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Simulating quantum operations with mixed environments
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We study the physical quantum resources required to implement general quantum operations, and provide
bounds on the minimum possible size which an environment must be in order to perform certain quantum
operations. We prove that contrary to a previous conjecture, not all quantum operations on a single qubit can
be implemented with a single-qubit environment, even if that environment is initially prepared in a mixed state.
We show that a mixed single-qutrit environment is sufficient to implement a special class of operations, the
generalized depolarizing channels.@S1050-2947~99!04107-4#

PACS number~s!: 03.67.2a, 02.70.2c, 89.70.1c, 89.80.1h
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I. INTRODUCTION

Future quantum computers may be useful in studying
behavior of open quantum systems and the nature of d
herence@1,2#. Instead of performing real experiments o
quantum systems, a single quantum computer can be us
an efficient, multiple-purpose simulator for a wide variety
physical systems. In general, an important goal of such
vestigations will be to understand the effects arising fr
interactions between the system of interestS and another
quantum systemE. For example, a quantum computer can
used to simulate quantum systemsS in thermal equilibrium
@3#, but such a simulation requires an additional quant
systemE, coupled in a particular way toS, to mimic the
thermal bath of the system. In other applications involvi
the simulation of nonequilibrium quantum properties,S
could, for molecules whose isomerization dynamics we w
to study, represent the relevant conformational states, w
couple to other moleculesE through long-range electroni
dipolar interactions. In all these applications, we wish
implementE with the smallest quantum resources possib
and this paper investigates the most efficient implementa
of such quantum environments.

SupposeS exists in a Hilbert spaceHn of dimensionn,
and E is in Hr of dimensionr. It is well known that any
quantum operation@4# onHn , resulting from some interac
tion with E in Hr with arbitrary r, can be performed by
appending a state inH n2, evolving unitarily, and then tracing
overH n2. The difference betweenr andn2 can represent a
significant reduction, sinceE can be a large bath~for ex-
ample, of harmonic oscillators!, andr can be infinite.

Can a general quantum operation be implemented with
environment even smaller thann2 dimensions? Lloyd con-
jectured@2# that it is possible to implement a general qua
tum operation onk quantum bits~qubits! with a k-qubit en-
vironment, if one prepares the environment not in a p
state, as is usually the case, but rather in an arbitrarymixed
state.

Here we provide a specific counterexample to this con
ture for k51, although we find that at least for some ope
PRA 601050-2947/99/60~2!/881~5!/$15.00
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tions, fewer resources are required than was previou
known. Our counterexample is part of a class known as
generalized depolarizing channels, for which we show tha
three-dimensional environment is sufficient for simulatio
The proof of the counterexample is established by the te
nique of computing Gro¨bner bases.

Our results also address the following question: suppo
physical system is given as a black box—we can prepareS in
an arbitrary initial state, and then measure the final stateS
after a fixed evolution period. What is the smallest enviro
mentE with which Smight have interacted in this system?
method to completely determine the quantum operationx
performed by this system is known@5#. This work goes one
step further, by showing a way to turn knowledge aboux
into bounds on the nature ofE.

It is important to realize that an environment that is le
than n2 dimensional does truly represent a gain in spa
quantum resources over an environment of dimensionn2,
even if that smaller environment is mixed. One can prep
any mixed state of ad dimensional system by using no ad
ditional quantum spatial resources in the following wa
Choosing any pure-state ensemble to represent the m
state@6#, one prepares the environment in one of these p
states at random based on the outcome of a random-num
generator. Thus, while more resources are needed~the appa-
ratus generating the random numbers! they are only classical
not needing to be protected from decoherence, for exam

II. QUANTUM OPERATIONS

We begin by summarizing the mathematical formalism
quantum operations. The most general transformation
lowed by quantum mechanics for an initially isolated qua
tum system is a linear, trace-preserving, completely posi
map. Such a mapx:An˜Am , where An is the set of
~bounded! operators on a Hilbert spaceHn , can be decom-
posed into a set of at mostnm m3n matricesAi @7# ~which
we shall refer to as ‘‘operation elements’’! as
881 ©1999 The American Physical Society
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x~r!5(
i 51

nm

AirAi
† . ~1!

n andm are the dimensions of the input and output Hilb
spaces, respectively. The trace-preserving property imp
that theAi obey the constraint

(
i 51

nm

Ai
†Ai51n , ~2!

with 1n the identity matrix onHn . Following Choi @7#, the
set of all such mapsx:An˜Am we call trace-preserving
completely positive~TCP!@n,m#. A physical implementation
of these maps is represented in Fig. 1: A unitary operation
the stater ^ u0&^0u ~whereu0& represents some pure state
an m2-dimensional environment! is performed, and thennm
‘‘degrees of freedom’’ are traced out,

x~r!5 (
k51

nm

^ekuU@r ^ u0&^0u#U†uek&. ~3!

Here$uek&%k51
nm is a set of basis vectors forHnm . As there are

at most nm operation elements, it follows that one ca
implement any map in TCP@n,m# with an environment of
dimensionm2. To determine the dimension of the parame
space of TCP@n,m# we note that the mapx does not
uniquely determine the set$Ai% i 51

nm . Any set ofm3n matri-
ces$Bi% i 51

nm and $Aj% j 51
nm that are related by a unitary tran

formation

Bi5(
j

nm

Ui j8 Aj ~4!

implement the same mapx. This freedom corresponds to
unitary rotationU8 ~see Fig. 1! of the environment qubits
after the completion of the interactionU. It is shown in@4#
that this unitary equivalence is the only freedom in t
choice for the set of operators$Ai% i 51

nm .
The dimension of the parameter space of all maps

TCP@n,m# that can be implemented with a pu
d-dimensional environment will therefore be

Dpure,d
n˜m 52n2d2~nd/m!22n2, ~5!

where the first term represents parameters in$Ai%, the second
is the unitary freedom, the third term is the constraint~2!,
and whered is such thatm divides nd. Thus we have
DTCP[n,m]5Dpure,m2

n˜m
5n2(m221).

FIG. 1. Implementation of the mapx using a pure state envi
ronment.
t
es

n

r

n

In a more general physical implementation, however,
initial state of the environment can be an arbitrary dens
matrix. Consider the set of completely positive trac
preserving linear mapsx:An˜Am that are implemented by
an environment that is initially in somed-dimensional den-
sity matrix. We call this setSmix@d,n,m#. The action on the
input stater is

x~r!5(
j 51

d

l j (
k51

dn/m

^ekuU@r ^ u j &^ j u#U†uek&, ~6!

where$l j ,u j &% j 51
d are now the eigenvalues and eigenvect

of the mixed environment state. We identify a set ofm3n
matrices$Ajk% j 51,k51

d,dn/m in the representation of Eq.~1!,

Ajk5Al j^ekuUu j &. ~7!

Unitarity implies that these matrices are constrained,

(
k

Aik
† Ajk5d i j l i1n . ~8!

There is a residual unitary freedom in choosing the set
matrices $Ajk% j 51,k51

d,nd/m . The set $Bjm% j 51,m51
d,nd/m with Bjm

5(kUmk8 Ajk , where thedn/m-dimensional unitary matrix
U8 does not depend on the labelj, implements the same
quantum operation and also obeys constraint~8!. As before,
this freedom corresponds to a unitary transformation on
environment after the completion of the operation. The
mension of the parameter space ofSmix@d,n,m# can be
bounded,

Dpure,d
n˜m <Dmix,d

n˜m<Dpure,d2
n˜m . ~9!

The upper bound is given by the fact that one can alw
simulate a d-dimensional mixed environment with
d2-dimensional pure environment.

From Eq.~5! and Eq.~9! it follows that an environment of
dimensiond,m cannot be used to implmentall maps in
TCP@n,m#. In fact a large set of maps, the extremal maps
TCP@n,m#, cannot be simulated withd,m. A mapx that is
decomposable inm or fewer linearly-independent operatio
elements is extremal@7# in TCP@n,m#. These maps can b
implemented with a pure-state environment of dimensionm;
moreover, we prove that there does not exist a more effic
implementation of these maps using a mixed-state envir
ment.

Extremality implies that the mapx cannot be written as a
convex combination of linearly independent mapsx i that
each have operation elements$Aj

i % for which ( jAj
i †Aj

i 51n

for eachi. This ensures that only one of the eigenvalues
constraint~8! is nonzero, but this in fact corresponds to
pure-state environment of dimensionm. An example of such
an extremal map is a von Neumann measurement o
n-dimensional system. The set of projection operat
$Pi% i 51

n can be implemented minimally by using a
n-dimensional pure state.

We now turn to the question of whether all maps
TCP@n,m# can be implemented withd5m. Note that our
parameter count does not exclude this. In the following,
restrict ourselves to the casen5m52. We study which
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maps can be implemented using a single-qubit environm
and provide a proof that a particular qubit channel, the tw
Pauli channel, cannot be implemented in this way.

We consider a special set of maps, the generalized d
larizing channels @6#, which are described by the se
$(e i ,Ai)% i 51

4 , where

x~r!5(
i

e iAirAi
† , ~10!

such thate11e21e31e451 and the operatorsAi are given
by A1512 , A25sx , A35sy , A45sz . One can represen
this family of maps geometrically as a tetrahedron, wh
is embedded in a cube with vertices at (1,21,21),
(21,1,21), (1,1,1), and (21,21,1). The transformation
that relates the parameterse1 ,e2 ,e3 ,e4 to the (x,y,z) coor-
dinates is given byx5e11e22e32e4 , y5e12e21e3
2e4, and z5e12e22e31e4. The vertices of the tetrahe
dron correspond to a single-operator map. Its edges are
operator maps, the four faces represent all three-oper
maps, and the points in the interior of the tetrahedron are
the four-operator maps of Eq.~10!.

A computer search suggests that only a subset of th
maps can be simulated by using a qubit environment.
this subset we are able to construct an explicit qubit solut
At the web address@8# one can find pictures of the three
dimensional volume that is described by the solution set
a picture of the solution set as generated by the comp
search. The computer work also suggests that the dimen
of Smix@2,2,2# is equal the upper bound of Eq.~9!, namely,
Dpure,4

2˜2 512. We find this by randomly sampling in the spa
of all superoperators; that is, we choose random orthonor
vectors that make up the columns of the unitary matrixU of
Eq. ~3!; a finite percentage could be implemented with
qubit environment. Thus there is enough ‘‘room’’ for a s
lution, but it is not in the right place, as we will see.

This solution is constructed in the following way. W
start with the center of mass of the tetrahedron, the p
(e1 ,e2 ,e3 ,e4)5(1/4,1/4,1/4,1/4). This channel has the pro
erty that it maps every input stater onto 1

2 12. It can thus be
easily implemented by performing a SWAP gate on an en
ronment qubit that is initially in the1

2 12 state and the inpu
qubit. The SWAP gate on two registersua&ub& gives ub&ua&.
Then one considers the line that departs from a vertex,
the point (e1 ,e2 ,e3 ,e4)5(1,0,0,0), and goes through th
center of mass. This one-dimensional set of channels is c
acterized bye25e35e4 and represents the regular depola
izing channel@6#. Performing a (SWAP)1/m ~obtained by
turning on for timet/m a two-bit interaction that, over timet,
gives the SWAP transformation! on a 1

2 12 environment and
the input qubit implements these channels, up toe151/4.
The integerm is related to thee parameters bye25e35e4
5sin2(p/2m)/4. One extra step of generalization gives us
even larger set of channels. The unitary matrix is a somew
generalized form of (SWAP)1/m,

U5S eiu cosf1 0 0 ieiu sinf1

0 cosf2 i sinf2 0

0 i sinf2 cosf2 0

ieiu sinf1 0 0 eiu cosf1

D ,

~11!
nt
-

o-

h

o-
tor
ll

se
or
n.

d
er
ion

al

nt
-

i-

ay

ar-
-

n
at

and the environment is again prepared in state1
2 12. We can

determine the operation elements and express these as
~unitary! combinations of the Pauli matrices. This leads to
expression of the parameterse i in terms of (u,f1 ,f2)
P@0,2p#3@0,2p#3@0,2p#,

e15
1

4
~cos2 f11cos2 f212 cosf1 cosf2 cosu!,

e25
1

4
~sin2 f11sin2 f212 sinf1 sinf2 cosu!,

~12!

e35
1

4
~sin2 f11sin2 f222 sinf1 sinf2 cosu!,

e45
1

4
~cos2 f11cos2 f222 cosf1 cosf2 cosu!.

Alternatively the solution set can be expressed as a se
inequalities on the parameterse i ,

S5S1øS2øS3øS4 , ~13!

where

Si5$~e1 ,e2 ,e3 ,e4!ue1e2>e3e4∧e1e3>e2e4∧e1e4>e2e3%.
~14!

and

S25S1~e1↔e2!,S35S1~e1↔e3! andS45S1~e1↔e4!.

In the Appendix we prove that the volume described by E
~13! and ~14! and the one given by Eq.~12! coincide.

III. TWO-PAULI CHANNEL

We now turn to another set of maps, the two-Pauli ch
nel, which is given by the three operators,

A1512Ax, A25sxA~12x!/2, A35 isyA~12x!/2.
~15!

We will prove that for 0,x,1, there is no qubit environ-
ment which simulates this channel. Forx50 or x51 there is
a two-dimensional environment that can simulate the chan
as the channel has two operation elements whenx50 and
only one operator whenx51.

Any unitary linear combination of theA1 , A2, and A3
may be written as

Bk5S bkAx ~ck2ak!A 1
2 ~12x!

~ck1ak!A 1
2 ~12x! bkAx

D ,

~16!

with appropriate constraints resulting from unitarity on t
coefficientsak ,bk ,ck . This new set of operators$Bk%k51

4

will implement the same channel due to Eq.~4!. Further-
more, these operatorsBk are constrained through Eq.~8!. For
notational convenience, we define
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uu0&5
1

A2
S a01c0

a11c1
D , uu1&5

1

A2
S a21c2

a31c3
D ,

uw0&5
1

A2
S c02a0

c12a1
D , uw1&5

1

A2
S c22a2

c32a3
D , ~17!

uv0&5S b0

b1
D , uv1&5S b2

b3
D .

Using the assumption 0ÞxÞ1 and by linearly combining al
the equations we obtain:

^v0uw0&1^u0uv0&5:g150, ~18!

^v1uw1&1^u1uv1&5:g250, ~19!

^v0uw1&1^u0uv1&5:g350, ~20!

^w0uv1&1^v0uu1&5:g450, ~21!

^u0uu0&2^w0uw0&5:g550, ~22!

^u1uu1&2^w1uw1&5:g650, ~23!

^u0uu0&1^u1uu1&215:g750, ~24!

^v0uv0&1^v1uv1&215:g850, ~25!

^u0uv0&1^u1uv1&5:g950, ~26!

^u0uw0&1^u1uw1&5:g1050, ~27!

^u0uu1&2^w0uw1&5:g1150. ~28!

Writing each of the coefficientsak , bk , and ck in the
form xj1 ix j 11 ~wherei 2521), we get a system of polyno
mial equations Re(g1)5Im(g1)5 . . . 5Im(g11)50, where
Re(gk) and Im(gk) are polynomials in the variable
x1 , . . . ,x24 with real coefficients. To show that this syste
of equations has no solution we make use of Gro¨bner bases
~see, e.g.,@9#!. The computation of a Gro¨bner basis with
Buchberger’s algorithm generalizes the Euclidean algorit
to compute the greatest common divisor~GCD! of univariate
polynomialsp1(x) and p2(x). In that case, the GCDg(x)
can be written as a ‘‘linear’’ combinationg(x)
5 f 1(x)p1(x)1 f 2(x)p2(x). The two univariate polynomials
p1 and p2 have a common root if and only if their GCD i
nontrivial, i.e.,g(x)Þ1.

For multivariate polynomials, a common solution exists
and only if the Gro¨bner basis of the ideal generated by the
is nontrivial, i.e., does not contain a constant. In our ca
using the computer algebra systemMAGMA @10# we have
shown that there exist polynomialsf 1 , . . . ,f 11 such that
( j 51

11 f j (x1 , . . . ,x24)gj (x1 , . . . ,x24)51, i.e., the Gro¨bner
basis contains 1 and there is no solution of Eqs.~18!–~28!.

IV. QUTRIT SOLUTION

Despite the above proof, it turns out that the class
channels we have been studying do not require a two q
environment (d54) for their simulation; a mixedqutrit (d
f

e,

f
it

53) suffices. For generalized depolarizing channels, th
will be nine operators,$Ai j % i , j 51

3 . We set one eigenvalue
l350 and thusA315A325A3350. If e1e2>e3e4 the solu-
tion is A1150, A215Ae22e3e4 /e1sx , A125Ae3sz , A22

5Ae4sy , A135Ae112, and A2352 iAe3e4 /e1sx . Other-
wise, we take A1150, A215Ae42e1e2 /e3sy , A12

5Ae112 , A225Ae2sx , A135Ae3sz , and A23

5 iAe1e2 /e3sy . One can check that this set implements a
generalized depolarizing channel and satisfies Eq.~8!.

On the basis of the computer work we conjecture thatany
map in TCP@2,2# can be simulated with a qutrit environmen
Also, the numerics suggest that one can always set one
genvalue to zero. Furthermore, we have some numerical
dence that channels that have three linearly independen
eration elements can never be simulated with a qu
environment.

V. DISCUSSION

Our results provide additional bounds on the size of
environment needed to simulate certain quantum operat
on single qubits. However, we have only addressed sim
mappings on the smallest input space. Many questions
arise: how do these results generalize to mappings
n-dimensional systems? A relevant scenario might ben uses
of the generalized depolarizing channel, where the envir
ment can be shared between the channels. In such a
might a qubit environment per channel suffice for largen? A
nice extension of the generalized depolarizing channels
the channels that are defined with the Heisenberg group
ments@11#. These channels onn-dimensional inputs are mix
tures of a set ofn2 unitary matricesU( i , j ). However, it is
not straightforward to construct solutions, as in the qu
case, for a general ‘‘Heisenberg channel,’’ and we have
insight at the moment of what gain one can get by us
mixed states here. The number of additional constraints
Eq. ~8! for a mixed environment grows asn2; therefore, our
expectation is that the minimal dimension of the enviro
ment needed for a general Heisenberg channel on
n-dimensional input, will be of ordern2.

The questions we have formulated also apply to the c
struction of generalized measurements: how large an e
ronment is needed for the minimal-size construction of ar
trary generalized measurements on ann-dimensional
system? We hope our results and the questions they mot
will be useful in future quantum computing applications, a
provide fundamental insights into the often strange prop
ties of quantum systems.
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APPENDIX: P15P2

We prove that the volume given by the parametrization
(x,y,z) in terms of (f1 ,f2 ,u), Eq. ~12!, which we callP1,
is equal to the volume described by the inequalities of E
~13! and ~14!, which we callP2.

The volumeP1 is generated by a mapping of a thre
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dimensional torus specified by coordinates (f1 ,f2 ,u) to
(x,y,z). The Jacobian determinant udet](x,y,z)/
](f1 ,f2 ,u)u will vanish on a set of points which we ca
RP1

that include the surface ofP1 denoted asSP1
. RP1

might

include points interior toP1, but we will rule this out. We
will show thatRP1

5SP2
. Then, by inspection of the volum

P2 we can conclude thatRP1
can only be the surfaceSP1

.

1. RP1
5SP2

The Jacobian determinant of the transformation is

J5u4cosu sinu~cos2 f1 sin2 f12cos2 f2 sin2 f2!u.
~A1!

First we show that the volumeP1 is unchanged under a
permutations of thee1 , . . . ,e4. The permutations are gene
ated by transpositions of two elementse i ande j . Transposi-
tion (e1e2)(e3)(e4) will map (x,y,z) onto (x,2z,2y), and
similarly, the other transpositions interchangex, y, andz and
add minus signs. The Jacobian determinant is invariant un
these transformations, thus the surface is a symmetric fu
tion of e1 ,e2 ,e3 ,e4. This implies that the volume itself is
symmetric ine1 ,e2 ,e3 ,e4.

We will show that the Jacobian vanishes for poin
(x,y,z) if and only if (x,y,z)PSP2

, whereSP2
denotes the

surface ofP2.

⇒ The Jacobian vanishes when

•cosu50⇒e1e35e2e4 ,

•sinu50⇒e1e25e3e4 ,

•cos2f1sin2f12cos2f2sin2f250⇒e1e45e2e3.

These resulting equalities define points onSP2
. Note that the

surface is connected~see@8#!, i.e., there is a way to reach an
point on the surface from any starting point and thus
volumeP1 is ~edge! connected.

⇐ Take sectionS1 @Eq. ~14!#, for which there are three
parts of the surface C1 ,C2 ,C3, with C15$e1e3
5e2e4 ,e1e2>e3e4 ,e1e4>e2e3% and C25C1(e2↔e3) C3
5C1(e3↔e4). The Jacobian vanishes fore1e35e2e4. As
C2 and C3 are obtained by permutations, the Jacobian w
also vanish on these surfaces. Now by interchanginge1 with
3

t-
er
c-

e

ll

e2 we obtainS2 etc., but again because the Jacobian is
variant under this transposition, we know that the Jacob
will vanish also on the surface ofS2 , S3, andS4.

2. P2 has no holes or noncontractible surfaces

We must rule out the possibility thatRP1
includes points

in the interior ofP1. In Fig. 2 a couple of example-volume
are given for whichRP1

5SP2
but P1ÞP2. The volumeP2

consists of four sections. Any two sections intersect on
line. For volumesS1 and S2 this is the line given by (e1
5e2 ,e35e4). Inspection of each section shows that that
has no holes, as in Fig. 2~a!.1

Inspection also shows that joining the four sections d
not introduce a noncontractible surface on the total volu
P2, as shown in Fig. 2~b!. Thus the set of pointsRP1

that

coincides withSP2
cannot contain points that lie inside th

volumeP1. From this we can conclude thatSP1
5SP2

.
To conclude, we note that there exists a point which

both inside P1 and insideP2, for example, the pointe1
55/8, e25e35e451/8, andP1 is ~edge! connected; there-
fore, P1 andP2 coincide.

1A rigorous proof could be established, say for sectionS1, by
showing that rays emanating from points on the linee25e3

5e4 ,1/4<e1<1 cross the surface ofS1 only once.

FIG. 2. Schematic examples of volumesP1 andP2 that do not
coincide, even thoughRP1

5SP2
.

put.
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