PHYSICAL REVIEW A VOLUME 60, NUMBER 2 AUGUST 1999
Simulating quantum operations with mixed environments
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We study the physical quantum resources required to implement general quantum operations, and provide
bounds on the minimum possible size which an environment must be in order to perform certain quantum
operations. We prove that contrary to a previous conjecture, not all quantum operations on a single qubit can
be implemented with a single-qubit environment, even if that environment is initially prepared in a mixed state.
We show that a mixed single-qutrit environment is sufficient to implement a special class of operations, the
generalized depolarizing channdlS1050-294{©9)04107-4

PACS numbd(s): 03.67—a, 02.70—c, 89.70+c, 89.80+h

[. INTRODUCTION tions, fewer resources are required than was previously
known. Our counterexample is part of a class known as the
Future quantum computers may be useful in studying thgeneralized depolarizing channels, for which we show that a
behavior of open quantum systems and the nature of decthree-dimensional environment is sufficient for simulation.
herence[1,2]. Instead of performing real experiments on The proof of the counterexample is established by the tech-
quantum systems, a single quantum computer can be used giglue of computing Giioner bases.
an efficient, multiple-purpose simulator for a wide variety of  Qur results also address the following question: suppose a
physical systems. In general, an important goal of such inphysical system is given as a black box—we can prepane
vestigations will be to understand the effects arising froman arpitrary initial state, and then measure the final stag of
interactions between the system of inter&and another  tier 4 fixed evolution period. What is the smallest environ-
quantum systerg. For example, a quantum computer can beyqnte with which Smight have interacted in this system? A
used to simulate quantum syste® thermal equilibrium method to completely determine the quantum operafjon
rTberformed by this system is knowB]. This work goes one

systemE, coupled in a particular way 1§ to mimic the step further, by showing a way to turn knowledge abgut

thermal bath of the system. In other applications involving;
the simulation of nonequilibrium quantum propertieS, Into t.’Ol.mdS on the natu.re & : .
could, for molecules whose isomerization dynamics we wish It |52|m_portant to realize that an envwonment_ th_at IS Ie_ss
to study, represent the relevant conformational states, whictfian n“ dimensional does truly represent a gain in spatial
couple to other moleculeE through long-range electronic duantum resources over an environment of dimensién
dipolar interactions. In all these applications, we wish to€ven if that smaller environment is mixed. One can prepare
implementE with the smallest quantum resources possible@ny mixed state of @ dimensional system by using no ad-
and this paper investigates the most efficient implementatioflitional quantum spatial resources in the following way:
of such quantum environments. Choosing any pure-state ensemble to represent the mixed
SupposeS exists in a Hilbert spacé{,, of dimensionn, state[6], one prepares the environment in one of these pure
and E is in H, of dimensionr. It is well known that any states at random based on the outcome of a random-number
quantum operatiof4] on H,,, resulting from some interac- generator. Thus, while more resources are ne¢tiedappa-
tion with E in H, with arbitrary r, can be performed by ratus generating the random numbehey are only classical,
appending a state iH ,2, evolving unitarily, and then tracing not needing to be protected from decoherence, for example.
over H 2. The difference betweenandn? can represent a
significant reduction, sinc& can be a large batffor ex-

ample, of harmonic oscillatoysandr can be infinite. Il. QUANTUM OPERATIONS
Can a general quantum operation be implemented with an . o _ _
environment even smaller thar? dimensions? Lloyd con- We begin by summarizing the mathematical formalism of

jectured[2] that it is possible to implement a general quan-quantum operations. The most general transformation al-

tum operation ork quantum bits(qubitg with a k-qubit en-  lowed by quantum mechanics for an initially isolated quan-

vironment, if one prepares the environment not in a purdum system is a linear, trace-preserving, completely positive

state, as is usually the case, but rather in an arbitmiirgd map. Such a mapy:A,—A,, where A, is the set of

state. (boundedl operators on a Hilbert spad¢,, can be decom-
Here we provide a specific counterexample to this conjecposed into a set of at mostm mXxn matricesA; [7] (which

ture fork=1, although we find that at least for some opera-we shall refer to as “operation elemenjséds
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n m In a more general physical implementation, however, the
P | — X(p) initial state of the environment can be an arbitrary density
U matrix. Consider the set of completely positive trace-
m? pe preserving linear mapg: A,— A, that are implemented by
|O><O| I— — U’ an environment that is initially in som@-dimensional den-
’ : sity matrix. We call this se§;,[ d,n,m]. The action on the
§ input statep is

d dn/m
FIG. 1. Implementation of the map using a pure state envi- .
ronment. X(P):El )\jkzl (edULp®]j)}(il1U|ey), (6)

om where{\; ,|j>}jd:l are now the eigenvalues and eigenvectors

_ T J | . .
)((/J)—;1 AipA; . (D) of the mixed environment state. We identify a sethokn
matrices{A;}{-"14" , in the representation of Eq1),
n andm are the dimensions of the input and output Hilbert - .
spaces, respectively. The trace-preserving property implies Ajk= 7‘J’<ek|U|J>' @

that theA; obey the constraint Unitarity implies that these matrices are constrained,

nm

2 AITAI = 1n ’ (2) ; AiTkAjk: 5ij)\i1n . (8)

with 1,, the identity matrix on/,. Following Choi[7], the = There is a residual unitary freedom in choosing the set of
set of all such maps: A,— A, we call trace-preserving, matrices {AHPRT, . The set {Bj,}""m, with Bjp,
completely positivé TCP[n,m]. A physical implementation ==%,U’ A;,, where thedn/m-dimensional unitary matrix
of these maps is represented in Fig. 1: A unitary operation oy’ does not depend on the labglimplements the same
the statep®[0)(0| (where|0) represents some pure state in quantum operation and also obeys constrésnt As before,

anm?-dimensional environments performed, and thenm  this freedom corresponds to a unitary transformation on the

“degrees of freedom” are traced out, environment after the completion of the operation. The di-
o mension of the parameter space 8f;,[d,n,m] can be
bounded,
x(p)= 2 (edUlp®]0)(0[]U"|ey). ®
D e <D= Dg;;‘jz . 9)

Here{|e,)}k ' is a set of basis vectors fét,,. As there are

at most nm operation elements, it follows that one can
implement any map in TGR,m] with an environment of
dimensionm?. To determine the dimension of the parameter
space of TCPh,m] we note that the mapy does not
uniquely determine the s¢A;}'"; . Any set ofmXxn matri-
ces{B;}["™ and{A;}[""; that are related by a unitary trans-

The upper bound is given by the fact that one can always
simulate a d-dimensional mixed environment with a
d2-dimensional pure environment.

From Eq.(5) and Eq.(9) it follows that an environment of
dimensiond<<m cannot be used to implmerl maps in
TCHn,m]. In fact a large set of maps, the extremal maps in
TCHn,m], cannot be simulated with<<m. A map y that is

formation decomposable im or fewer linearly-independent operation
am elements is extremdl7] in TCHn,m]. These maps can be

/ implemented with a pure-state environment of dimensipn

B=> UJA, (4) P P ot

] moreover, we prove that there does not exist a more efficient
implementation of these maps using a mixed-state environ-
implement the same map. This freedom corresponds to a ment.
unitary rotationU’ (see Fig. 1 of the environment qubits Extremality implies that the magp cannot be written as a
after the completion of the interactidnh. It is shown in[4] ~ convex combination of linearly independent magsthat
that this unitary equivalence is the only freedom in theeach have operation elemer;} for which EjA}TA}=1n
choice for the set of operatof#}\'™ . for eachi. This ensures that only one of the eigenvalues in
The dimension of the parameter space of all maps irconstraint(8) is nonzero, but this in fact corresponds to a

TCHn,m] that can be implemented with a pure pure-state environment of dimension An example of such

d-dimensional environment will therefore be an extremal map is a von Neumann measurement on a
n-dimensional system. The set of projection operators
Dpuren=2nd—(nd/m)?—n?, (50 {Pj}_, can be implemented minimally by using an
n-dimensional pure state.
where the first term represents parametef®\f, the second We now turn to the question of whether all maps in

is the unitary freedom, the third term is the constrd®t  TCHn,m] can be implemented witkl=m. Note that our
and whered is such thatm divides nd. Thus we have parameter count does not exclude this. In the following, we
Drepn,m =D puemz=n*(M?—1). restrict ourselves to the case=m=2. We study which
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maps can be implemented using a single-qubit environmerdnd the environment is again prepared in sttg We can
and provide a proof that a particular qupit channel, the twodetermine the operation elements and express these as linear
Pauli channel, cannot be implemented in this way. (unitary) combinations of the Pauli matrices. This leads to an

We consider a special set of maps, the generalized depexpression of the parametes in terms of (@, q,d,)
larizing channels[6], which are described by the set c[0,27]x[0,27]X[0,27],

{(e,A)}_ 1, where

1
X(p):Z e ApAT, (10 €1=Z(CO§ ¢+ COS ¢o+ 2 COSh; COSh, COSH),

such thate; + e,+ €53+ €,= 1 and the operator4; are given 1 . . .
by A;=1,, A,=0y, As=0y, A4=0c,. One can represent EZ_Z(S'nZ $11SIM* ¢+ 2 singy sin ¢, coso),
this family of maps geometrically as a tetrahedron, which (12)
is embedded in a cube with vertices at {1,—1), 1
(-1,1-1), (1,1,1), and ¢1,—1,1). The transformation 453=A—1(Sil”r2 ¢+ Si? ¢, — 2 sing, sin ¢, cosh),
that relates the parameteds, €,,€3,€,4 to the (K,y,z) coor-
dinates is given byx=e€;+e,—€e3— €4, Y=€1— €5+ €5 1
— €4, aNd z=¢€,— €,— €3+ €4. The vertices of the tetrahe- €4=—(C0Z 1+ COF ¢h,— 2 COSh; COS¢h, COSH).
dron correspond to a single-operator map. Its edges are two- 4
operator maps, the four faces represent all three-operator ) ,
maps, and the points in the interior of the tetrahedron are all Alternatively the solution set can be expressed as a set of
the four-operator maps of E¢L0). inequalities on the parametets,

A computer search suggests that only a subset of these
maps can be simulated by using a qubit environment. For S=5USUSUS,, (13
this subset we are able to construct an explicit qubit solution.
At the web addres§8] one can find pictures of the three- where
dimensional volume that is described by the solution set an%
a picture of the solution set as generated by the computer
search. The computer work also suggests that the dimension
of Syx[2,2,2] is equal the upper bound of E), namely, 4nq
Djues=12. We find this by randomly sampling in the space
of all superoperators; that is, we choose ran_dom orth(_)normal S,=Si(€1€,),53=S,(€1 €3) andS; =S, (e, €,).
vectors that make up the columns of the unitary méthigf
Eg. (3); a finite percentage could be implemented with ain the Appendix we prove that the volume described by Egs.
qubit environment. Thus there is enough “room” for a so- (13) and(14) and the one given by E@12) coincide.
lution, but it is not in the right place, as we will see.

This_ solution is constructed in the following way. Wg IIl. TWO-PAULI CHANNEL
start with the center of mass of the tetrahedron, the point
(€1,€2,€3,€4)=(1/4,1/4,1/4,1/4). This channel has the prop- We now turn to another set of maps, the two-Pauli chan-
erty that it maps every input stageonto 3 1,. It can thus be nel, which is given by the three operators,
easily implemented by performing a SWAP gate on an envi-
ronment qubit that is initially in the 1, state and the input A1=12\/§, Ar=0(1—-X)12, Az=ioy(1—Xx)/2.
qubit. The SWAP gate on two registges|b) gives|b)|a). (15
Then one considers the line that departs from a vertex, say _ ) ) )
the point (;,€,,€3,€4)=(1,0,0,0), and goes through the We will prove that for 0_<x<1, there is no qubit environ-
center of mass. This one-dimensional set of channels is chaf?ent which simulates this channel. Bor 0 orx=1 there is
acterized bye,= e;= €, and represents the regular depo|ar_atwo-d|men3|onal environment _that can simulate the channel
izing channel[6]. Performing a (SWAPY™ (obtained by @S the channel has two operation elements whel® and
turning on for timet/m a two-bit interaction that, over timg ~ ©nly one operator wher=1.
gives the SWAP transformatidpmn a1, environment and Any unitary linear combination of thé;, A,, andAg
the input qubit implements these channels, upete-1/4.  May be written as
The integem is related to thes parameters by,=e;=¢,

={(€1,€2,€3,€4)| €16,= €3€6,0€165= €26, 0€1€4= €63}
(14

=sir?(w/2m)/4. One extra step of generalization gives us an biy/X (ck—a) Vi(1—x)
even larger set of channels. The unitary matrix is a somewhat ~ Bx= ,
generalized form of (SWAPY", (ckta Vz(1-x) biy/x .
€'’ cose, 0 0 ie'’sing,
0 cosp, ising, 0 with gppropriate constrai_nts resulting from unitarity4on the
U= o , coefficientsay,by,c,. This new set of operatorEB,},_;
0 Ising, cose, 0 will implement the same channel due to Hd). Further-
ie'’sin¢, 0 0 €'’ cos¢, more, these operatoBs, are constrained through E@). For

notational convenience, we define
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=3) suffices. For generalized depolarizing channels, there

ap+Co az+02 . . 3 i
|ug)=—= atec | luy)= Aot will be nine operators{A;};’;_;. We set one eigenvalue
V2laite, ‘/— S A3=0 and thusAz;=Az,=A33=0. If €;€,= €3¢, the solu-
c a c a tion iS A11=0, A21:\62_6364/€10'X, A12: \/6—30'2, A22
|WO> ( 0~ <o | 1> ( 272 (17) :\/6—40'y, A13: \/6_112, and A23:_i\/€364/610'x Other-
\/— c,—ay)’ \/— cz—ag)’ wise, we take A;;=0, Ay=\es—e€r€/e30y, Agp

=Vei 1y, A= €0y, Arz=1e30,, and A
bo b, =i\e1€,/€30,. One can check that this set implements any
Vo) = b,/ V)= b generalized depolarizing channel and satisfies(Bx.
On the basis of the computer work we conjecture trat
Using the assumption8x# 1 and by linearly combining all map in TCP2,2] can be simulated with a qutrit environment.

the equations we obtain: Also, the numerics suggest that one can always set one ei-
genvalue to zero. Furthermore, we have some numerical evi-
(Volwo)+(Uo|vo)=:91=0, (18)  dence that channels that have three linearly independent op-
eration elements can never be simulated with a qubit
(vi|lwy)+(uslvy)=:9,=0, (19 environment.
+ =:03=0,
(Volwy)+(uglvy)=:95=0 (20) V. DISCUSSION
(Wo|va)+(Volu1)=:94=0, (1) Our results provide additional bounds on the size of an
L environment needed to simulate certain quantum operations
(Uo|ug) —{wo|wo)=:95=0, (22) on single qubits. However, we have only addressed simple
_ ey — mappings on the smallest input space. Many questions now
(Uaug) = (walw1)=:95=0, 3 Lriser how do these results generalize to mappings on
(Uo|ug)+(uy|us)—1=:g,=0, (24) n-dimensional systems? A relevant scenario mighh luses
of the generalized depolarizing channel, where the environ-
(Volvo) +(vq|vi)—1=1:gg=0, (25)  ment can be shared between the channels. In such a case,
might a qubit environment per channel suffice for langeA
(Ug|Vo) +(ug|vi)=:99=0, (26)  nice extension of the generalized depolarizing channels are
the channels that are defined with the Heisenberg group ele-
(Uo|wg) +{us|wi)=:g10=0, (27) ments[11]. These channels amdimensional inputs are mix-
tures of a set oh? unitary matricedJ(i,j). However, it is
(Ugluy) —{wo|w,)=:91,=0. (28)  not straightforward to construct solutions, as in the qutrit

case, for a general “Heisenberg channel,” and we have no

Writing each of the coefficients,, by, andcy in the insight at the moment of what gain one can get by using
form x;+ix; 4 (wherei?=—1), we get a system of polyno- mixed states here. The number of additional constraints of
mial equations Ref;)=Im(g;)= ...=Im(g11) =0, where Eq.(8) for a mixed environment grows ag; therefore, our
Re(@y) and Im@) are polynomials in the variables expectation is that the minimal dimension of the environ-
X1, . . . Xoq With real coefficients. To show that this system ment needed for a general Heisenberg channel on a
of equations has no solution we make use oflfber bases n-dimensional input, will be of ordemn?.
(see, e.g.[9]). The computation of a Ghmer basis with The questions we have formulated also apply to the con-
Buchberger’s algorithm generalizes the Euclidean algorithnstruction of generalized measurements: how large an envi-
to compute the greatest common divisGCD) of univariate  ronment is needed for the minimal-size construction of arbi-
polynomialsp4(x) and p,(x). In that case, the GCIg(x) trary generalized measurements on amdimensional
can be written as a “linear” combinationg(x) system? We hope our results and the questions they motivate
=f1(X)p1(X) + f2(X)po(X). The two univariate polynomials will be useful in future quantum computing applications, and
p; andp, have a common root if and only if their GCD is provide fundamental insights into the often strange proper-

nontrivial, i.e.,g(x) # 1. ties of quantum systems.
For multivariate polynomials, a common solution exists if
and only if the Grbner basis of the ideal generated by them ACKNOWLEDGMENT
is nontrivial, i.e., does not contain a constant. In our case,
using the computer algebra systemacmA [10] we have D.P.D. thanks the U.S. Army Research Office for support
shown that there exist polynomials, ... ,f;; such that under Contract No. DAAG55-98-C-0041.
S (X1, - X)) Gi(Xe, - .. X2 =1, ie., the Gibner
basis contams 1 and there is no solutlon of Ha48)—(28). APPENDIX: P,=P,

We prove that the volume given by the parametrization of
(x,y,2) in terms of (¢4, ¢-,0), EQ.(12), which we callP,
Despite the above proof, it turns out that the class ofis equal to the volume described by the inequalities of Egs.
channels we have been studying do not require a two qubitLl3) and(14), which we callP,.
environment {(=4) for their simulation; a mixedjutrit (d The volumeP; is generated by a mapping of a three-

IV. QUTRIT SOLUTION
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dimensional torus specified by coordinateg, (¢,,6) to
(x,y,2). The Jacobian determinant |detd(x,y,z)/

(é1,¢,,0)| will vanish on a set of points which we call

Re, that include the surface &, denoted a& p,- Rp, might
include points interior tdP;, but we will rule this out. We

will show thatRp1=Ep2. Then, by inspection of the volume

P, we can conclude thaRpl can only be the surfacEpl.

1. Rp1=2p2
The Jacobian determinant of the transformation is

J=|4cosh sin§(cog ¢, Sir? ¢, —Cos ¢, SirF ¢,)|.

First we show that the volum®, is unchanged under all
. ,€4. The permutations are gener- ¢, we obtainS, etc., but again because the Jacobian is in-

permutations of the,, . .
ated by transpositions of two elemer{sande; . Transposi-
tion (e;€,)(€3)(€es) Will map (x,y,z) onto (x,—z,—Yy), and
similarly, the other transpositions interchange, andz and
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FIG. 2. Schematic examples of volumieg and P, that do not
coincide, even thougRp =2p..

variant under this transposition, we know that the Jacobian
will vanish also on the surface &,, S;, andS,.

add minus signs. The Jacobian determinant is invariant under

these transformations, thus the surface is a symmetric func-
tion of €1,€5,€3,€4. This implies that the volume itself is

symmetric ineq, e,,€3,€4.

2. P, has no holes or noncontractible surfaces

We must rule out the possibility thﬁ{pl includes points

We will show that the Jacobian vanishes for pointsin the interior ofP,. In Fig. 2 a couple of example-volumes

(x.y,2) if and only if (x,y,z) e 2p,, whereZp, denotes the
surface ofP,.

= The Jacobian vanishes when
-C0SO=0=€1€63= €,€4,
-SiNf=0=€,€6,= €3¢€,,

-COZ 1Sy — COF p,Sit = 0= €, €,= €€3.

These resulting equalities define pointsg,. Note that the

surface is connecte@ee[8]), i.e., there is a way to reach any

are given for Whichpl=2p2 but P, # P,. The volumeP,

consists of four sections. Any two sections intersect on a
line. For volumesS,; and S, this is the line given by £;
=¢€,,e3=€,). Inspection of each section shows that that it
has no holes, as in Fig(&.!

Inspection also shows that joining the four sections does
not introduce a noncontractible surface on the total volume
P2, as shown in Fig. @). Thus the set of point®p, that

coincides withs, p, cannot contain points that lie inside the
volume P;. From this we can conclude thap =2p,.
To conclude, we note that there exists a point which is

point on the surface from any starting point and thus the?oth insideP; and insideP,, for example, the poini;

volume P, is (edge connected.

=5/8, e,=e3=¢€,=1/8, andP, is (edge connected; there-

&« Take sectiorS; [Eq. (14)], for which there are three fore, Py andP; coincide.

parts of the surface C;,C,,C;, with Ci={ei€;3
:6264,616226364,616426263} and C2:C1(62<—>63) C3
=Cy(e3<€4). The Jacobian vanishes fefe;=ese,. AS

1A rigorous proof could be established, say for sect®n by

C, and C; are obtained by permutations, the Jacobian willshowing that rays emanating from points on the liag=e;

also vanish on these surfaces. Now by interchangingith

=¢4,1/4<e,<1 cross the surface @, only once.
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