(pas’) #'#0. Since the partial
both components havi e =0 andAye=0, thenk,s  (race of a non-negative operator is a non-negative operator,
=0. this implies that p,g) "A#0, so that the inseparability of the

It is not difficult to find examples of such inseparable extended systemB is detected provided that the insepara-

statesAB whose inseparability is maskdile., \,=0) by  Pility of a component of ithereA’B’) is detected.
extending an inseparable componeitB’ that satisfies

M argr#0 with a separable on&”B”. For example, leA’B’ lll. SEPARABILITY OF TWO

be one of the Bell states, e.gpag =|® )} D*| with TWO-DIMENSIONAL SYSTEMS
|®*)y=2"Y2]00)+|11)), and letA"B" be a product of two
random quantum bits, i.epgargr=(1a2®1gr)/4. Since pg;
:lBr/Z, we haVe)\ArBr:lArBr/Z_pArBrio, as eXpeCted.
Using A prgr= pargr, We see that Eq22) yields

Theorem 3The mapl’ acting on a two-dimensional sys-
tem corresponds to time reversal, and is therefore equivalent
to applying the complex conjugation operakofollowed by
a rotationR, by an anglew about they axis, that is,I’

_ o . =R,K.

Mg~ (lwe = pae) ©pwer @3 Lyet us write the arbitrary state of a two-dimensional quan-
which is obviously a non-negative operator, so that the infum system(@a quantum bitin the Bloch-sphere picture:
separability ofAB is hidden. The example of weakly insepa-
rable states with a positive partial transpgsee Ref[4]) is _ - -
treated in Appendix A, to illustrate that,g=0 is not a p=5(1+r-0), (27)
sufficient condition in general.

Remark 1.The mechanism of dilution of inseparability
can be understood by examining the action of the iam
pro@ct states. Indeed, when applyidg=T'@| on the sta’te describes the statistics of measurements on the system, as,
PaB=PaB' @pargr, I acts on the statpa @ par (B andB f le. th A i | £ ih .
are left unchanged bl). Let us consider a density operator or example, the quan urp exp(_ec ation vajue ot t ef spin
of the product formp=p'®p”. Since we have TK) compgniznt algrlg an axis defined by the vectoris
=Tr(p")Tr(p"), we see that it is mapped to T p(v-o)]=(v,r). Using Eq.(27), it is straightforward to
check that

whereo represent the three Pauli matrices ardTr(po) is
areal vector in the Bloch spheréf radius ). The vectonm

T(p'@p")=Tr(p")Tr(p")—p' @p"
! ! 14 " 1 -
=[Tr(p")=p"]&[Tr(p")—p"] Tp=1-p=3(1-r-0). (28
+Tr(p" )®p"+p ' ®@Tr(p")=2p'®p"
(24) Thus, I' performs aspin flip, or, equivalently, performs a

parity transformation on the Bloch vector— —r. This can
which implies the relation be viewed asime reversaland therefore can be decomposed

into a complex conjugatiok followed by a rotationR, of

r=r'«l'"+Ir'«l"+1'«l'”, (25  anangler about they axis, that is"=7=R,K [11]. |

:l"pl®1"pl!+r‘pl®pll+pl®l"pll’
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Remark 1.In order to see this explicitly, consider the They characterize the reduced systeinand B, that is, the

action of the mapA=I'®| on a product staté)=|a)
®|b). Using pag=P,®P, with P,=|a){(a] and P,
=|b)(b|, we have

Aag=P3®Py, (29
where P;=T'(|a)(a|)=1,—|a){a| is the projector on the
subspace orthogonal ta). In the case wherd,=2, P; is

local (margina) statistics of any observable ghor B. The
matrix t, n=Tr pag(oW’® o§")] describes the joint statis-
tics of AandB as it characterizes the correlation between the
measured spin components along two atdsfined by the
vectorsa andb): Tr[p(a- oo®b- og)]=(a,th). Using Egs.
(31) and (33), it is checked by straightforward calculation
that A simply flips the sign of the terms i, :

a rank-one projector as the total trace is preserved. Then,

P, =l|a’)(a'|, where|a') is a state vector orthogonal to

|a). (Note that it is impossible to construct a stfe) that is
orthogonal to ararbitrary state|a) by applying aunitary
transformation along.It is easy to check thaa') can be
obtained by applying a complex conjugatignon the com-
ponents ofla) followed by a rotationR, of angle 7 about
the y axis. Indeed, any statg)=a|0)+ 8|1) (with |«|?
+|B|?=1) is transformed intda’)=— B*|0)+ a*|1) by
applying the rotation

Uy=exp—imo,/2)=—ioy,=0oy0,=

) o

(that is, a bit and phase flipto the state vector*|0)
+B*|1). The transformed statgg™) is such that(a*|a)
=0 and|a‘){a*|=1,—|a)(al, as expected. Thud, coin-
cides with time reversal for a spin-1/2 systedy € 2) as the
latter is equal to complex conjugatidf followed by the
rotationR,, i.e., 7=R,K [11]. Consequentlyl" is ananti-

1 - - - -
)\AB:Z ]A®]B_r'UA®lB+lA®S'O'B

3
m,n=

tnyma'(An)® a'gn) .
1

(39

This implies thatA=T"®| applied to a Z n system corre-
sponds simply to “local” time reversal®|, that is, per-
forming time reversal on the subsystéxwhile leaving the
subsystenB unchanged8].

Remark 2.The dual mapA=1®T flips the sign of the
Pauli matrices acting oB while leaving the sign of those
acting onA unchanged. The action of the symmetric map
M=I"®T on the Hilbert-Schmidt decomposition pfp is to

flip the sign of the Pauli matricas, andog . This operation
corresponds therefore to time reversal appliedAtand B
simultaneously, and is equivalent to complex conjugation in
the “magic” basis(see theorem)6 It is worth noting that the

unitary operation on state vectors in a two-dimensional Hil-set of states that remain invariant under the symmetric map

bert spacdsee Appendix B (For any two state vectols)
and|a), we have(a|a")=(ala)*.)

M are those withr =s=0, that is, mixtures of generalized
Bell states(the latter being defined as the states obtained by

Corollary. For the Hilbert-Schmidt decomposition of applying any local transformation to the four Bell states
pag. the mapA =I'®| corresponds to a sign flip of the Pauli These states are called‘states” by Horodecket al. [12],

matrices acting orA while leaving those acting oB un-
changed.

and are such that the entropy AfandB is maximal, that is
S(pa)=S(pg)=1. (The only pure states in this set are the

Let us consider the Hilbert-Schmidt decomposition of anfully entangled states of two qubits, i.e., the generalized Bell

arbitrary state of two quantum bit®r spin-1/2 particles
[12]:

1 - - .
pAB:Z 1A®JlB+r‘(TA®]B+1A®S'O'B

(31

tn,ma',&n) ® a_gm) )
1

3
+ >
n=

m,

where " and o™ stand for the Pauli matricegith n
=1,2,3) in theA and B space, respectively. EquatidB1)

states. Thus, in particular, thégeneralizegl Bell states are
left unchanged by the action &d. In contrast, dseparablg
product statep,®pg IS mapped into the distinctnon-
negative state uag=(la—pa)® (lg—pg). Because of this
property, uag by itself is uninteresting as far as revealing
inseparability is concerned, as mentioned earlier.
Theorem 4 A bipartite system of two-dimensional com-
ponentsA and B characterized by an arbitrary joint density
operatorp,g is separablaf and only if the operator\ 55
= Appg is positive semidefinite.
It is enough to show thaf\ is equivalent to a partial
transposition up to a completely positive m@p fact, a uni-

depends on 15 real parameters, the two three-dimensionglry transformatioy) since Peres’ separability criterion is

vectorsr ands, and the 3< 3 real matrixt,, ,,. The vectors

ands correspond to the reduced statefodindB in the Bloch
sphere since we have

1 N
PA:TrB[PAB]:E(ﬂA+r'0A)v (32

1 N
PB:TrA[PAB]:E(ls“‘S'UB)- (33

known to benecessanand sufficientin this casg3]. Since

we are dealing with Hermitian operators, the mapl,
whereT is the standard transposition of operatorston, is
equivalent to the “partial conjugation” operatioK®]I,
whereK is the complex conjugation operator acting on states
on H, . (Note that, althougIK is well defined, partial con-
jugation K®1 is only defined for product state vectors in
Hag [4].) Thus, theorem 3 read$="R,T. We can now use
the fact that any positive majd acting on density operators
in a two-dimensional Hilbert space can be writter] 2
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M=T5P+T157T, (35 - 1
v t: |qr><qr|=Z(1A®1B—agx>®ag>
where ISP and TISP are completely positive map@vhich +to @) +odwal),
therefore do not reveal inseparabi)ityVith the identifica-
tion I1$°=0 andI15"="R,, we see that the map can be -

1
- . DN D | = + oW g
used rather than the transposition operatdor K) in order tzr [@7N®7 2Ua®lston’®og

to test the positivity of the operator resulting from applying

any element of the set of magd®| on p,g (this follows

from the reasoning used in R¢R]). Thus, using the fact that L

the complex conjugation operattiris unitarily equivalent to > + ) X X

I, we have shown that pag=0 results in a necessaand tar [¥7NY |_Z(1A®IB+U§*)®U(B)

sufficient condition for the separability of<2 systems. l
Remark 1.The mapl’ applied to a two-dimensional sys-

tem is unitarily equivalent to the transposition operafor

Since the spectrum of an operator is conserved by a unitary

transformation R,), the spectrum of the operator obtained

by partial transposition in subspaée (T®I1)pag= p;AB, is

the same as the spectrum)fg=Apag. Therefore, testing

Peres’ separability condition or the positivity Mg is Op- |4 Ref. [12], it is also shown that a statpsg of this

erationally equivalent, and these conditions can be used in]: . : . . -
. . : -diagonal class iseparablef and only if the vectort char-
terchangeably in the case of two quantum bits, as illustrated

in Appendix A. Moreover g andp;’g have the same spec- acterizingpABQtieIongs to an octaﬂhiedron with vertices
trum for 2Xn systems, so that the conditions are also:(i,l’o’o)’ Oz_f(o'i 1'.0)' gnd 03_:(0'0;1)' Let us
equivalent ifl" is applied on the two-dimensional subsystem.con_Slder th_e action oji\ |n»th|s rgpresentatlon. As shown
As a consequence, the separability condition based as ~ €arlier, A flips the “spin” o,. Within the set ofT states,
necessanand sufficient for 2x3 systems, while it is only thiS amounts to changing the sign of the, matrix, that is,
necessary for 2 n systems with largen, just as Peres’ con- t0 flipping the sign of the vectot for T-diagonal states.
dition [3]. Numerical evidence suggests that, for systemsl herefore, the criterion for separabilitk xg=Apap=0
with d,,dg>2, the reduction condition is weaker théor translates, in this representatlgn, to the condition that the
equivalent t9 the one based on partial transposititiis has ~ “parity” operation on the vectot characterizing a separable
been later proven in Ref7]). state results in a positive operat@re., a legitimate staje

Remark 2.It is instructive to illustrate theorem 4 foF  Hence,—t must belong to the tetrahedron. It is easy to see
stated12], that is, in the case whefeandB have a maximal that the set of points of the tetrahedron which are such that
reduced entropy. Th@ states (: s=0) are such that the their image under parity still belongs to the tetrahedron cor-
reduced density operators are givenby= pg=1/2, so that responds exactly to the pctahedron .defmed above. Therefore,
no inseparable state exists that satisfigs,g=0, so thatA
provides a necessaand sufficient condition for separability
within the class ofT states, as expected.

Theorem 5.The symmetric magM acting on two two-
dimensional systems conserves the spectrum, so that the
aﬂeparability criteria resulting from the mapand its duaiA
are equivalent. |

As a consequence of theorem I@,=1"® " amounts to

— o'gy) ® U%y) + 0',(5\2) ® O'(BZ)) ,

+ (T,(/_\y) ® Ug) - O'(AZ) ® O'(BZ)),

—y
~

1
W)Y =7 (1Al o @ of

— 0',(/_\y) ® Ugy) — O'(AZ) ® O'I(SZ)). (36)

the reduced entropies aBp,) = S(pg) =1. These states are
thus completely characterized by the mattjx,. It has been
shown in Ref[12] that anyT state can be transformed by a
unitary transformation of the product forld,®Upg into a
state for whicht, ., is diagonal As far as separability is
concerned, we can thus restrict ourselves to the class of
states with diagonal, since these are representative of the

entire set off states(up to aU_A® Ug isomorphism. performing a complex conjugatidg (or transpositiohof the
The class of states with diagontais a_convex_subset of ioint density operator i, , followed by a tensor product
the set ofT states, and any state Pelongmg to this subset ca f the rotationR, defined byU,=exp(~ima,/2)=—io,,
be characterized by the real vector (t11,t5,,t33) made out  that is, U,@U,= —ay®a,. Note that, as we are dealing
of the diagonal elements ofIt was proven in Refi12] that  with Hermitian (density operators, their spectrum is un-
an operatorp,g of the form given by Eq(31) with r=s  changed byK. The same is true for the rotatidd,® U, .
=0 and diagonak corresponds to a stat@e., apositive  Therefore,uag=Mpag has the same spectrum ggz when
unit-trace operatorif and only if the vectorf belongs to a da=dg=2. AsT is self-inverse [*=1) when da=dg=2,
tetrahedron with vertices;=(—1,1,1), t,=(1,—1,1), t; We have the relatod®I'=(I'®l)(I'®T) or in short A
=(1,1-1), and f,=(—1,—1,—1). In other words, any _‘*M. Thisimplies that
state of this class can be represented by a point inside this -
tetrahedron. In this representation, the four Bell states Apag=A[(Uy®Uy)pig(Uja U], (37)
|®@*)y=2"Y(]00)=[11)) and |¥*)=2"2%|01)=|10))
correspond to the vertices of the tetrahedron, that is, which in turn results in
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XAB:(Uy(X)Uy)}\XB(U;@U;) (39) ever, we are Iook_lng here for (@eal rotation matr_|>_< rather
than a general unitary matrix. Note that the mathiXs self-

as A commutes withU,®U, and complex conjugation. inverse, i.e.W?=1, so that it is also symmetrio" =W).
Since A ap is Hermitian (just asp,g), the latter expression By multiplying Eq. (42) by W on the left and the right, we

shows that the spectrum Bf,z andX 5 are identical, so that obtain

the resulting criteria for separability are equivalent. -1
Theorem 6.The symmetric mapM applied to a bipartite 0

system of two-dimensional componefite., global time re- T_ _

versa) is equivalent to complex conjugation in the “magic” WMWV) = —0o,®0,=

basis introduced in Ref10] (this was pointed out indepen-

dently in Ref.[13], which was brought to our attention after

completion of this work _ _ which implies that the produad/V can be written as a diag-
Sincel'=R K, the symmetric mapd =T'®I" applied to 551 matrixD:

the statep,g Of @ bipartite system results in

(45)

o » O
o »r O O

0

o

-1

R =i 0 0 O

MpAB:(Uy®Uy)pAB(Uy®Uy)1 (39) +1 0 0
whereU,®U,= —oy®0c,. SinceM is antiunitary and self- Wv=D= 0 0O *1 O (46)

inverse M2=1), it is aconjugation14]. It can be written as 0 0o 0 i

the complex conjugation operator if expressed in a specific
basis. Let us assume thutis the unitary operatofin the  Thjs yields a(nonuniqué solution for the unitary matris/
joint spacg that transforms the product states into the states_\y,Tp = \wD that defines the bas{$e;)}. The statese;) are
{le))} that form this specific basis, that is, thus obtained by applying the rotation matiito the prod-
_ _ uct states*i|00), =|01), =|10), and =i|11). It is worth

|e1)=V|00), [ez)=V]|01), noticing at this point that the rotation matrix

e5)=VI10), [es)=V|11). (40) 1 1 1 -1

We would like to show thaM is equivalent to rotating the
statege;) into the product states, taking the complex conju-
gation of the density matrixin the product bas)s and then
rotating the product states back to ffeg)’s:

(47)

Mpas=V(VIpasV)*VI=(VVT)pia(VWDT, (41 transforms the pr_oduct states into the fou_r maximally en-
tangled states which are obtained by applying a local trans-

whereV is the transpose of the unitary mathixIdentifying ~ formationH®1 on the four Bell states, i.e.,

Eqs.(39) and (41), we obtain W|00) = (H®1)|®*)=(|00) +[01) +|10)— |11))/2,

0o 0 0 1
o o0 10 W|OL) = (H® 1)|W*)=(|00)+|01) — |10) +|11))/2,
T: = -_— =
Wi=byely=oea=l 1 o o W|10)=(H®1)|®~)=(]00)— [01)+|10) + |11))/2,
1 0 0 0

(42) W|11)=(H®1)|¥ " )=(—|00)+|01)+|10)+|11))/2, (48)
whereH is the Hadamard transforrfAs a matter of fact, the
unitary transformatioW corresponds simply to a controlled-
NOT gate where the control is in the dual badi)
+]1),|0)—|1)} rather than the standard basiherefore,
the unitary transformatioW =WD is such that the product

It is easy to prove that, i¥ is unitary, thenVVT is unitary
and symmetriogbut not necessarily Hermitianin order to
find a solution forV that satisfies Eq42), we first diagonal-
ize the matrixo,® o, . Consider the unitary matrix

i states are rotated into the four generalized Bell states with
W= exr{ — 7 (1-oge(l-oy) the appropriate phases
=(181+100y+ 0@ 1—y@a,)2. (43 le))=V|00)=*i(H®1)|®"),
It is in fact areal orthogonal matrix, so thawv 1=w" le))=VI[0)=*1(H®1)|¥"),
=WT. It can easily be shown thav diagonalizeso,® oy, B
that is, les)=V[10)=*1L(H®1)|d "),
W(o,®0)W'=0,80,. (44) le))=V|1D)=*i(Ho1)|¥ ). (49)

It is not the only such matrix, as,® o, is obviously also ~ These statege;) are therefore equivalent, up to a local
diagonalized by eXp-i(#/4)oy|®exd —i(w/4)o,]. How-  change of basisl®1 and a phasethat are irrelevant here,
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to the “magic” states introduced in Ref10]. (Any four V. CONCLUSION

states obtained from thie;)'s up to an overall phase and a Given a bipartite system characterized by a density opera-
unitary transformation acting locally on each quantum bit are P Y y y op

legitimate “magic” states. This implies that, when ex- tor pag, We construct a simple separability criterion based

pressed in this basis, the symmetric mdp=T®T reduces ©n the positive linear map:p—(Trp)—p. Any separable
the complex conjugation operation that was used in the corstatepag is mapped by the tensor productiof(acting onA)

text of the calculation of the entropy of formation of a pair of @nd the identityl (acting onB) into a positive operator.
quantum bitgsee Refs[9,13)). m  Therefore, a necessary condition for separability is based on

Theorem 7A distinct necessary separability condition for checking the non-negativity of the operatdf&1)pag=Ia
the bipartite statg g is that its support can be spanned by a® pg—pag. This reduction condition, along with the one
set of product states which are such that the correspondingased on the dual magI', can be shown to be nonsuffi-
product operators obtained by applyifigto the state vector cient for a system of arbitrary dimension because entangle-
in Ha span the support of sg=Apag- ment dilution can thwart the map’s sensitivity. Sid¢ceom-

We only consider this condition in the case whelge  mutes with any unitary transformation, the spectrum of the
=2. Let us first show that ip,g is @ separable state, then operator [ ®1)pag is invariant under a local unitary trans-
Aag is a separable operator obtained by replacing the statggrmationU,® Ug, making this reduction criterion indepen-
|a> in Hp by projectorsPé orthogonal to them. Consider the dent of the basis in which andB are expressed.
separable state In the case of a two-dimensional systdfis shown to be

the time-reversal operator, which flips the sign of the spin
matrices(or, equivalently, reverses the Bloch vector charac-
pAB=2 w;(|a;){(ai|®|b;){bj|), (50)  terizing the state of the quantum )ito that the mag' ®1
! amounts to changing the arrow of time for subsystemith
respect to subsysterB. Such a relation between time-
where thela;)®|b;) are pure product statg¢asing the spec- reversal and Peres’ partial transposition has been pointed out
tral decomposition op%) andp{, it is easy to rewrite Eq. previously by Sanperet al.[8], who showed that the partial
(7) into this form|. As a result of theorem 3, we see thaly ~ transposition operator is unitarily equivalent to “local” time
it is mapped byA into the separable operator reversal. Thus, our reduction criterion for separability based
onI'®| is equivalent to Peres’ criteridi2] for 2X n systems
(when applyingl’ on the two-dimensional subsystgnis a
Nag= 2 Wi(Py @ |by)(by)). (51)  consequence, it is necessamyd sufficient for 2<2 and 2
i ' X 3 systems while it is only necessary for larger systems,
just as is Pereq'3]. For systems withd, ,dg>2, however,
The operatoi g is a unit-trace operator in the cadg=2 the reduction condition is generally weaker than the one

since each component pure st&g®|b) is mapped into a Pased on partial transposition.

pure product state|a*)®|b), in which case it simply reads ~ Finally, we consider the symmetric map @1') pag=1a
®lg—pa®lg—IA®pg+pag. The 2X2 states which are left

invariant under this map are mixtures of generalized Bell
_ IRy states, which include the maximally entangled pure states as

)\AB_Z’ willai Kai | @1oi)bi). 52 well as the product of two independefitnentanglef ran-
dom bits. It can be seen th&t®I" is related to quantum
nonlocality even though it does not directly reveal insepara-
bility of two quantum bits. Indeed, it reduces to the complex
conjugation in the “magic” basis that has been introduced in
the context of the entropy of formation of a pair of quantum
bits (see Refs[9,13]). It might therefore be interesting to

Let us show that Eq(52) results in a simpl@ecessaryon-
dition for separability(distinct fromA ,g=0), inspired from
the condition recently proposed by Horodef4]. The cen-
tral point is to note that ifpag iS separable, then the en-

semble of product stat¢a;) ®|b;) span the entire support of look for a simple relation between the mBp(related to the

pag. (Conversely, any statg;)®|b;) must_ belong to the reduction criterion for inseparabilityand the entropy of for-
support ofpag and cannot have a nonvanishing componentrnation

orthogonal to it From Eq.(52), we see that the ensemble of
stateda; )®|b;) span the entire support of the corresponding
separable statk o5 Obtained by applying\ on p,g. Also,
any statelai")®|b;) cannot be outside the support ofg.
This results in anecessarycondition for separability which We acknowledge useful discussions with Michal Horo-
can be stated as follows: if a stgigg is separable, then it decki. We are also grateful to Chris Fuchs for communicat-
must be possible to span its support by a set of product statéisg to us unpublished results of Rdfl3], especially the
|a)|b) which are such that their imagé.e., the product connection between the may and the “magic” basis for
states obtained by rotating the complex conjugate of statewvo qubits. This work was supported in part by NSF Grant
vector |a) in the A space by an angler about they axis  Nos. PHY 94-12818 and PHY 94-20470, and by a grant
while leaving the state vectob) in the B space unchanged from DARPA/ARO through the QUIC Program(No.
span the support of the mapped stajg=Apag.- | DAAH04-96-1-3086.
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APPENDIX A: EXAMPLES

Here we consider several examples illustrating the sepa-

rability criterion A\ ,g=0, and compare it to Peres’ criterion

[2]. Examples 1-4 deal with states of two quantum bits, and

illustrate the fact that thé criterion is necessary and suffi-
cient (the spectrum ofs 55 is identical to the spectrum of
p'A). Examples 5 and 6 illustrate that thecondition is not
sufficient for systems in larger dimensions X3 and 2
X 4) whose partial transpose is positiigf. Ref.[3]). In fact,
the A condition is equivalent to Peres’ condition foxx2
systems, so that it is also necessary and sufficient $08 2
systemd 3] while it is only necessary for larger.

Example 1Consider a Werner stafé] with parametex
(0=x=1), that is, a mixture of a fractiom of the singlet
state|¥ ~) and a random fraction (2x). We shall see that

Mag=0 is equivalent to Peres’ criterion, and is therefore suf-

ficient. Indeed, the joint density matrix

ey (17X)
pas=X[¥ ) (V| + 2 (I1)
1-x
— 0 0 0
4
0 1+x X 0
42
B X 1+X A1)
0 -— — 0
2 4
1-x
0 0 o —
4
is mapped byA into the matrix
1+x
— 0 0 0
1-x X
o — = 0
4 2
A= . x  1—x . (A2)
2 4
1+x
0 0 0o —
4

which admits three eigenvalues equal to+X)/4 and a
fourth equal to (1 3x)/4. The latter becomes negativexif
>1/3, so thath 5g is positive semidefinite only ik=1/3,
which has been proven to be thgactthreshold for separa-
bility (any Werner state witk<1/3 is separable as it can be
written as a mixture of product statgk5]). As expected, the
spectrum of\ 55 is equal to the spectrum of the partial trans-
pose ofpag, SO that theA condition is sufficient to ensure
separability for Werner states.

Example 2.Consider a mixed state that is made out of a

fraction x of the entangled statéy)=al01)+b|10), and
fractions (1-x)/2 of the separable product staté€) and
|11) (see Ref[16]). The joint density matrix is of the form

N. J. CERF, C. ADAMI, AND R. M. GINGRICH
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1-x 1-x
pae=X|¥)(yl+ =5~00)(00 + —~|11)(11

1-x
—_— 0 0 0
2
0 xla? xab* 0 3
| 0 xa*b xb*> © (A3)
1-x
0 0 0 _—
2

with a andb satisfying|a|2+|b|2=1. It is mapped by\ into
the matrix

x|b|2 0 0 0
1—x
0 —— —xab* 0
A= (A4)

1_

0 —xatb —X 0
2

0 0 0 x|a|?

The eigenvalues ofi,g are x|al?, x|bl?, and (1—x
+2x|ab|)/2. This implies thatpag is inseparable ifx>(1
+2|ab|) 1, exactly as predicted by Peres using the partial
transpose 0p,g. Since we are dealing with two qubits, this
is the exact limit between separability and inseparability
[2,3].

Example 3In the simpler case whefg,g is a mixture of
a fractionx of the singlet stat¢¥ ~) and a fraction (% x) of
the separable product std@0),

pas=X|¥){(¥|+(1—x)|00)(00

1-x 0 0 0
0 x/2 —x/2 0
| 0 —x2 xi2 o}’ (AS)
0 0 0 0
we obtain
x/2 0 0 0
0 0 x2 0
MBTl 0 y2 1-x 0 (A6)
0 O 0 x~2

The latter matrix admits two eigenvalues equalxt@ and
two eigenvalues equal ol —x* (1—x)?+x?]/2, so that
its determinant is equal te- (x/2)*. Thus, this state is in-
separable whenevar>0, as expectedlt is separable only if
it is the pure product stat®0).)

Example 4.Consider the class of two-qubit inseparable
states described by Horodecgt al. [3], a mixture of two
entangled states:

pas= Pl 1) (Y| +(1—p)|h2){Wal,

where |¢;,)=al00)+b|11) and |,)=a|01)+b|10), with
a,b>0 and satisfyindal|*+|b|2=1. The joint density ma-
trix

(A7)
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pa’ 0 0 pab
0 (1-pa® (1-p)ab 0

PRABT1 0 (1-p)ab (1-p)b?> © (A8)
pab 0 0 pb?
is mapped byA to
(1—p)b? 0 0 —pab
0 pb? (p—1)ab 0
Mas= 0 (p—1)ab p&d 0 (A9)
—pab 0 0 (1-p)a?

The latter matrix admits two eigenvalues equal fp=+ p°+4a®b*(1—2p)]/2 and two eigenvalues equal to
[1-p*(1-p)®+4a®b?(2p—1)]/2, so that its determinant is equal te a*b*(1—2p)2. This state is therefore
inseparable wheneverh# 0 andp+1/2, in perfect agreement with R¢8].

Example 5Consider the X3 system in a weakly inseparable state introduced by Horoddgki

a 0 0 0a o 0 0O a
0a0000 0 0 0O
00ao000 O 0 O
000a00 0O 0 0
a 0 0 0 a O 0 0O a
pAlejW oo0oo000a 0 o0 o0 |, (AL0)

0000001;_&01;612
000000 0 a

a000a012—a201;a

where a is a parameterg#0,1). As shown in Ref[4], the partial transpose of this state is positive, althopgh is
inseparable, which makes the inseparability@f undetectable using Peres’ criterion. It is simple to check tha\timapped
matrix

1+3a —a?
o vi-a 0O -a o0 0 0 -a
2 2
0 2a 0 0 0 O 0 0 0
—a? 1+3a
1-a® 0 0 0 0 0
2 2
1+3a 1—
1 0 0 0 0 2 0 0 o
ME=T78a 2 2 (ALD)
“a 0 0 0 2a ©0 0 0 -a
—a? 1+3a
0 0 0 1-a 0 0 0
2 2
o 0 0 0 0 O @& 0 o
0 O 0 a o0
“a 0 0 0 -a 0 0 0 =

is positive(with a trace equal to)2 so thatA cannot reveal the inseparability pfg either. Accordingly, the determinant of
A ag is equal to &7(1—a)(5a+3)/(1+8a)? and thus positive. Note that the dual map also yields a positive operaidof
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trace 2, although the eigenvalues af,g are distinct from those of x5, as is its determinant Détgg) =24a’(1—a?)/(1
+8a)°. This example emphasizes thiatdoes not result in a sufficient separability condition fot 3 systems, just as Peres’
condition[3].

Example 6 Following Horodecki4], we consider a X4 system in an inseparable state

b 0 0 O 0 b 0 0
0O b OO 0 0 b 0
0 0b O 0 0 O b
0 0 0D 0 0 0 0
1 1+b 1-b?
PAB= T3 7p 0 0 0O > 0 O 5 (A12)
0 0 b 0 0
0 O 0 b 0
0 0bo V1P g o 1fP
2 2
that has a positive partial transpose, whielis a parameterl{ 0,1). Applying A, we see that
1J2r_b 0 0 1;b2 0 -b 0 0
0 b 0 0 0 0 -b O
0 b 0O 0 0 0 -b
2
)\AB:1+—17b 10" %5 o 1;—b 0 0 0 0 (A13)
0 0 0 0 b 0 0 0
-b 0 0 0 0 b 0 0
0 -b 0 0 O b 0
0 0 -b 0 0O O 0 b

has eigenvalues 0, b, 2D, and [1+2b and flips the sign of the Pauli matrices y ,,
+(14+2b)*—2b(3+b)]/2 so that it is always non-
negative. Note that the spectrum Xfz is the same as the - - . -
spectrum of the partial transpo A7 (cf. Ref [4]), as ex-

' : Pae \CT- - 14, I=1, oy—=—0oy, oy——0,, o0,~—0,. (Bl
pected. This confirms that the condition based/onT'®|
and Peres’ separability condition are equivalent fox 2
systemswhen| is applied to the two-dimensional system transposition, as we deal with Hermitian operatarsrre-

and| to the n-dimensional ong In this example, applyin
e P ppIng sponds to amantiunitary operator which acts on the four
the dual mapA=1®T yields a positive operator which basis matrices as

traces to 3.

The complex conjugation operatdt (or equivalently the

K K K K
APPENDIX B: THE ANTIUNITARY MAP T 11, om0y, oy——0y, 00, (B2

Consider the action of the mdp:p—(Trp)—p on the
density operatop characterizing a two-dimensional system (Remember that it is enough to consider the actioi afn
(i.e., a quantum bjt Sincep can be written as a linear com- the basis matrices as the coefficients are redto, Ryis a
bination of the unit matrix and the three Pauli matriges rotation characterized by the unitary matriy —exp
with real coefficients, it is sufficient to consider the action of (—iwo,/2)= —ioy=0,0, which maps p into prU
I' on these(Hermitian basis matrices. We find thétis an ~ =oypo,, so that the basis matrices are transformed accord-
antiunitary operator that leaves the unit matrix unchangeding to
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Ry Ry Ry Ry Uyp* U;Z ayp* oy
-1, oy—>—0y, oy—0oy, 0,—~—0;. (B3)
1 - -
= §[1+ oy(r-o*)o,]
. . . 1 - -
It is straightforward to check, using Eq&1), (B2), and =§(1—r-a)=l“p, (B4)

(B3), thatT" is the product ofK and R,. (It is a general

property of an antiunitary transformation that it can be writ-where we have used the fact thats areal vector and that
ten as the product of a unitary transformation and a fixedryc;ay= —o*. This generalizes what was shown in Sec. lll
antiunitary operator such as time reversahis can also be for pure states, namely that ifi>=*0¢|0>+ﬁ|1> and|a")
verified easily by applyind?,K to a system in a state given Uy(a*|0)+B*[1))=—p*|0)+a*[1), then we have

by Eq.(27). We get la")(a*[=T(la)(a). (B5)
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