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Time-asymmetric quantum physics
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A quantum theory that applies to tlielosed universe needs to be time asymmetric because of the cosmo-
logical arrow of time. The preparatios> registration arrow of timga state must be prepared before an
observable can be detected inaf the quantum mechanics of measured systems provides a phenomenological
reason for an asymmetric semigroup time evolution. The standard theory in the Hilbert(s{®de inad-
equate for either since the mathematics of the HS allows only reversible unitary group evolution and time
symmetric boundary conditions. The mathematical theory that describes time-asymmetric quantum physics in
addition to providing the mathematics for the Dirac kets is the rigged Hilbert Sgad¢®) theory. It uses a pair
of RHS'’s of Hardy class with complementary analyticity property, one for the prepared $iategates”) and
the other for the registered observab(ésut states”). The RHS’s contain Gamow kets which have all the
properties needed to represent decaying states and resonances. Gamow kets have only asymmetric time evo-
lution. The neutral kaon system is used to show that quasistationary microphysical systems can be experimen-
tally isolated if their time of preparation can be accurately identified. The theoretical predictions for a Gamow
ket have the same features as the observed decay probabilities, including the time ordering. This time ordering
is the same as the time ordering in the probabilities of histories for the quantum universe. The fundamental
guantum mechanical arrow of time represented by the semigroup in the RHS is therefore the same as the
cosmological arrow of time, assuming that the universe can be considered a closed quantum system.
[S1050-294{@9)08608-4
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[. INTRODUCTION tions, Poincardgransformationsare described by a unitary
group representation in the Hilbert spake Thus the time
Standard quantum mechanics in Hilbert spd¢eis a  evolution is unitary and reversible, and it is given By(t)
time-symmetric theory with a time-symmetric dynamical = exp(—iHt),—o<t<w, This is the consequence of a series
(differentia) equation and time symmetric boundary condi- of mathematical theorems which follow from the mathemati-
tions. This is in contrast to many time-asymmetric phenom-cal properties—specifically the topological
ena observed in classical and also in quantum physics. Of th@ompleteness—of the Hilbert space; they are listed Appendix
latter we want to discuss in this article two examples, theA. These theorems in particular exclude the existence of non-
decay of a quasistable particJé] and the expanding uni- zero probabilities which are zero before a given finite time
verse as a whole when considered as a closed quantum syg- (t,# —), which is the time at which the quasistable
tem[2]. The time asymmetry that is discussed here is not thgarticle had been produced or the time of the big bang in the
irreversible time evolution of open systems under externatwo examples of this article. The decay of resonances and the
influenceq 3] (cf. Appendix Q. The time asymmetry is also quantum theory of our universe can therefore not be de-
not due to a time reversal noninvariant Hamiltonian; thescribed consistently in the mathematical theory using the
(self-adjoint and semiboundedHamiltonians we discuss Hilbert space.
here are time reversal and CP invariant. Our time asymmetry Disregarding Hilbert space mathematics, in scattering
expresses causality in quantum theory. It is mathematicallpheory one arrived in a heuristic way at a pair of time-
described by the appropriate choice of spaces of allowedsymmetric boundary conditions by choosing in- and out-
solutions (asymmetric boundary conditiondor the usual plane wave “states’|E*) and|E~) which have their origin
time-symmetric Schidinger equations. in the e=+0 ande= —0 of the Lippmann-Schwinger equa-
In classical physics solutions of time-symmetric dynami-tion [4], cf. Appendix B. Still, the widespread opinion re-
cal equations with time asymmetric boundary conditionsmained that asymmetric or irreversible time evolution of
come in pairs, e.g., big bang—big crunch in general relativityclosed quantum mechanical systems is impossible.
or retarded—advanced in electromagnetism. With the choice It could have been that historically the analogy to classi-
of the boundary condition, one of the two time-asymmetriccal mechanics was the origin of this belief, though the time
solutions is selected. The Hilbert space theory of quantunevolution for the Schrdinger equation could have as well
mechanics does not allow such time-asymmetric formulabeen discussed in analogy to the electromagnetic waves, and
tions. In the Hilbert space formulation of quantum mechanicgor those the radiation arrow of time was well acceptaad
the space-time transformatiorig.g., Galilean transforma- by some even considered as fundamef&jl However, the
reversibility of the Hamiltonian generated time evolution in
von Neumann’§6] Hilbert space quantum theory must have
*Electronic address: bohm@physics.utexas.edu been a decisive factor for the longevity of this belief.
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Already the Dirad7] kets|E), O<E < o, are not ele- prepared in a laboratory experiment; we compare the concept
ments of the Hilbert space but generalized eigenvectors anaf its preparation time with the initial time for the state of the
required the extension of the Hilbert spaketo the rigged quantum universe.

Hilbert space® CHC®* [8], where® is a linear scalar

product space of well-behaved vectgrs @ (represented by Il CALCULATIONAL METHODS. MATHEMATICAL
smooth etc. function$E|¢)) and®* s |E) is the space of IDEALIZATIONS. AND EXPERIMENTAL

its antilinear functionals. In th&matrix elementcf. Appen- OBéERVATlONS

dix B)

In quantum theory one has states and observables. States
are described by density or statistical operators and conven-
: _ * _ _ , tionally denoted byp or W, for pure states vectorg are
(4°4,Sp"™) = (¢ ,¢+)=% Jo dE(y~[b,E")bIS(E)[b")  jseq. Observablygé are degcribed by operataks
(=A"),A, P(=P?), but we will also use vectorg to de-
X("b",E[¢") (1.)  scribe a stat® if P=|y)(y].
The vectorsp, ¢ are elements of a vector spadewith a
_ _ . _ . scalar product, denoted ,(-) or (-|-). The operator, A,
the Dirac “scattering states/E™) which are obtained from are elements of the algebra of linear operatdri ®. The
|E) by the Lippmann-Schwinger equation appear. In order tQinear spacab, though often called a Hilbert space, is mostly
analytically continue to the resonance paje=Eg—iI'/2 of  treated like a pre-Hilbert space, i.e., without a topoldgy
the Smatrix (b|S(2)|b") the set of in state§¢"}=®_ and  without a definition of convergengand it is not topologi-
out stateg " }=®, must additionally have some analytic- cally complete. If we want to emphasize thhthas no to-
ity property. In order to get a Breit-Wigner energy distribu- pology we denote it byD a1q.-

tion for the pole term we postulate that the energy wave Each “kind” of quantum physical system is associated to
functions("E|¢ ™) and ("E[¢ ") are well-behaved Hardy 4 spaceb.
class functions of the upper and lower half plane in the sec- |n experiments, the stat [or the pure(idealized state
ond sheet of the energy surface of Benatrix. ¢] is prepared by a preparation apparatus and the observable
The analytically continued Dirac ket& ) e ®7 of the  A'(or the idealized observablg) is registered by a registra-
Lippmann-Schwinger equations become—using the Cauchyjon apparatuse.g., a detector The fundamental aspect of
formula—at the resonance poly=Eg—il'/2 the Gamow the theory presented here is to clearly distinguish between
kets|zg) e @ . The time asymmetric semigroup evolution states(e.g., in statesh® of a scattering experimenand ob-
of these Gamow kets, servablede.g., detected out statgs of a scattering experi-
men), cf. Appendix B.
The measurefor registereglquantities are ratios afisu-
e Y _olzr)=e Ere T/2|z2) for t=0 only, ally) large numbers, the detector counts. They are interpreted
(1.2 as probabilities, e.g., as the probability to measure the ob-
servableA in the statéW at the timet, which is denoted by
_ _ _ Pu(A(1)).
is then derived as a mathematical consequence of the struc- The probabilities are calculated in theory as the scalar
ture of the rigged Hilbert spac® D HD®, of the Hardy  product or, in the general case, as the trace. This is shown in
class[9] (in the same way as the time symmetric unitary relations (2.19 and (2.1b), below where~ indicates the
group evolution given b>e*iHT‘, —w<t<+o, is a math- equality between the experimental and the theoretical quan-
ematical consequence of the Hilbert space strutture tities and= is the mathematical definition of the theoretical
Thus asymmetric time evolution would be a natural prop-probabilities in terms of the quantities of the spdeéwhich
erty of guantum mechanical states represented by the vecté not yet completely defined
|zr) and other elements of the spa®€' . In this article we
want to discuss the phenomenological evidence for such o
states and the experimental conditions and phenomenologi- Ni/N~Py(P)=Kyl 2l 213
cal reason for the asymmetric time evolution.
In Sec. Il we review the basic concepts of quantum phys- ~ — _
ics in a way that shows which mathematical properties )ellre NO/N=PulA(D)=TIA (D Wo] Tr[AOW(t)]'(Z 1h
important for quantum mechanical calculations and which '
are idealizations and not directly obtainable from experimen-
tal data. We also argue that experimental observations in- The parametet in Eq. (2.1b) is the continuous time pa-
volve a time asymmetry, the preparatien registration ar- rameter and the observablg or the stateV, are “continu-
row of time. We then give two examples of quantumous” functions of time [with Wy,=W(t=0)]. Thus,
mechanical states with asymmetric time evolution, the quaPy(A(t)) is thought of as a continuous function bf But
sistable particle and the universe considered as a closd¥i(t) is the number of counts in the time interval between
guantum system, and discuss their common features. In See.0 andt, which is an integer. Thus the right hand side~of
[l we provide the mathematical theory for time-asymmetricin Eq. (2.1b changes continuously i but the left hand side
guantum mechanics and give some of its result. In Sec. I\¢an only change in steps of rational numbers. This shows
we discuss an example of a state with an arrow of timethat the continuity of Py(A(t)) or of [(¥(t)|¢)[?
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=|(y|p(1)))* as a function oft, and similar topological

qufastlions,>are not directly experimentally testable. I ¢>|2:“ dA (&N} (N &)
For more general observablés which are expressed in

terms of the orthogonal projection operatoR; (P;P;

:5”P]) as

2

(2.7

In practical calculations the convergence of infinite sums and
the meaning of integratioflLebesgue versus Riemagnare
w usually not considered. Often one truncates to fifiéey.,
A= aP;, (2.20  two) dimensions such that of the sums in E¢8.6a and
i=1 (2.73 one retains only a finite number of terms. If one has a
complete mathematical theory one can define the meaning of
wherea; are the eigenvalues @, the probabilities are mea-  the infinite sums in Eq$2.6a, (2.7a and the meaning of the
sured as the average val®™a;N;/N. Here the sum is integrals in Egs(2.6b), (2.70 and prove Eqs2.4) and(2.5).
finite since an experiment can give only a finite number ofFor instance, one can choose fbrthe Hilbert space, in
data. In the comparison between theory and experiment thiwhich case Eq(2.4) but not Eq.(2.5) can be proven. Or one
finite sum is represented by the infinite sum obtained frontan choose fo® a complete space with some locally con-
Eq. (2.2), thus vex, nuclear topology and its space of continuous functionals
iy ®* to obtain a Gelfand tripletb CHC ®*. Then the kets
finite % % . .
D -M%P A= ar(P 23 are|)§>e<I> and one can prove the Dirac baS|s_vector ex-
“ aN (A) “ aP(Py). 23 pansion(2.5 as the nuclear spectral theorem. Time evolu-
tion, i.e., the dynamics of a quantum physical system, is
This also shows that the meaning of such topological notiongiven by the Hamilton operatdi of the system[H is al-
as the convergence of infinite sequenge§ e.g., partial ways assumed to bessentially self-adjoint, H=H, and
sums of the right hand side of E¢&.2) and(2.3)] cannot be  semibounded.The dynamical equation is the von Neumann
established directly from the experimental data on the lefor Schrainger equation:
hand side of Eq(2.3), which provides only a finite sequence.
Thus the definition of convergence of infinite sequences in IW(t) i Jb(t)
®, i.e., the topology of the spack, is a mathematical ide- ——=_[H,W()], iFt——=H"¢(1),
alization. If one wants a complete mathematical theory one at h dt
needs to make this mathematical idealization and choose a (2.8
topology for the spacé. Usually, for many practical calcu-
lations in physics, one does not worry about the complete- d(t=0)=¢g.
ness and uses instead some calculational rules.
To obtain the rules for calculating the trace and the scalagqyivalently, one gives the time evolution in the Heisenberg
product on the right hand side of E(.1) one starts with a pjictyre by
basis vector decomposition for the state veeier® using a
discrete set of eigenvectofig =|\;) of an observabléoften

the Hamiltoniah with eigenvalues\; . JAM _ ] I(t)

—r = 7 HAM] i ——=—Hy(),

¢=2 [i)il ). (2.4
P(t=0)= to.
Often, following Dirac[7], one uses a continuous set of _ . _
eigenvector$\ ) (Dirac ket$ and writes In a time-symmetric theory, that means if one uses for the
time-symmetric differential equation(2.8) also time-

symmetric boundary conditions, then, one obtains the fol-
¢:f ONPOIONES (2.9 |owing solutions of Eq(2.9):
The trace, scalar product, etc., are then calculated as W(t)=e Hwpett, —w<t<wn (2.9
Tr(AW) =2, (i|AW]i) (2.69 d(t)=UT(t)po=e Mgy, —<t<o (2.10
I
or or, in the Heisenberg picture,
— qiHt —iHt  _
Tr(AW)zf ANV AWMLY, 2.6b A(t)=eTAge™™, —o<t<e. (21D
- 9 Here Ap=A(t=0), Wo=W(t=0).
2_ T On the other hand, if one just starts with the differential
Kulol 21 (oliXil) 273 equations(2.8) and postulates the Hilbert space topology,

¢(t) e H, then the above unitary group evolution is the only
or possible solution of the dynamical equatidbis follows
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from some theorems of Gleason and StdAppendix A)].  least not by the practitionefd1]. A particle decays if it can
This means time-asymmetric boundary conditions whichand it remains stable if selection rules for some quantum
could result in an irreversible time evolution are not math-numbers prevent it from decaying. Therefore, stable and qua-
ematically allowed in a quantum theory in the Hilbert spacesistable states should be described on the same footing, e.qg.,
‘H. The assumptiorp(t) € H always leads to the time evo- define both by a pole of th& matrix at the positionzg
lution (2.10 given by the unitary grougJ(t) which has =Egr—iI'/2, or/and as a generalized eigenvector with eigen-
always an inversdJ(—t). Inserting Eqg.(2.9), (2.10, or  valuezg (with I'=0 for stable particles Since the latter is
(2.17) into the right hand side of Eq2.1), the probability not possible in the Hilbert space, one devises “effective
P(t)=Tr{ AW(t)] can be calculated at any timig+t ort, theories” in order to obtain a state vector description of qua-
—t. sistable states.

In contrast to the results calculated with EQ.9), the Phenomenological effective theories have been enor-
probabilitiesP(t) cannot be observed at any arbitrary posi-mously successful. They describe resonances in a finite-
tive or negative time. The reason is the followingA state  dimensional space as eigenvectors of the “effective Hamil-
needs to be prepared before an observable can be measurddnian” with complex eigenvalueEgz—i1/2), whereEg is
or registered in it We call this truism the preparatios the resonance energyi/I" is the lifetime, and their time
registration arrow of tim¢10]; it is an expression of causal- evolution is given by the exponential law. The common fea-
ity. Let to(=0) be the time at which the state has been preture of these approximate methods is the omission of a con-
pared. ThenP(A(t)) is measured as the ratio of detector tinuous sum; the infinite-dimensional theory is truncated to a

counts finite- (e.g., two) dimensional effective theory. Examples of
this approach are the approximate method of Weisskopf and
N(t) Wigner and of Heitler for atomic decaying stafd<]; the
POPA(L)~ N (2.123  Lee-Oehme-Yang effective two-dimensional theory for the

neutral kaon systerfiL3]; and many more finite-dimensional
models with non-Hermitian diagonalizable Hamiltonian ma-
for t>t,=0. (2.12b trices in nuclear physidsl4]. Also nondiagonalizable finite-
dimensional Hamiltonians were discusddd]. In the Hil-

bert space framework “there does not éxis ., arigorous
theory to which these methods can be considered as approxi-
mations” [16].

The decay of a quantum physical system, e.g., the transi-
tion of an excited state of a molecule into its ground state or
PWPA(D) # 0 for t<ty=0. (213 the decay of an elementary partigle7] is a profoundly ir-
reversible process. Therefore we should like to introduce

Though in the Hilbert space theorP(A(t))=Pym(A)  State vector|F), |¢®)=|Er—il/2) or state operators
can be calculated at positive or negative valuesdf, using ~ W~(t) =[F)(F|, for which the time evolution is asymmetric
unitary group evolutior(2.9), an experimental meaning can and for which the theoretical probabilities[TeWS(t)] can

If there are some detector counts beforety, they are dis-
counted as noise because the experimental probabiiies
not fulfill

be given toPy(A(t)) only for t>t. be calculated fot>t,=0 only. '

In some casee.g., stationary states, cyclic evolutionis This means we have to generalize the unitary group evo-
should not matter at what timBy,(A) is calculated be- Iution (2.9, (2.10 with —c<t<'= to a semigroup evolution
cause one can extrapolate to negative values of with O=<t<<e. This is accomplished by seeking solutions of

The physical question is, are there quantum physicalhe time-symmetric dynamical equatioii8.8) with time-
states in nature that evolve only into the positive direction ofeSymmetricboundary conditions. Since in Hilbert space
time, t>t,, and for which one therefore cannot extrapolate toduantum mechanics semigroup evolution is not possible, we
negative values of—t,? If there are such states, pure statesS€ek a semigroup solutida(t) to the quantum mechanical
or mixtures, they cannot be described by the standard Hilbef€auchy problen{2.8) with HamiltonianH’ whereF(t) is
space quantum theory, because of the unitary group timan element of a larger space in whighis dense and which
evolution (2.9) and (2.10, which is a mathematical conse- we denote byd®>DH, i.e., the HamiltonianH? is the
quence of the specifitopological, not algebrajcstructure  uniquely defined extension of the Hilbert space Hamiltonian

of the Hilbert space. H' to this spacab’ . Thus the dynamical equatid@.8) is
Two prominent examples of states with an asymmetric

time evolution,t>t,, are the decaying statés all areas of IF (1)

physics, relativistic or nonrelativisti@nd our universe as a ih— —= HIF (1), (2.14

whole, considered as a quantum physical system.

(1) Decaying states and resonances are often thought of as o _ « L
something complicated, because in the Hilbert space thef¥ith the initial dataF(t=0)=F, e @7, and the solution is
does not exist a vector that can describe them in the sanfven by the semigroup
way as stable states are described by energy eigenvectors.

However, empirically, quasistable particles are not qualita-

tively different from stable particles; they differ only quan- 1The semigroug2.15), (2.16 generated by the Hamiltoniath of
titatively by a nonzero value of the width. Stability or the  a closed quantum systemristthe semigroup of quantum statistical
value of lifetime is not taken as a criterion of elementarity, atmechanics of open systems. See Appendix C[484
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F()=UX()Fy=e; " 'F; (2.153

for t=0 only. (2.15h

If we use the quantum mechanical state operators with semi-

group time evolution,

WE(D)=|F())(F(D)]=e ™M We(to)e't, t=0
(2.19

to calculate the quantum mechanical probabilities, then fo
these calculated probabilities we obtain

Pwe((Ao) =TI A(t)) WE(H) =T A(H)WC(to) ],
(2.17a

(2.17

This means that they fulfill the same conditions as the ex
perimental probabilitie$2.123, (2.12h, and(2.13.

In particular, the probabilities are not defined unless th
preparation= registration arrow of timé2.17b is fulfilled,
because the time evolution

WC(t)=e H tWSelHt (2.183

or

A(t)=eHtp e H™ (2.180

is a semigroup evolution and only defined for
t>t0:O

The physical meaning of the initial timg for a decaying
system in the stat&/® will be discussed in Sec. IV below.
Mathematically, it is given by the initial timé=0 of the
Cauchy problen(2.14).

This semigroup arrow of tim&.15h, (2.17b, (2.18b is
the formulation in the mathematical theory of the experimen
tal preparation= registration arrow of timeg2.12).2

(2) The universe, when considered as a quantum physical

system, must also be in a statéa pure state=|¢){ |, or

a mixture with asymmetric time evolutiofl9]. Its arrow of
time must be identical with the traditional cosmological ar-
row of time and the timé=t,=0, at which the initial state
of the universep has been prepared, is the time of the big
bang.

2Since the semigroup time evolutid@.15 or (2.18) is not pos-
sible in the Hilbert space, i.e5, & H, people who wanted to retain

the standard Hilbert space theory but were aware of the quantum

mechanical preparatiogs registration arrow of time had to ex-
trapolate Eq.(2.18 to negative times, therewith eliminating the
experimental preparatios registration arrow of time and causality
from the mathematical theoffyL0].
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The general quantum mechanical priori) probabilities
predicted for the observable represented by the projection
operatorPil(tl) (“yes-no observations) are, according to

Eq. (2.17),

Play,ty)=P,(Pg (1) =TI Py (t1)p]

=TI P, (t1)pPy (t1)] (2.193

for t;>ty=0 only. (2.199

The time ordering2.19b is the same as the semigroup ar-
row of time (2.17h in the quantum mechanics of measured
systems. Applied to experiments performed on quantum sys-
tems in the laboratory it leads to the preparatiernregistra-
tion arrow of time(2.12h. As in the quantum mechanics of
measured system&2.19h is an expression of causality.

The quantum mechanical probabiliti€®.19 of projec-
tion operatorsP'ai(ti) can be generalized to probabilities of
histories[2,20,21.

" Ahistory is a time ordered product of different projection
operators(labeled byq;) for different observableglabeled

E\byi):

Co=P ()P, (1) P} (to), tn>ty 1>+ >t>1
(2.20

with

Piai(ti):eiH(ti_tifl)Piai(ti71)e_iH(ti_ti71), (2.21a

ti—t;_,>0. (2.21b
This definition of histories is suggested by the follow-
ing considerations: LeP'wi be the a;th projector of(what

we denote gsthe ith observableA'=%3 a' P, i=1, 2,
3, ... . Then, starting with the operatgr=p(t,) of
Eq. (2.199, one can define a sequence of effective
density operatorsp®(t,), ... p®(t,_;), and one can
predict a sequence of probabilitiesP(ast,;aqty),
Plasts; asrtsr;aqty), ... Plagt, ;- - - aqty). These density
operators and probabilities are listed below:

- P, (t)p(to) Py (ty)
VTP (t)p(to) PL ()]

=N1P} (t)p(to) P} (ty)

efft

(2.223

for t;>ty only (2.22h

[the second equality in Eq2.223 defines the normalization
factorN;] and

Plagty;asty) =Ny T P% (t2)p™(ty) P7 (t2)]
(2.233
for t,>t; only. (2.23b

Continuing in this way fon=3, 4, ...
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peﬁ(tn— )=

Pot(th )

Tr PZ;_ll(tnfl)pEﬁ(tnfz) Pz;_ll(tnf

P (t)p(to) Py (ty) -

=Np-1P} * (ta-0)p™(ta-2) Py 2 (th-0);

1]

Pyt (th0)
(2.24a

TP, (th-1)-

tho 1>ty o> - >t >t (2.24h
and

P(antn; . .altl)

T PG, (t0)p*(th-1)]
Tr[P” L (ta )0t ) PY L (th )]

(2.253
t >ty (2.25h
or
Plap,ty; ...

yaq,ty)

=N,y THPG, (to)-- - Pg (t)p(to)

X P (t)- Py (ty)] (2.263

for t,>--->t, only. (2.26h

The time ordering or arrow of tim&2.23h, (2.24h),

P (t1)p(to) P (ty)--

Pyt (th )]

(2.18d)—or of (2.18 in the Schrdinger picture“—was in-
ferred from restrictions imposed by observational limitations
in a laboratory experiment with quantum systems, namely,
from the preparatios= registration arrow of time. The semi-
group character of the time evolutig2.21) and the time
ordering (2.28H were postulated for the quantum universe
because of the special initial state associated to the big bang
[19]. From the way the time ordering appears in the prob-
abilities for the laboratory experiment2.17) and in the
probabilities of the historie§2.19, (2.23, and (2.25), it is
clear that both time orderings express the same arrow of
time. If our universe is a closed quantum system as sug-
gested by[2], the semigroup arrow for the resonances is
subsumed under the cosmological arrow of time, or vice
versa. This arrow of time “mayot be attributed to the ther-
modynamic arrow of an external measuring appar&tos

the laboratory experimenor larger universe’(for the quan-
tum universe It is a “fundamental quantum mechanical dis-
tinction between the past and futurg2].

As mentioned above, a semigroup evolution that could
give a theoretical description of this arrow of time is impos-
sible in the standard Hilbert space quantum mechanics.
Therefore, in order to make the semigroup postul(@t@l)

(2.25D, and(2.26b is again the same as the semigroup ar-possible and to allow for a semigroup soluti¢th15 of the

row of time (2.18b, and Eq.(2.2)) is the same as the semi-
group evolution(2.184d) (in the Heisenberg pictuydor the
observableA in the quantum theory of measured systems.

The probability(2.253, (2.263 is the probability of the
history defined in Eq(2.20),

Plapty, « .. ,a1t]) =N, Tr[C,p(t)C,]. (2.27

One can consider alternative projection operators

C;=Pi',(t P2 (ty)-- P';;(tn) (2.283

quantum mechanical Cauchy problem, one must develop a
new mathematics. We shall present the mathematics that is
capable of a time-asymmetric quantum theory in the follow-
ing section.

Ill. MATHEMATICAL THEORY
FOR TIME-ASYMMETRIC QUANTUM PHYSICS

Our empirical consideration in Sec. Il has led us to the
postulate of a time evolution semigrou@.2l) or (2.18).
Here we want to discuss a mathematical theory of quantum
physics for which a semigroup evolution exists.

but a physical meaning can only be given to these products In a linear space with a scalar produbt,,, which we

for the time ordering

th>thoq1 ... >t (2.28h
This time ordering, identical with the time ordering

(2.22h, (2.23h, and(2.24h, is a calculational consequence

of the restriction(2.21b postulated2,19] for the time evo-

lution of the projectors. The restricted time evoluti@h21)

is a semigroup evolution generated by the Hamiltonian of the

closed quantum system. Obviously the semigrd@@R1l),

need for the calculational rules of quantum mechanics, the
simplest modification that allows Hamiltonian generated
semigroups is to choose instead of the Hilbert space topology
a locally convex topology. If one also wants the Dirac for-
malism([i.e., kets, the basis vector expansi@rb), etc], then

one has to choose a rigged Hilbert spaR&lS) or Gelfand
triplet

dPCHCD™. (3.1

(2.18), and(2.16 is the same semigroup applied to different Tpe triplet of spaces in a rigged Hilbert spabec HC &>

observablesP!, and A, respectively, of different quantum

results from three different topological completions of the

systems, namely the quantum universe and the quasistaldame algebraidpre-Hilber) space ®,4 of Sec. Il [22].
particle. The semigroup character of the time evolutionCompletion means adjoining .4 the (limit elements of
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convergent(Cauchy sequences with respect to a topology. at hand, e.g.¢p can be chosen such that the algebra of ob-

The completion of ®,, with respect to the norm ¢l
=V(¢,9), ¢ e Dyqis the Hilbert spacé{. The topology or

servables of a particular physical system is an algebra of
Te-continuous operators.

meaning of convergence defined by the norms we denote by Further, in Sec. Il we said that we need to distinguish

73, The completion ofd 4 with respect to a finer locally
convex, nuclear topology, which we denote @y (and

meticulously between states and observables. In order to be
able also to distinguish mathematically between states and

which is usually given by a countable number of normsobservables we have to introduce one space for states, which

[22]), is denoted byD. Then one ha® ,,C P CH (because
® andH contain all elements ob 4 plus the limit elements
of Cauchy sequences fh,g), and® CH holds becauséy,
is chosen to be finer or stronger th@p and there are con-
sequently more7;, Cauchy sequences thafy, Cauchy se-
guences. We also consider the spacé,ptontinuous and of
Tp-continuous  functionals. H* is the space of
T,-continuous antilinear functionalg on the spacé<: ¢:
peH—(p) eC, andH=H", y(p)=(¢,¢), by a math-
ematical theorem® * is the space of;-continuous, antilin-
ear functionalsF on the space®: F. ¢peP—F(op)
=(¢|F)eC. One hast *C®* and the bra-ket|) becomes

we call ® _, and another space for observables, which we
call ®,. In general®,#d_, but ®,Nd_+#{0}. The
state prepared by the preparation apparégigs, accelerator
we denote by ", thus¢™ e ®_ . The observable registered
by the registration apparatug.g., detectorwe denote by
|~ W~ |, thusyy e @, (cf. Appendix B for the scattering
experiment Therefore we need two rigged Hilbert spaces,
one for prepared in states*:

¢ ed_CHCPX, (3.9

and the other for the registered observaligs){y | or

an extension of the scalar product. Thus one obtains th@€tected out states™:

Gel'fand triplet(3.1).
Dirac kets are elements @b, but there are also other

|F) e ®* besides the Dirac kets. Dirac’s algebra of observ-

ables is an algebra of continuous operator®ifobservables
cannot be continuous operators#f).

For a7Zg-continuous linear operatdk, its conjugate op-
eratorA* is defined by

(AB|F)Y=(p|AX|F), Vpe® and VFed*. (3.2

A* is a continuous operator b ™. Then for each observable
A, one has a triplet of operators
All,CATCAY, (3.3
whereA' is the Hilbert space adjoint operator AfandA| 4,
is its restriction to the subspade. Generalized eigenvectors
are defined for continuous operators. A vedteye ®* is a
generalized eigenvector of th&,-continuous operatoA if
for some complex numbeb and for all$ € @,

(AgIF)=(¢|A"|F)=w(a|F).

This is also written as

(3.9

AX|F)=o|F) (3.5
(or, even asA|F)=w|F) if AT is a self-adjoint operatpr

If A is the (self-adjoin} Hamiltonian H of a quantum
physical system, the® ™ contains the Dirac kets

H*|E")=E|E™), E=0. (3.6)

®* can also contain generalized eigenvectors with comple

eigenvalues, as, e.g.,

H*|Eg—il'/27)=(Egr—il/2)|Eg—iT/27), (3.7
which we call Gamow vectors or Gamow ké&3].

There is not only one spade, but there are manffocally
convex, nuclear, countably normetbpologiesZg, which
lead to different completion® of @, (with the same¥).

Y ed, CHCD. (3.9
Here the spacé{ is the same Hilbert spadevith the same
physical interpretation

Mathematically one can define the spaces of the vectors
® by the spaces of their energy wave functigig¢):>.

$Ted o (TE[4")
e SNH? |+ (well-behaved Hardy functions irf:™).
(3.10

Y ed <(TE[yT)
e SNH2|; (well-behaved Hardy functions irf:").
(3.11

The notation here is the following:* (C~) denotes the open
upper(lower) half of the complex energy plane of the second
Riemann sheet for the analytically continuSdnatrix, and
H?Z denotes the Hardy class functiofg5] and S the
Schwartz space functions. This explains the notadlonand
&, for the spaces. The subscript refers to the subscript in the
standard notation of mathematics for Hardy class functions
(HP ,H"%, respectively. The superscripts fogp™ (in stateg
andy~ (out statesare the most common convention in scat-
tering theory, cf. Appendix B.
Thus, in the physical interpretation, for each species of

quantum physical system one has a pair of RHS's, 18
and (3.9). Whereas the “in state’¢’ e ®_ describes the

tate that is physically defined by the preparation apparatus,
the “out state” ¢y~ e &, describes the observable that is
physically defined by the registration apparatus.

3In the same way as one can define the Hilbert spadey the
space of Lebesgue square integrable functidids heh(E)
e L?[0,), where the function&(E) are uniquely determined only
up to a set of Lebesgue measure zero, which is a complicated and

The choice of® depends on the particular physical problemunphysical notion, cf. Sec. 3, R¢R4]
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It is by this clear differentiation between the set of vectorstion envisioned on empirical grounds in Sec. Il. The scatter-
{#™} which are admitted as in states and the set of vectorig (e.g., resonance scatterjngrocess is separated into two
{¢"} which are admitted as out observables that the RH®arts, the preparation part dealing with the preparation of the
theory differs from the usual scattering theory, whege state¢p’ e ® and the registration part dealing with the reg-
={y~}=DPCH (cf. the asymptotic completeness condition istration of the observabléor detection of the out state
according to which{¢*}={¢"}="H). According to Eqs. ¢ e® . The timet=0(ty) is the time at which the prepa-
(3.10 and(3.11, ®_ and®, are different dense subspaces ration is completed and the registration can commence; the
of the same Hilbert spack (which are both complete with meaning oft, will be discussed in detail in Sec. IV.
respect to a stronger topology thd@y) with In addition to the vectorgp™ and ¢~ defined by the ap-

) ) paratuses, there also are the vector®ihwhich are outside
b, Nd_+#{0}, and b=d,+d_ is also dense inH. of H: N

(3.12 . o .
After the RHS's(3.8) and(3.9) have been chosen to be the |E.0p.¢5)c P (Dirac’s scattering statgs (317
Hardy class spacg8.10 and(3.11), the semigroup of Sec. '
[l turns up naturally from the mathematics. How one could\yhere ©,,¢,) denotes the direction of momentum; and the
empirically conjecture the RHS’s of the Hardy class will not
be discussed heif@6]. YC=|EgFil'f2},j;)e®X (Gamows resonance states
To obtain the semigroups we start with the unitary group (3.18

of time evolutions in the Hilbert spack. )
_ _ with the property
ut)=e", ut(t)=e 't (3.13
H*|Eg—iT/27)=(Egr—il'/2)|Eg—iT/27). (3.19
whereU™(t) denotes the Hilbert space adjoint 0ft).*

We first turn to the RH$3.9) and consider In the RHS theory Dirac kets and Gamow vectors are
mathematically very similar. Both are generalized eigenvec-
U+(t)EU(t)|¢+CU(t), and U(t)Tc U (t). tors of self-adjoint Hamiltonians in the sense of E}2) and

(3.14  are equally well definedthough the choice of spacds for

which Gamow kets can be defined is smaller than for Dirac
It can be shown that, as a consequence of the mathematidats since the former also requires some analyticity proper-
properties ofb , , the restriction otJ(t) tod®, , U (t),isa ties as for Hardy class spacés,). Dirac kets and Gamow
Ty -continuous operator only for€t<co [8,27]. Therefore  kets just differ in their eigenvalues; whereas Dirac’s scatter-
its conjugate operatdd’; (t), which is an extension of the ing state vectors i’ or ®* have realexcept for the+i0)
Hilbert space adjoint operatai'(t), is well definedby Eq.  eigenvalues corresponding to the scattering energies, and
(3.2] and continuous for &t<w only. Thus in®* we Gamow kets have complex eigenvalues corresponding to the
have only the semigroup resonance pole of th® matrix (see below.

The Gamow vectorg®=|Eg—il'/2) 27T e ®* have a
Ui(t)z(ein%)XEe;iHXt, O<t<w. (3.15 semigroup time evolution and obey an exponential law:

The same considerations apply to the other RB®). ye()=UT()yC=e Fre T Eq—il/27), t=0.
One considersJ _(t)=U(t)|e CU(t), and its conjugate (3.20
um'c UZ(t), and proves mathematically thek_(t) is @  This is a formal consequence of applying the right hand side
Ty _-continuous operator only for-«<t<0. Therefore of Eq. (3.15 to ¢ and using Eq(3.19. But for the math-
U*(t) is defined and continuous fer<t<0 only and one  ematical proof of Eq(3.20), in particular of the semigroup

has in®* the semigroup character, the whole mathematical apparatus of the RHS of
the Hardy class is need¢@?2].
UX(t)=(eM]y )¥=e Mt —w<t<0. (3.16 There are other Gamow vectors 3®=|Eg

+il'2") 27T e ®”, and there is another semigroup
Thus in the RHS(3.8) for the prepared states one has the(3_1@, e:iHthortgo in®_CHC®* with the asymmetric
semigroup(3.16 for timest<ty=0, and in the RHS3.9 evolution
for the registered observables one has the semigf8uh
for timest=ty=0. Sincet=ty,=0 is the time by which the 'l‘/'/G(t)zefiHXt|ER+iF/2+>=efiERteFt/2|ER+il-*/2+>,
state has been prepared and the registration of the observable
can begin, this separation of tkmathematicalgroup(3.13 t<0. (3.21)
into the two semigroup$3.16 and(3.15 reflects the situa-

Gamow vectors have the following features.

(1) They are derived as functionals of the resonance pole
“Note that in{ the right hand side of Eq3.13 is not defined by ~ term atzg=Eg—iI'/2 (and atzg=Eg+iI'/2) in the second

the exponential series which only converges with respe@jitona  Sheet of the analytically continuegimatrix [9,27).
dense subspace of analytic vectors?ify but by the Stone—von (2) They have a Breit-Wigner energy distribution
Neumann calculus. [("E|4®)|?=(T/12m) L[ (E— ER)?+(I'/2)?]— S(E—Eg) for
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I'/Egr—0 which extends to negative energy values on the

second sheet indicated in the representation

[ [+
=i —f dE
9=iN7]

by —oo [9].

(3) The decay probability P(t)=Tr(A|4®)(4C|) of
¥C(1), t=0, into the final non-interacting decay products
described byA can be calculated as a function of time, and
from this the decay ratR(t) =dP(t)/dt is obtained by dif-
ferentiation[24]. This leads to an exact golden ruleith the
natural linewidth given by the Breit-Wigner distributipand
the exponential decay law

|E7)

E- (BT 22

=

R(t)y=e Iy, t=0 (3.23

wherel, is the partial width for the decay products (I",
equals the branching ratio timé&3. In the Born approxima-
tion (y®—fP, an eigenvector oHy=H-V; I'/ER—O0;
Er—E,) this exact golden rule goes into Fermi’s golden
rule No. 2 of Dirac.

(4) The Gamow vectorﬁfiG are members of a “complex”
basis vector expansiof27]. In place of the well-known
Dirac basis system expansignuclear spectral theorem of
the RHS given by

=3 [EEo )+ | dElE) ST
(3.29

(where the discrete sum is over bound states, which w
henceforth ignorg every prepared state vectgr e ® _ can
be expanded as

T AE[ET N El6)
(3.25

o ==3 luSfle T+ |

0
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o7 ==l uele)+ | dElECEle)
(3.28

and only approximately is a prepared stgtée ®_ repre-
sented by an exponentially decaying Gamow veofSt

D,

Ww
¢t = y°. (3.29

The time evolution of every state prepared by a macro-
scopic apparatus is thus

¢)+(t) — e—th¢+
_ efiERtefF/2t| ¢G><¢G| ¢+>

+ fﬁxdE e EYETWTEloT).  (3.30
0

It has in addition to the exponential time dependence due to
Eqg. (3.20 the time dependence given by the “background
integral” which is nonexponential.

Theoretically such a background term is always present in
the prepared state vectgr' € ® _CH but it could be arbi-
trarily small (as in the Hilbert space thegryts time depen-
dence can be calculated from the energy wave function of the
prepared stat¢™(E) =(E|¢")=("E|¢*), O<E<x (using
the Mellin transform[22,28)), if this experimental energy
distribution of the prepared state is known. Since it depends
upon the state preparation the effect of the background term

ill change with the experimental conditions and can be-

come substantial. This is a familiar effect in resonance scat-
tering experiments where deviations from the pure Breit-
Wigner distribution of the Gamow state are commonly
observed and attributed to the background phase shifts and
apparatus resolution, see, e.fR9]. Without knowing the
specific form of the functionp™(E) all that one can infer
from general mathematical theoreniRiemann-Lebesgue

(where—co; indicates that the integration along the negativelemmg is that the background time dependence goes to zero
real axis or other contour including around cuts is in thejn time and decreases slower than exponenti@g).

second Riemann sheet of tiematrix). N is the number of
resonances in the systefpartial wave, each one occurring
at the pole positiorzRi= ERi—iI‘i/2. This allows us to math-

ematically isolate the exponentially decaying sta,fés
The “complex” basis vector expansidB.25 is rigorous;
it is sometimes also called “complex spectral resolution,”

The propertie$3.18—(3.25 are not independently postu-
lated conditions for the Gamow vectors but derived from
each other in the mathematical theory of the RHS. One can
start, for instance, with the most widely accepted definition
of the resonance by the pair of poles of ®eatrix (B3) of
Appendix B at zg=Egr*il'/2 and associate to it the

which is a misnomer. The Weisskopf-Wigner approximateLippmann-Schwinger-Dirac kdtg ) obtained from analytic
methods are tantamount to omitting the background integratontinuation in Eq(B3). Then one obtains the Breit-Wigner

in Eq. (3.25, i.e., writing

ww N
¢7 = 2 lud)e, a=—(ufle”).  (3.26

For instance, for th&, —Kg system withN=2, Eq.(3.26
becomes

¢"=ySbs+yby . (3.27)

For the case of a single decaying states 1, Eqg. (3.29
becomes

energy distribution(3.22 from the Hardy class property
(3.11) and vice versa. From E3.22, using Eq.(3.1)—in
particular, the property of the Schwartz spage-one de-
rives Eq. (3.19 as generalized eigenvalue equation
(¢~ |H* "zg)=2zx("|zg), not only forn=1 but for all
powersn. The generalized eigenvalue equati@20 is also
derived from the representatid8.22 but only fort=0 be-
cause of the Hardy class propeftyhich in turn was needed
to justify the Breit-Wigner energy distribution for the pole
term of the S matrix). The Dirac basis vector expansion
(3.249) is fulfilled for every RHS, e.g., whe is realized just
by S. The basis vector expansi@8.25 follows by analytic
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continuation and therefore requires the Hardy class propertk© is strongly produced with a time scale of 73sec and it
(3.10, (3.11. The derivation of the exact golden rul24]  decays weakly, with a time scale of 1¥sec, which is
uses in addition the Lippmann-Schwinger equatiBd). roughly the lifetime of theKg, ¢ Thust,, the time at

which the preparation of thik® state, which we caWX’, is
completed and the registration can begin, is very well de-
fined. (Theoretical uncertainty is 10%r¢.) A schematic
The semigroup time evolution introduces a newdiagram of a real experimef81] is shown in Fig. 1. The
concept—the timeio(=0) at which the preparation of the stateWX is created instantly at the baryon targeffand the
state is completed and the registration of the observable cawaryonB is excited from the ground stafproton into the A
begin. This is the most difficult new concept, because one istate, with which we are no longer concerhed/e imagine
unprepared for it by the school of thinking based on the oldthat a single particl&k® is moving into the forward beam
time-symmetric quantum mechanics. For the state of our unidirection, because somewhere at a distance, sayfaom T,
verse as a whole, considered ad@sedquantum mechanical we “see” a decay vertex forr™ 7, i.e., a detectofregis-
system, there is no problem, because we deal only with ongation apparatyshas been built such that it counts” 7~
single system and the tintg is the time of the creation of pairs which are coming from the positial. The observable
this single univers¢big bang time. Alternatively, we could  registered by the detector is the projection operator
consider this universe as a member of an ensemble of uni-
verses, of which we have access to only our universe. Then A(ty)=|m" 7 ) (7" 7t = (t2) ) (*(1o)]
the probabilitieg2.199—(2.2639 are the statistical probabili- 4.2
ties (“relative frequencies’} of this ensemble and we have
the usual interpretation of quantum mechanics, where th . o
density operatop, W, the state vectos™, or wave function ied locationd,. From the positior(in the laboratory frame

(TE|¢") is the mathematical representative of an ensembld » the four-momentunp of thf‘ Kf(equal to thez compo-
of microsystems. nent of tpe momentum of th.e m §ysten) %md the mass
For an experiment performed on a quantum system in th8% Of K°, one obtains the time;™ (in the K rest frame
laboratory, the states prepared by a macroscopic preparatigMhich theK® has taken to move froffito d5°. This is given
apparatus, i.e., states described hy*e®_ or W by the simple formula of relativitgs°=t5*p/my which we
=Wl W], ¢ ed_, are best interpreted as en- write d,=t,p/my .
sembles(e.qg., the proton or electron beam prepared by an We do not have to focus at only one locatidp but can
accelerator But there are other “states” which are prepared count decay vertices at any distarttéof the right order of
by a macroscopic apparatus in conjunction with a quantuninagnitude. The detectofdescribed by the projection opera-
scattering proces®.g., resonance scatteringvhich are best tor A(t)=|=" 7 ,t)(w" 7 ,t|) counts ther " 7~ decays at
interpreted as states of a single microsystem. For their dedifferent timest=t,, t,, ts,... (in the rest frame of the
scription the RHS offers, e.g., the Dirac ké&17) or the K%, and these correspond to the distances from the target
Gamow ketg3.18. From the basis vector expansi25), d;=pt;/mg, dy=pt,/mg, ... (in the laboratory frame
we know that, mathematically, the apparatus-prepared state One “sees” the decay verte; for each single decay and
¢" can be represented as the sum of a Gamow vegfor imagines a single decaying® microsystem that had been
and a background integral. We shall now argue that thereated on the targdtat timet,=0 and then traveled a time
Gamow state can also be isolated experimentally and discugsuntil it decayed at the verted;. We give the following
its creation timet, and its asymmetric development in time. interpretation to these observations: a single microphysical
This microphysical irreversibility is the analog of the arrow decaying systerk® described bW\/KO has been produced by
of time for the state of our universe. a macroscopic preparation apparatus and a quantum scatter-
The best example is the decaying state of the neutral kadifg process, at a time=0. Each count of the detector is the
system because it is a wonderfully closed system, isolategbsult of the decay of such a single microsystem. This par-
from most external influence#cluding the electromagnetic  ticular microsystem has lived for a timie—the time that it
field) whose (exac) evolution in time is probably entirely took the decaying system to travel from the scattering center

due to the Hamiltonian of the neutral kaon system and free of to the decay vertexl;. The whole detector registers the
external influences like those mentioned in footnote 1 of Seceounting rateAN(t)/At~NR(t) as a function ofl; , i.e., of

II. Since we are here only interested in the fundamental con, = (m, /p)d,, for - - -t;>---t,>t;>t,=0. (N is the total
cepts of decay, we discuss a simplifi€dl system for which  number of counts.

IV. PHYSICAL INTERPRETATION
AND THE MEANING OF THE INITIAL TIME

r thosew* 7~ which originate from the fairly well speci-

the K? as well as theCP violation is ignored 30]. The counting rateAN(t;)/At is plotted as a function of
The processidealized, because in the real experiment onéime t (in the K° rest frame, in Fig. 2.
does not use a—but a proton beainby which the neutral No =¥z~ are registered fot<O, i.e., clicks of the
kaon state is prepared is counter form* 7~ that would point to a decay vertex at the
. o vo. 4 positiond_, in front of the targe are not obtainedf there
7 p=AK", K'=7"7". (4.9) were any, they would be discarded as npiggne finds for

the counting rate

SFor another discussion of the impossibility of time reversing the AN(t)
development of a decaying microphysical system, see[Lép At

~0, t<0. 4.3
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FIG. 1. Schematic diagram of the neutkdimeson decay experiment.

This is so obvious that one usually does not mention it. For dP(t)
t>0 one can fit the experimental counting rate with the ex- t)= “dt (4.9
ponential function to as good accuracy as one wdhis

taking largerN and smalleAt): whereP(t) is the probability for the observable(t) of Eq.

4.2 (i.e., m" w") in the stateW<’.

According to the postulat€2.17), the probability should

ANGE)
— " ~Ne Y t>0=t,. (4.9 be given by

At

_ _ _ P(t)=TITA WK = T AWK’(1)] for t=t,=0,
The ~ in Eq. (4.4 means, as in Eq2.1), the equality be-

tween experimental numbers and the idealized, theoretical (4.6
hypothesise ™'t [32,33. where

Theoretically, the counting rate is given by the probability
rate WK(t) = e~ WK™ for t=t,. 4.7

‘ﬂllll{ilillllilllllilllil'!i;f[TlE!;llj

Fort<ty,=0, WKO(t) is nonexistent because tk& had not
been prepared by<t,.

To calculate theoretical results that agree with the obser-
vations(4.3) and (4.4), one has to choose the state operator
WK’(t) in Eq. (4.6) such thatWX’(t) is nonexistent fort
<ty=0, and such that for>t,=0, yields by Eqs(4.5 and
(4.6), a result that is in agreement with the right hand side of
Eq. (4.4). The state operator which has this property is given
by Eqg.(2.16),

K Decay Term
3,
T

WK'(t) = |F())(F(1)], (4.9

MRl NNE NS FEEEE SN EE Nl NSNS N TN,
o 1 2 3 4 s 6 7 3

where
Proper Time  (10™")

FIG. 2. K decay vs proper time. F(H)=UZ(t)Fg (4.9
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is a semigroup solutiori2.15 of the quantum mechanical To incorporate causality, the RHS theory distinguishes
Cauchy problem, and where the initial vector is given by themeticulously between states and observables for which it

Gamow vector uses two RHS'sb- CHC ®* of Hardy class with comple-
mentary analyticity properties. The dual spaces in the RHS’s
Fo=|Er—il'/27)e @, (410 contain, besides the Dirac ketE*)e®X [() plane
waved, also Gamow ket$Eg—il'/2") e ®% . The Gamow
with Eg=msg and "= 1/7¢ for the K° at rest[34]. kets have all the properties attributed to eigenvectors of a

Then we obtain the time evolved state vect8r20 by  complex finite-dimensional Hamiltonian in the phenomeno-
applying the se_mlgrou(B.15). For th|s_ vec_todERX—ll“/Z_ ) logical effective theories, in particular, an exponential time
(and only for this Gamow vectdEg—il'/27) e @, which  gyoiytion and a Breit-Wigner energy wave function. Neither
is defined by the pole term of tf@matrix) one derives the f these is possible in Hilbert spatdhese effective finite-
exact Golden Rule with theexact exponential decay law  gimensional theories can therefore not be considered ap-
(323, thus_ reproducing the right hand side of &¢4) [33]. proximations[16] of standard quantum mechanics, but they

_The_reWIth we see thathhe %amoew state Ve_OﬁSHER go beyond it. The RHS formulation is the mathematical
—iT/27) or the operatoW”=|y *){y*|, whose time evolu- theory of which these finite-dimensional models, e.g., the

tion IS governed by the exact Ham"t."”"“‘ descrlbe_s the two-dimensional Lee-Oehme-Yang theory for neutral kaons

decaying neutral kaon system.ol) In its rest frame ifEx and the Weisskopf-Wigner method, are approximations

— — — G _ /K ! '

_”;5 a”r?, Fgrs_ Urs, WZ=W"". leul he d Features of the exact theory which are not already fea-
or this Gamow state one can calculate the decay rate ar}ﬂres of these effective models and phenomenological meth-

decay probability as a function of time and obtain the eXPO s are the Breit-Wigner wave functi6®.22 of the Gamow

i o < sl socms i oottt [P Vet it etencs over. =, <E £ rater tan he vl
P Y g ying Y ues O<E<), the background integral i63.25, and the

. KO . .. . _
bee”tcreated " the Slt‘g“ 2 the 't;'“a' “r.'t"ﬁt‘o (forthe  gyact Golden Rulg24] for the decay probabilit(t) from
quantum mechanical L-aucny problem with Semigroup evog, ;. , 1,e decay ratR®(t) with exponential time dependence

Iut|o_n).. This is .the same point of view mentioned at th?(3.23§ is obtained by differentiation. Dirac’s Golden Rule for
beginning of this section for the quantum state of our uni-

verse[2], except that its initial statp(ty) is probably not a th_e initial decay rate is the Born approximationtat0 of
. . . KO this exact rule for the decay rat(t). These are features
pure” Gamow state. AlternativelyW" (t) can also be

g - which one may welcome or accept. The most surprising,
th_ought of as %escnbmg the st:;tte of an (inser_nble of SIr]gkanwanted, and mostly rejected feature of the exact RHS
microsystemXK"® created at an “ensemble” of timeg, all

o whch e chosen o b he il e D o e quan._ 157 12 1€ STIUR e evobld 20 900028 o

tum mechanical Cauchy problem. Then the decay probabili- | .

ties are the statistical probabilities for this ensemble of ingj-uantum _mechanlcal arrow of time. . .

vidual K° systems, but in WX°(t) is the time in the “life” Decaying Gamow states can be experimentally isolated as

of each single decaying® system which had started &t qu§5|stat|onary mlcrophysmal_ §ystems if their time of prepa-

=0. It is not the time in the experimentalists life or the time rat_|(_)r_1 can be accurately identified. The observed decay prob-
abilities (4.3), (4.4) of the neutral kaon system have the same

in the laboratory or the time of a "wave packet” &°s. C]‘eatures as derived from a Gamow state, including the time
With this interpretation the single quasistable particle an . o L
P g€ g P dering, Eq.(4.6). This time ordering is the same as the

the single quantum universe are perfectly analogous, and tf

time to, at which the preparation of the state is completeoposwlated time ordering in the probabilities of the histories

and at which the registration of the observables can begino,f the universe cons.idered as a quantum system, Egs.
has been observationally defined. (2.19—(2.25. Under this hypothesis the fundamental quan-

tum arrow of time—expressing the vague notion of
causality—can be considered subsumed under the cosmo-
logical arrow of time.

If we want to have a quantum theory that applies to the
(closed universe as a whole then we would like this quan-
tum theory to be time asymmetric, because of the cosmologi- ACKNOWLEDGMENTS
cal arrow of time. By the same reasoning if a quantum theory i
is to apply to the electromagnetic field then it should be time 1 ne author would like to acknowledge the very valuable
asymmetric, because of the radiation arrow of time. Standar§nVversations on many points discussed in this paper with
quantum theory is time symmetric. This is a mathematical Gell-Mann, which were actually the origin of this article.

consequence due to the property of the Hilbert space pOStl'J_!e would also like to thank J. Hartle for clarifying remarks

lates. on their papers. S. Wickramasekara and H. Kaldass provided

There is a mathematical theory that describes timeSuggestions and help with thg pr(_aparation of this article. Sup-
symmetric as well as time-asymmetric quantum physics. It iport from the Welch Foundation is gratefully acknowledged.

an extension of the rigged Hilbert space formulation of quan-

tum mechanics which in about 1965 gave a mathematical

justification to Dirac’s kets and his continuous basis vector ®The Breit-Wigner energy wave function would not be in the do-
expansion. main of the Hamiltonian.

V. SUMMARY AND CONCLUSION
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APPENDIX A: THEOREMS OF THE HILBERT SPACE This vector leaves the interaction region and ends up as the
THEORY well-determined statep®. The state vectop® is deter-

i in i ; .
In the Hilbert space formulation of quantum mechanics,mmed from ™ by the dynamics of the scattering process:

the linear scalar product spadg,, is completed with respect out_ gyin 5= (-t "+ B2
to the norm to obtain a Hilbert spa@é. The HamiltoniarH ¢ S¢S ' (B2)

in the Schrdinger—von Neumann equation2.8) is self- i is controlled and determined by the preparation appara-

adjoint and semibounded, and the initial déig, i € 1. tus ¢°"is also controlled by the preparation apparatus and
Then one has the following mathematical theorems is in addition determined by the interactish

(1) (Gleason For every probabilityP(A), there exists a In the registration stage, the detector outside the interac-
positive trace class operatpisuch that>(A) =Tr(Ap) [35]. o region does not deteet®, but rather it detects an ob-

(2) (Stone—von Neumann The solutions of the servableg®U{(t) = Kty (or a mixture thereof 4°"is con-
Schralinger—von Neumann equations for thisare ime  yojieq py the registration apparatusitrigger, energy
symmetric and given by the group'(t)=e ™" of unitary  gfficiency, etc., of the detectorThe detector counts are a
operatorg 36]. o o measure of the probability to find the observatpeoperty

(3) (Hegerfeld} For every HamiltoniarH (self-adjoint, |2 y°U in the statep®t This probability| (#°", $°1)|2 is
semiboundey either calculated by theS matrix.

The S matrix is the probability amplitude °", $°%)

THA()p]=T{Ap(t)]=0 for —w<t<ow which is calculated in the following way:

(lﬂom, d)out) — ( 1//°“t, S¢in) — (Q* 1//OUt,Q+ ¢in) — ( 1117 , ¢+)
or

- [CaewrlensErioCEls).  ©3

TI{A(t)p]=Tr Ap(t)]>0 for all t
¢ (1)=e""" 4" comes from the prepared in stagd(t—
—0)=(Q"*)"1¢*(t——x). The free observable vector
(except on a set of Lebesgue measure jzero Y°""emerges from the observable vector whose time evo-
Here, A can be any positive, self-adjoint operator such agytion is governed by the exact Hamiltoni&h
A=)yl or A=C, of Eq. (2.20 and p any trace class Y~ (1) =e""y~ goes into the measured out stat®'{(t
operator likep=|$){ | or p=p(tpg pang [37]. —+20)=(Q7) LY (t=+x). QF andQ ™ are the Mdler
Theorem 1 says that all probabilities must be given by theyave operators. The Lippmann-Schwinger equation relates

trace. From theorem 3 it then follows that there cannot be ghe (known) eigenvectors of the free Hamiltonidf to two
statep in the Hilbert SpaceH that has been created or pre- sets of eigenvectors of the exact Hamiltontan

pared a finite timet—t, ago, and for which therefore

T Ap(t)]=0 for t<t,, which fort=t, decays into decay 1 1

productsA with a decay probability that is different from  |E™)=|E)+ mV|Ei>:|E>+mV|E>
zero. This means there exist no elemeutsn 7 that can B B
represent decaying states. Also absent are the si&fés) =0"|E), (B4)
that have been created at timesty=tyjg pang t=t1>to,

t=t,>t,, etc., and whose probabilities[R(t,,) p(t,_1)] where

are different from zero. Theorem 2 prohibits the asymmetric

time evolution of a state ifif and therewith the existence of K|E)=E|E), H|E®)=E|E™). (BS)

a distinguished time, of creation. _ ) ) )
This defines the exact energy wave functions in terms of the

in and out energy wave functions, whose modulus is given

APPENDIX B: S MATRIX AND LIPPMANN-SCHWINGER by the energy resolution of the experimental apparatuses:
EQUATION
+ +\ in
Every experiment consists of a preparation stage and a ("Elo")=(El¢") (B6)

registration stage. In the preparation stage of the scatteri
experiment, amixture of initial states¢" is prepared be-
fore the interactio’/=H—K is effective(e.g., by an accel-
erator outside the interaction region of the tayg€he initial
state vectorsp", describing the noninteracting beam and tar- (TE|¢™)=(E| ¢ (B7)
get, evolve in time according to the free Hamiltonikn

p(t)=e K. When the beam reaches the interaction re4s the energy distribution of the detected state; it is given by
gion, the free in statg™ turns into the exact state vectdl' e energy resolution of the detectoegistration apparatiis
whose time evolution is governed by the exact Hamiltoniangj,ce 4" is controlled by the preparation apparatus, So is
H=K+V, ¢*. Likewise, sincey®is controlled by the registration
apparatus, so igr . All this is quite standard, cf38], Chap-
QTN =¢ ()= HpT=Q" ¢ (B1)  ter 7, except that of the two versions, mentioned on p. 188 of

"Sescribes the energy distribution of the incident beam, i.e.,
the energy distribution given by the acceleraforeparation
apparatug
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[38] as equally valid descriptions, we allow only the first
version, which is in agreement with our physical intuition of p(to)—p™™(t)= > P, p(to)P, (C5a
causality. In order to do this we distinguish between the set '

of in-state vector§¢ "}=®_ and the set of out-observable o,

vectors{y~ }=d, . This hypothesis is quite natural since

the statep™ (or ") must be prepared before the observable p(to)—pa(te) =P, (to)p(to) P, (to) (C5b
[~ )y~ | (or ¢°*) can be measured in it. As was discussed ! !
in Sec. lll, ®_ and® , are different dense subspaces of the

same Hilbert spacet. together with the Schdinger equation(2.8) leads to semi-

group evolutiongC4) generated by a Liouvilliar.

Our semigroug2.15 or (2.16) is not the semigroupC4)
APPENDIX C: IRREVERSIBILITY IN CONVENTIONAL with Eg. (C3). The “irreversibility” described by our semi-

QUANTUM STATISTICAL MECHANICS group(2.15), (2.16 is also not a consequence of the increase

of von Neumann entropy due to the collapse axi@8). On
the contrary, it is our quantum mechanical arrow of time
given by(2.15 that has a consequence for the von Neumann
entropy increase.
The collapse axiom{C5) is an unrealistic mathematical

The irreversible time evolution described by the semi-
group(2.195 and(2.16) is not the irreversible time evolution
of open systems in quantum statistical mechanics which i
described by a LiouvilliarL not a Hamiltonian. Irreversibil-

ity in conventional quantum theory is always thought of as. calization. A real measurement process which chandes
being due to external influences upon the nonisolate ' P hg

after ; i i _
(“open”) quantum system. The irreversible time evolutionp IS a scattering process of microsystem on a macrosys

: : -fem (“measurement scattering710]). Every measurement
Ff cipen quantum systems is described by the master equatléglkeé time and the coIIapi@Sgl)[) cgl)nnot hZ\ppen instantly
18 '

thus one is led to the time ordering as in Eg.22. The
Jo(t measurement scattering, like every scattering experiment,
P ):L p(1), (C1) possesses an arrow of t?me, _because preparatiop(tg)
at must always precede registration Bgi(tl). The change of
state due to measurement, if it leads from a less mixed state
wherep(t) represents the state of the open sys&@mnd the  ,(t,) to a more mixed state and is given by something like
Liouville operatorL is given by Eq.(C58, must therefore have the same time ordering as Eq.
(2.22. This means in place of EqC5a one must have

Lp(t)= = +[H.p(t)]+ To(), 2
plto)=p(t) =2 Py (t)p(to)Py(ty) with ty>to only.

whereH is the Hamiltonian of the open system ahds the (C6)
interaction of the external reservoir upon the system, e.g.,

As a consequence the von Neumann entropy increases in the
T= 3 {[Vap(D),VI1+[Va,p()V]]}. (3  same time direction:
1,2, --

—Tr p2e(t,)In pa(t,)]=—TrpInp, for t;>t, only.

For Zp=0, Eqg. (Cl) with Eq. (C2) is the von Neumann (C7)
equation(2.8). Its Hilbert space solution is the reversible
time evolution of the isolated quantum system given by Eq
(2.9). Equation(C1) with Eq. (C2) is the standard equation

for extrinsic irreversibility under the influences of an exter-
nal reservoirR (which could be, for example, a measuring no
apparatusupon the systen$. The termZp represents some
complicated external effects of the reserv®rupon the

This means the von Neumann entropy arrow of time is sub-
sumed under the fundamental quantum mechanical arrow of
time given by the time evolution semigro(p.15.

A realistic quantum mechanical measurement is probably
t precisely described by EGC6), but one is probably right

to assume that the state after a measurem&ff(t;) is a

i tens. Und ticul i bout th more mixed state than the stgiét,) before a measurement
quanIumhsy_s e t?l er par |cu| ar asgjmp 'gnsﬁ out €55 that Eq.(C7) will be valid also for a realistic quantum
termZp the irreversible time evolution dbcan be shownto  \o4q . rement. This means the von Neumann entropy in-

be described by a completely positive semigroup generategoases in the direction of the quantum mechanical arrow of

by a Liouvillian L: time. The above conclusion does not mean that we have

derived the entropy increase from the quantum mechanical

p(t)=A(t)p(0), A(t)=e'" for t=0. (C4  semigroup, because we also had to assume mixture increase,

i.e., something like Eq(C53 or Eq.(C6) and this cannot be
This is the conventional semigroup evolution of open quanderived from the semigroup evolution alone. But we have
tum systems. The semigrou€4) can evolve a pure state obtained for the von Neumann entropy increase an arrow of
|#)( | into a mixture, which our semigrou(2.15 probably  time, which is the same as the direction of the quantum me-
cannot. A special case of this irreversible time evolution ischanical semigroup or the same as the preparatioregis-
obtained if one chooses for the reservBirthe measuring tration arrow of time, assuming state mixture incre@ske-
apparatus. It has been argy&9] that the collapse axiom  coherence).
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