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Time-asymmetric quantum physics

A. Bohm*
Physics Department, The University of Texas at Austin, Austin, Texas 78712

~Received 18 March 1999!

A quantum theory that applies to the~closed! universe needs to be time asymmetric because of the cosmo-
logical arrow of time. The preparation⇒ registration arrow of time~a state must be prepared before an
observable can be detected in it! of the quantum mechanics of measured systems provides a phenomenological
reason for an asymmetric semigroup time evolution. The standard theory in the Hilbert space~HS! is inad-
equate for either since the mathematics of the HS allows only reversible unitary group evolution and time
symmetric boundary conditions. The mathematical theory that describes time-asymmetric quantum physics in
addition to providing the mathematics for the Dirac kets is the rigged Hilbert space~RHS! theory. It uses a pair
of RHS’s of Hardy class with complementary analyticity property, one for the prepared states~‘‘in states’’! and
the other for the registered observables~‘‘out states’’!. The RHS’s contain Gamow kets which have all the
properties needed to represent decaying states and resonances. Gamow kets have only asymmetric time evo-
lution. The neutral kaon system is used to show that quasistationary microphysical systems can be experimen-
tally isolated if their time of preparation can be accurately identified. The theoretical predictions for a Gamow
ket have the same features as the observed decay probabilities, including the time ordering. This time ordering
is the same as the time ordering in the probabilities of histories for the quantum universe. The fundamental
quantum mechanical arrow of time represented by the semigroup in the RHS is therefore the same as the
cosmological arrow of time, assuming that the universe can be considered a closed quantum system.
@S1050-2947~99!08608-4#

PACS number~s!: 03.65.Db, 11.80.2m, 11.30.Er
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I. INTRODUCTION

Standard quantum mechanics in Hilbert spaceH is a
time-symmetric theory with a time-symmetric dynamic
~differential! equation and time symmetric boundary con
tions. This is in contrast to many time-asymmetric pheno
ena observed in classical and also in quantum physics. O
latter we want to discuss in this article two examples,
decay of a quasistable particle@1# and the expanding uni
verse as a whole when considered as a closed quantum
tem @2#. The time asymmetry that is discussed here is not
irreversible time evolution of open systems under exter
influences@3# ~cf. Appendix C!. The time asymmetry is also
not due to a time reversal noninvariant Hamiltonian; t
~self-adjoint and semibounded! Hamiltonians we discuss
here are time reversal and CP invariant. Our time asymm
expresses causality in quantum theory. It is mathematic
described by the appropriate choice of spaces of allow
solutions ~asymmetric boundary conditions! for the usual
time-symmetric Schro¨dinger equations.

In classical physics solutions of time-symmetric dynam
cal equations with time asymmetric boundary conditio
come in pairs, e.g., big bang–big crunch in general relativ
or retarded–advanced in electromagnetism. With the ch
of the boundary condition, one of the two time-asymmet
solutions is selected. The Hilbert space theory of quan
mechanics does not allow such time-asymmetric formu
tions. In the Hilbert space formulation of quantum mechan
the space-time transformations~e.g., Galilean transforma
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tions, Poincare´ transformations! are described by a unitar
group representation in the Hilbert spaceH. Thus the time
evolution is unitary and reversible, and it is given byU†(t)
5exp(2iHt),2`,t,`. This is the consequence of a seri
of mathematical theorems which follow from the mathema
cal properties—specifically the topologica
completeness—of the Hilbert space; they are listed Appen
A. These theorems in particular exclude the existence of n
zero probabilities which are zero before a given finite tim
t0 (t0Þ2`), which is the time at which the quasistab
particle had been produced or the time of the big bang in
two examples of this article. The decay of resonances and
quantum theory of our universe can therefore not be
scribed consistently in the mathematical theory using
Hilbert space.

Disregarding Hilbert space mathematics, in scatter
theory one arrived in a heuristic way at a pair of tim
asymmetric boundary conditions by choosing in- and o
plane wave ‘‘states’’uE1& anduE2& which have their origin
in thee510 ande520 of the Lippmann-Schwinger equa
tion @4#, cf. Appendix B. Still, the widespread opinion re
mained that asymmetric or irreversible time evolution
closed quantum mechanical systems is impossible.

It could have been that historically the analogy to clas
cal mechanics was the origin of this belief, though the tim
evolution for the Schro¨dinger equation could have as we
been discussed in analogy to the electromagnetic waves,
for those the radiation arrow of time was well accepted~and
by some even considered as fundamental@5#!. However, the
reversibility of the Hamiltonian generated time evolution
von Neumann’s@6# Hilbert space quantum theory must ha
been a decisive factor for the longevity of this belief.
861 ©1999 The American Physical Society
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862 PRA 60A. BOHM
Already the Dirac@7# kets uE&, 0<E , `, are not ele-
ments of the Hilbert space but generalized eigenvectors
required the extension of the Hilbert spaceH to the rigged
Hilbert spaceF,H,F3 @8#, where F is a linear scalar
product space of well-behaved vectorsfPF ~represented by
smooth etc. functionŝEuf&) and F3{uE& is the space of
its antilinear functionals. In theS-matrix element~cf. Appen-
dix B!

~cout,Sf in!5~c2,f1!5(
bb8

E
0

`

dE^c2ub,E2&^buS~E!ub8&

3^1b8,Euf1& ~1.1!

the Dirac ‘‘scattering states’’uE6& which are obtained from
uE& by the Lippmann-Schwinger equation appear. In orde
analytically continue to the resonance polezR5ER2 iG/2 of
the S matrix ^buS(z)ub8& the set of in states$f1%[F2 and
out states$c2%[F1 must additionally have some analytic
ity property. In order to get a Breit-Wigner energy distrib
tion for the pole term we postulate that the energy wa
functions ^2Euc2& and ^1Euf1& are well-behaved Hardy
class functions of the upper and lower half plane in the s
ond sheet of the energy surface of theS matrix.

The analytically continued Dirac ketsuE2&PF1
3 of the

Lippmann-Schwinger equations become—using the Cau
formula—at the resonance polezR5ER2 iG/2 the Gamow
kets uzR

2&PF1
3 . The time asymmetric semigroup evolutio

of these Gamow kets,

e2 iH 3tu t>0uzR
2&5e2 iERte2G/2tuzR

2& for t>0 only,
~1.2!

is then derived as a mathematical consequence of the s
ture of the rigged Hilbert spaceF1

3.H.F1 of the Hardy
class @9# ~in the same way as the time symmetric unita
group evolution given bye2 iH †t, 2`,t,1`, is a math-
ematical consequence of the Hilbert space structure!.

Thus asymmetric time evolution would be a natural pro
erty of quantum mechanical states represented by the ve
uzR

2& and other elements of the spaceF1
3 . In this article we

want to discuss the phenomenological evidence for s
states and the experimental conditions and phenomeno
cal reason for the asymmetric time evolution.

In Sec. II we review the basic concepts of quantum ph
ics in a way that shows which mathematical properties
important for quantum mechanical calculations and wh
are idealizations and not directly obtainable from experim
tal data. We also argue that experimental observations
volve a time asymmetry, the preparation⇒ registration ar-
row of time. We then give two examples of quantu
mechanical states with asymmetric time evolution, the q
sistable particle and the universe considered as a clo
quantum system, and discuss their common features. In
III we provide the mathematical theory for time-asymmet
quantum mechanics and give some of its result. In Sec
we discuss an example of a state with an arrow of ti
nd
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prepared in a laboratory experiment; we compare the con
of its preparation time with the initial time for the state of th
quantum universe.

II. CALCULATIONAL METHODS, MATHEMATICAL
IDEALIZATIONS, AND EXPERIMENTAL

OBSERVATIONS

In quantum theory one has states and observables. S
are described by density or statistical operators and con
tionally denoted byr or W; for pure states vectorsf are
used. Observables are described by operatorsA
(5A†),L, P(5P2), but we will also use vectorsc to de-
scribe a stateP if P5uc&^cu.

The vectorsf,c are elements of a vector spaceF with a
scalar product, denoted (•,•) or ^•u•&. The operatorsA, L,
are elements of the algebra of linear operatorsA in F. The
linear spaceF, though often called a Hilbert space, is mos
treated like a pre-Hilbert space, i.e., without a topology~or
without a definition of convergence! and it is not topologi-
cally complete. If we want to emphasize thatF has no to-
pology we denote it byFalg.

Each ‘‘kind’’ of quantum physical system is associated
a spaceF.

In experiments, the stateW @or the pure~idealized! state
f] is prepared by a preparation apparatus and the observ
A ~or the idealized observablec) is registered by a registra
tion apparatus~e.g., a detector!. The fundamental aspect o
the theory presented here is to clearly distinguish betw
states~e.g., in statesf1 of a scattering experiment! and ob-
servables~e.g., detected out statesc2 of a scattering experi-
ment!, cf. Appendix B.

The measured~or registered! quantities are ratios of~usu-
ally! large numbers, the detector counts. They are interpre
as probabilities, e.g., as the probability to measure the
servableL in the stateW at the timet, which is denoted by
PW„L(t)….

The probabilities are calculated in theory as the sca
product or, in the general case, as the trace. This is show
relations ~2.1a! and ~2.1b!, below where' indicates the
equality between the experimental and the theoretical qu
tities and[ is the mathematical definition of the theoretic
probabilities in terms of the quantities of the spaceF ~which
is not yet completely defined!:

Ni /N'Pf~P![ z^cuf& z2, ~2.1a!

N~ t !/N'PW„L~ t !…[Tr@L~ t !W0#5Tr@L0W~ t !#.
~2.1b!

The parametert in Eq. ~2.1b! is the continuous time pa
rameter and the observableL, or the stateW, are ‘‘continu-
ous’’ functions of time @with W05W(t50)]. Thus,
PW„L(t)… is thought of as a continuous function oft. But
N(t) is the number of counts in the time interval betweent
50 andt, which is an integer. Thus the right hand side of'
in Eq. ~2.1b! changes continuously int, but the left hand side
can only change in steps of rational numbers. This sho
that the continuity of PW„L(t)… or of z^c(t)uf& z2
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PRA 60 863TIME-ASYMMETRIC QUANTUM PHYSICS
5 z^cuf(t)& z2 as a function oft, and similar topological
questions, are not directly experimentally testable.

For more general observablesA, which are expressed in
terms of the orthogonal projection operatorsPi (Pi Pj
5d i j Pj ) as

A5(
i 51

`

ai Pi , ~2.2!

whereai are the eigenvalues ofA, the probabilities are mea
sured as the average value( i 51

finiteaiNi /N. Here the sum is
finite since an experiment can give only a finite number
data. In the comparison between theory and experiment
finite sum is represented by the infinite sum obtained fr
Eq. ~2.2!, thus

(
i 51

finite

ai

Ni

N
'P~A!5(

i 51

`

aiP~Pi !. ~2.3!

This also shows that the meaning of such topological noti
as the convergence of infinite sequences@of, e.g., partial
sums of the right hand side of Eqs.~2.2! and~2.3!# cannot be
established directly from the experimental data on the
hand side of Eq.~2.3!, which provides only a finite sequenc
Thus the definition of convergence of infinite sequences
F, i.e., the topology of the spaceF, is a mathematical ide
alization. If one wants a complete mathematical theory o
needs to make this mathematical idealization and choo
topology for the spaceF. Usually, for many practical calcu
lations in physics, one does not worry about the comple
ness and uses instead some calculational rules.

To obtain the rules for calculating the trace and the sc
product on the right hand side of Eq.~2.1! one starts with a
basis vector decomposition for the state vectorfPF using a
discrete set of eigenvectorsu i &5ul i& of an observable~often
the Hamiltonian! with eigenvaluesl i .

f5( u i &^ i uf&. ~2.4!

Often, following Dirac @7#, one uses a continuous set
eigenvectorsul& ~Dirac kets! and writes

f5E dlul&^luf&. ~2.5!

The trace, scalar product, etc., are then calculated as

Tr~LW!5(
i

`

^ i uLWu i & ~2.6a!

or

Tr~LW!5E dl^luLWul&, ~2.6b!

z^cuf& z25U(
i 51

`

^cu i &^ i uf&U2

~2.7a!

or
f
is

s

ft

n

e
a

-

r

z^cuf& z25U E dl^cul&^luf&U2

. ~2.7b!

In practical calculations the convergence of infinite sums a
the meaning of integration~Lebesgue versus Riemann! are
usually not considered. Often one truncates to finite~e.g.,
two! dimensions such that of the sums in Eqs.~2.6a! and
~2.7a! one retains only a finite number of terms. If one ha
complete mathematical theory one can define the meanin
the infinite sums in Eqs.~2.6a!, ~2.7a! and the meaning of the
integrals in Eqs.~2.6b!, ~2.7b! and prove Eqs.~2.4! and~2.5!.
For instance, one can choose forF the Hilbert spaceH, in
which case Eq.~2.4! but not Eq.~2.5! can be proven. Or one
can choose forF a complete space with some locally co
vex, nuclear topology and its space of continuous function
F3 to obtain a Gelfand tripletF,H,F3. Then the kets
are ul&PF3 and one can prove the Dirac basis vector e
pansion~2.5! as the nuclear spectral theorem. Time evo
tion, i.e., the dynamics of a quantum physical system,
given by the Hamilton operatorH of the system.@H is al-
ways assumed to be~essentially! self-adjoint, H̄5H†, and
semibounded.# The dynamical equation is the von Neuma
or Schrödinger equation:

]W~ t !

]t
5

i

\
@H,W~ t !#, i\

]f~ t !

]t
5H†f~ t !,

~2.8!

f~ t50!5f0 .

Equivalently, one gives the time evolution in the Heisenbe
picture by

]L~ t !

]t
52

i

\
@H,L~ t !#, i\

]c~ t !

]t
52Hc~ t !,

c~ t50!5c0 .

In a time-symmetric theory, that means if one uses for
time-symmetric differential equation~2.8! also time-
symmetric boundary conditions, then, one obtains the
lowing solutions of Eq.~2.8!:

W~ t !5e2 iHtW0eiHt , 2`,t,` ~2.9!

f~ t !5U†~ t !f05e2 iHtf0 , 2`,t,` ~2.10!

or, in the Heisenberg picture,

L~ t !5eiHtL0e2 iHt , 2`,t,`. ~2.11!

HereL0[L(t50), W0[W(t50).
On the other hand, if one just starts with the different

equations~2.8! and postulates the Hilbert space topolog
f(t)PH, then the above unitary group evolution is the on
possible solution of the dynamical equations@this follows
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864 PRA 60A. BOHM
from some theorems of Gleason and Stone~Appendix A!#.
This means time-asymmetric boundary conditions wh
could result in an irreversible time evolution are not ma
ematically allowed in a quantum theory in the Hilbert spa
H. The assumptionf(t)PH always leads to the time evo
lution ~2.10! given by the unitary groupU(t) which has
always an inverseU(2t). Inserting Eq.~2.9!, ~2.10!, or
~2.11! into the right hand side of Eq.~2.1!, the probability
P(t)5Tr@LW(t)# can be calculated at any timet01t or t0
2t.

In contrast to the results calculated with Eq.~2.9!, the
probabilitiesP(t) cannot be observed at any arbitrary po
tive or negative timet. The reason is the following:A state
needs to be prepared before an observable can be meas
or registered in it. We call this truism the preparation⇒
registration arrow of time@10#; it is an expression of causa
ity. Let t0(50) be the time at which the state has been p
pared. Then,P„L(t)… is measured as the ratio of detect
counts

PW
expt

„L~ t !…'
N~ t !

N
~2.12a!

for t.t050. ~2.12b!

If there are some detector counts beforet5t0, they are dis-
counted as noise because the experimental probabilitiescan-
not fulfill

PW
expt

„L~ t !…'” 0 for t,t050. ~2.13!

Though in the Hilbert space theoryPW„L(t)…5PW(t)(L)
can be calculated at positive or negative values oft2t0 using
unitary group evolution~2.9!, an experimental meaning ca
be given toPW„L(t)… only for t.t0.

In some cases~e.g., stationary states, cyclic evolutions!, it
should not matter at what timePW(t)(L) is calculated be-
cause one can extrapolate to negative values oft.

The physical question is, are there quantum phys
states in nature that evolve only into the positive direction
time, t.t0, and for which one therefore cannot extrapolate
negative values oft2t0? If there are such states, pure sta
or mixtures, they cannot be described by the standard Hil
space quantum theory, because of the unitary group t
evolution ~2.9! and ~2.10!, which is a mathematical conse
quence of the specific~topological, not algebraic! structure
of the Hilbert space.

Two prominent examples of states with an asymme
time evolution,t.t0, are the decaying states~in all areas of
physics, relativistic or nonrelativistic! and our universe as
whole, considered as a quantum physical system.

~1! Decaying states and resonances are often thought
something complicated, because in the Hilbert space th
does not exist a vector that can describe them in the s
way as stable states are described by energy eigenvec
However, empirically, quasistable particles are not qual
tively different from stable particles; they differ only qua
titatively by a nonzero value of the widthG. Stability or the
value of lifetime is not taken as a criterion of elementarity,
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least not by the practitioners@11#. A particle decays if it can
and it remains stable if selection rules for some quant
numbers prevent it from decaying. Therefore, stable and q
sistable states should be described on the same footing,
define both by a pole of theS matrix at the positionzR
5ER2 iG/2, or/and as a generalized eigenvector with eig
valuezR ~with G50 for stable particles!. Since the latter is
not possible in the Hilbert space, one devises ‘‘effect
theories’’ in order to obtain a state vector description of qu
sistable states.

Phenomenological effective theories have been en
mously successful. They describe resonances in a fin
dimensional space as eigenvectors of the ‘‘effective Ham
tonian’’ with complex eigenvalue (ER2 iG/2), whereER is
the resonance energy,\/G is the lifetime, and their time
evolution is given by the exponential law. The common fe
ture of these approximate methods is the omission of a c
tinuous sum; the infinite-dimensional theory is truncated t
finite- ~e.g., two-! dimensional effective theory. Examples o
this approach are the approximate method of Weisskopf
Wigner and of Heitler for atomic decaying states@12#; the
Lee-Oehme-Yang effective two-dimensional theory for t
neutral kaon system@13#; and many more finite-dimensiona
models with non-Hermitian diagonalizable Hamiltonian m
trices in nuclear physics@14#. Also nondiagonalizable finite-
dimensional Hamiltonians were discussed@15#. In the Hil-
bert space framework ‘‘there does not exist . . ., a rigorous
theory to which these methods can be considered as app
mations’’ @16#.

The decay of a quantum physical system, e.g., the tra
tion of an excited state of a molecule into its ground state
the decay of an elementary particle@17# is a profoundly ir-
reversible process. Therefore we should like to introdu
state vector uF&, ucG&5uER2 iG/2& or state operators
WG(t)5uF&^Fu, for which the time evolution is asymmetri
and for which the theoretical probabilities Tr@LWG(t)# can
be calculated fort.t050 only.

This means we have to generalize the unitary group e
lution ~2.9!, ~2.10! with 2`,t,` to a semigroup evolution
with 0<t,`. This is accomplished by seeking solutions
the time-symmetric dynamical equations~2.8! with time-
asymmetricboundary conditions. Since in Hilbert spac
quantum mechanics semigroup evolution is not possible,
seek a semigroup solutionF(t) to the quantum mechanica
Cauchy problem~2.8! with HamiltonianH1

3 whereF(t) is
an element of a larger space in whichH is dense and which
we denote byF1

3.H, i.e., the HamiltonianH1
3 is the

uniquely defined extension of the Hilbert space Hamilton
H† to this spaceF1

3 . Thus the dynamical equation~2.8! is

i\
]F~ t !

]t
5H1

3F~ t !, ~2.14!

with the initial dataF(t50)5F0
2PF1

3 , and the solution is
given by the semigroup1

1The semigroup~2.15!, ~2.16! generated by the HamiltonianH of
a closed quantum system isnot the semigroup of quantum statistica
mechanics of open systems. See Appendix C and@18#.
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F~ t !5U1
3~ t !F0

25e1
2 iH 3tF0

2 ~2.15a!

for t>0 only. ~2.15b!

If we use the quantum mechanical state operators with se
group time evolution,

WG~ t ![uF~ t !&^F~ t !u5e2 iH 3tWG~ t0!eiHt , t>0
~2.16!

to calculate the quantum mechanical probabilities, then
these calculated probabilities we obtain

PWG(t)~L0!5Tr@L~ t0!WG~ t !#5Tr@L~ t !WG~ t0!#,

~2.17a!

t>t050. ~2.17b!

This means that they fulfill the same conditions as the
perimental probabilities~2.12a!, ~2.12b!, and~2.13!.

In particular, the probabilities are not defined unless
preparation⇒ registration arrow of time~2.17b! is fulfilled,
because the time evolution

WG~ t !5e2 iH 3tW0
GeiHt ~2.18a!

or

L~ t !5eiHtL0e2 iH 3t ~2.18b!

is a semigroup evolution and only defined for

t.t050.

The physical meaning of the initial timet0 for a decaying
system in the stateWG will be discussed in Sec. IV below
Mathematically, it is given by the initial timet50 of the
Cauchy problem~2.14!.

This semigroup arrow of time~2.15b!, ~2.17b!, ~2.18b! is
the formulation in the mathematical theory of the experim
tal preparation⇒ registration arrow of time~2.12!.2

~2! The universe, when considered as a quantum phys
system, must also be in a stater ~a pure stater5uf&^fu, or
a mixture! with asymmetric time evolution@19#. Its arrow of
time must be identical with the traditional cosmological a
row of time and the timet5t050, at which the initial state
of the universer has been prepared, is the time of the b
bang.

2Since the semigroup time evolution~2.15! or ~2.18! is not pos-
sible in the Hilbert space, i.e.,F0

2P” H, people who wanted to retain
the standard Hilbert space theory but were aware of the quan
mechanical preparation⇒ registration arrow of time had to ex
trapolate Eq.~2.18! to negative times, therewith eliminating th
experimental preparation⇒ registration arrow of time and causalit
from the mathematical theory@10#.
i-
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-

e

-
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The general quantum mechanical~a priori! probabilities
predicted for the observable represented by the projec
operatorPa1

1 (t1) ~‘‘yes-no observations’’! are, according to

Eq. ~2.17!,

P~a1 ,t1![Pr„Pa1

1 ~ t1!…5Tr@Pa1

1 ~ t1!r#

5Tr@Pa1

1 ~ t1!rPa1

1 ~ t1!# ~2.19a!

for t1.t050 only. ~2.19b!

The time ordering~2.19b! is the same as the semigroup a
row of time ~2.17b! in the quantum mechanics of measur
systems. Applied to experiments performed on quantum s
tems in the laboratory it leads to the preparation⇒ registra-
tion arrow of time~2.12b!. As in the quantum mechanics o
measured systems,~2.19b! is an expression of causality.

The quantum mechanical probabilities~2.19! of projec-
tion operatorsPa i

i (t i) can be generalized to probabilities o

histories@2,20,21#.
A history is a time ordered product of different projectio

operators~labeled bya i) for different observables~labeled
by i ):

Ca5Pa1

1 ~ t1!•••Pa i

i ~ t i !•••Pan

n ~ tn!, tn.tn21.•••.t2.t1

~2.20!

with

Pa i

i ~ t i !5eiH (t i2t i 21)Pa i

i ~ t i 21!e2 iH (t i2t i 21), ~2.21a!

t i2t i 21.0. ~2.21b!

This definition of histories is suggested by the follow
ing considerations: LetPa i

i be thea i th projector of~what

we denote as! the i th observableAi5Saaa
i Pa

i , i 51, 2,
3, . . . . Then, starting with the operatorr5r(t0) of
Eq. ~2.19a!, one can define a sequence of effecti
density operatorsreff(t1), . . . ,reff(tn21), and one can
predict a sequence of probabilitiesP(a2t2 ;a1t1),
P(a3t3 ;a2t2 ;a1t1), . . . ,P(antn ;•••a1t1). These density
operators and probabilities are listed below:

reff~ t1!5
Pa1

1 ~ t1!r~ t0!Pa1

1 ~ t1!

Tr@Pa1

1 ~ t1!r~ t0!Pa1

1 ~ t1!#

5N1Pa1

1 ~ t1!r~ t0!Pa1

1 ~ t1! ~2.22a!

for t1.t0 only ~2.22b!

@the second equality in Eq.~2.22a! defines the normalization
factor N1] and

P~a2t2 ;a1t1!5N1Tr@Pa2

2 ~ t2!reff~ t1!Pa2

2 ~ t2!#

~2.23a!

for t2.t1 only. ~2.23b!

Continuing in this way forn53, 4, . . . ,

m
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reff~ tn21!5
Pan21

n21 ~ tn21!reff~ tn22!Pan21

n21 ~ tn21!

Tr@Pan21

n21 ~ tn21!reff~ tn22!Pan21

n21 ~ tn21!#
5Nn21Pan21

n21 ~ tn21!reff~ tn22!Pan21

n21 ~ tn21!;

5
Pan21

n21 ~ tn21!•••Pa1

1 ~ t1!r~ t0!Pa1

1 ~ t1!•••Pan21

n21 ~ tn21!

Tr@Pan21

n21 ~ tn21!•••Pa1

1 ~ t1!r~ t0!Pa1

1 ~ t1!•••Pan21

n21 ~ tn21!#
, ~2.24a!
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tn21.tn22.•••.t1.t0 ~2.24b!

and

P~antn ; . . . a1t1!

5
Tr@Pan

n ~ tn!reff~ tn21!#

Tr@Pan21

n21 ~ tn21!reff~ tn22!Pan21

n21 ~ tn21!#
,

~2.25a!

tn.tn21 ~2.25b!

or

P~an ,tn ; . . . ;a1 ,t1!

5Nn21Tr@Pan

n ~ tn!•••Pa1

1 ~ t1!r~ t0!

3Pa1

1 ~ t1!•••Pan

n ~ tn!# ~2.26a!

for tn.•••.t0 only. ~2.26b!

The time ordering or arrow of time~2.23b!, ~2.24b!,
~2.25b!, and ~2.26b! is again the same as the semigroup
row of time ~2.18b!, and Eq.~2.21! is the same as the sem
group evolution~2.18a8! ~in the Heisenberg picture! for the
observableL in the quantum theory of measured systems

The probability~2.25a!, ~2.26a! is the probability of the
history defined in Eq.~2.20!,

P~antn , . . . ,a1t1!5NnTr@Car~ t0!Ca#. ~2.27!

One can consider alternative projection operators

Ca85Pa
18

18 ~ t1!Pa28

28 ~ t2!•••Pa
n8

n8 ~ tn! ~2.28a!

but a physical meaning can only be given to these prod
for the time ordering

tn.tn21 . . . .t1 . ~2.28b!

This time ordering, identical with the time orderin
~2.22b!, ~2.23b!, and~2.24b!, is a calculational consequenc
of the restriction~2.21b! postulated@2,19# for the time evo-
lution of the projectors. The restricted time evolution~2.21!
is a semigroup evolution generated by the Hamiltonian of
closed quantum system. Obviously the semigroup~2.21!,
~2.18!, and~2.16! is the same semigroup applied to differe
observables,Pa i

i and L, respectively, of different quantum

systems, namely, the quantum universe and the quasis
particle. The semigroup character of the time evolut
-

ts

e

ble
n

~2.18a8!—or of ~2.18! in the Schro¨dinger picture‘‘—was in-
ferred from restrictions imposed by observational limitatio
in a laboratory experiment with quantum systems, nam
from the preparation⇒ registration arrow of time. The semi
group character of the time evolution~2.21! and the time
ordering ~2.28b! were postulated for the quantum univer
because of the special initial state associated to the big b
@19#. From the way the time ordering appears in the pro
abilities for the laboratory experiments~2.17! and in the
probabilities of the histories~2.19!, ~2.23!, and ~2.25!, it is
clear that both time orderings express the same arrow
time. If our universe is a closed quantum system as s
gested by@2#, the semigroup arrow for the resonances
subsumed under the cosmological arrow of time, or v
versa. This arrow of time ‘‘maynot be attributed to the ther
modynamic arrow of an external measuring apparatus~for
the laboratory experiment! or larger universe’’~for the quan-
tum universe!. It is a ‘‘fundamental quantum mechanical di
tinction between the past and future’’@2#.

As mentioned above, a semigroup evolution that co
give a theoretical description of this arrow of time is impo
sible in the standard Hilbert space quantum mechan
Therefore, in order to make the semigroup postulate~2.21!
possible and to allow for a semigroup solution~2.15! of the
quantum mechanical Cauchy problem, one must develo
new mathematics. We shall present the mathematics th
capable of a time-asymmetric quantum theory in the follo
ing section.

III. MATHEMATICAL THEORY
FOR TIME-ASYMMETRIC QUANTUM PHYSICS

Our empirical consideration in Sec. II has led us to t
postulate of a time evolution semigroup~2.21! or ~2.18!.
Here we want to discuss a mathematical theory of quan
physics for which a semigroup evolution exists.

In a linear space with a scalar productFalg, which we
need for the calculational rules of quantum mechanics,
simplest modification that allows Hamiltonian generat
semigroups is to choose instead of the Hilbert space topo
a locally convex topology. If one also wants the Dirac fo
malism@i.e., kets, the basis vector expansion~2.5!, etc.#, then
one has to choose a rigged Hilbert space~RHS! or Gelfand
triplet

F,H,F3. ~3.1!

The triplet of spaces in a rigged Hilbert spaceF,H,F3

results from three different topological completions of t
same algebraic~pre-Hilbert! space Falg of Sec. II @22#.
Completion means adjoining toFalg the ~limit elements of!
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convergent~Cauchy! sequences with respect to a topolog
The completion ofFalg with respect to the normiwi
5A(w,w), wPFalg is the Hilbert spaceH. The topology or
meaning of convergence defined by the norms we denot
TH . The completion ofFalg with respect to a finer locally
convex, nuclear topology, which we denote byTF ~and
which is usually given by a countable number of norm
@22#!, is denoted byF. Then one hasFalg,F,H ~because
F andH contain all elements ofFalg plus the limit elements
of Cauchy sequences inFalg), andF,H holds becauseTF

is chosen to be finer or stronger thanTH and there are con
sequently moreTH Cauchy sequences thanTF Cauchy se-
quences. We also consider the space ofTH-continuous and of
TF-continuous functionals. H3 is the space of
TH-continuous antilinear functionalsc on the spaceH: c:
fPH˜c(f)PC, andH5H3, c(f)5(f,c), by a math-
ematical theorem.F3 is the space ofTF-continuous, antilin-
ear functionals F on the spaceF: F: fPF˜F(f)
[^fuF&PC. One hasH3,F3 and the bra-ket̂u& becomes
an extension of the scalar product. Thus one obtains
Gel’fand triplet ~3.1!.

Dirac kets are elements ofF3, but there are also othe
uF&PF3 besides the Dirac kets. Dirac’s algebra of obse
ables is an algebra of continuous operators inF ~observables
cannot be continuous operators inH).

For aTF-continuous linear operatorA, its conjugate op-
eratorA3 is defined by

^AfuF&5^fuA3uF&, ;fPF and ;FPF3. ~3.2!

A3 is a continuous operator inF3. Then for each observabl
A, one has a triplet of operators

A†uF,A†,A3, ~3.3!

whereA† is the Hilbert space adjoint operator ofA andA†uF
is its restriction to the subspaceF. Generalized eigenvector
are defined for continuous operators. A vectoruF&PF3 is a
generalized eigenvector of theTF-continuous operatorA if
for some complex numberv and for allfPF,

^AfuF&5^fuA3uF&5v^fuF&. ~3.4!

This is also written as

A3uF&5vuF& ~3.5!

~or, even asAuF&5vuF& if A† is a self-adjoint operator!.
If A is the ~self-adjoint! Hamiltonian H of a quantum

physical system, thenF3 contains the Dirac kets

H3uE2&5EuE2&, E>0. ~3.6!

F3 can also contain generalized eigenvectors with comp
eigenvalues, as, e.g.,

H3uER2 iG/22&5~ER2 iG/2!uER2 iG/22&, ~3.7!

which we call Gamow vectors or Gamow kets@23#.
There is not only one spaceF, but there are many~locally

convex, nuclear, countably normed! topologiesTF , which
lead to different completionsF of Falg ~with the sameH).
The choice ofF depends on the particular physical proble
.

by

e

-

x

at hand, e.g.,F can be chosen such that the algebra of o
servables of a particular physical system is an algebra
TF-continuous operators.

Further, in Sec. II we said that we need to distingu
meticulously between states and observables. In order t
able also to distinguish mathematically between states
observables we have to introduce one space for states, w
we call F2 , and another space for observables, which
call F1 . In generalF1ÞF2 , but F1ùF2Þ$0%. The
state prepared by the preparation apparatus~e.g., accelerator!
we denote byf1, thusf1PF2 . The observable registere
by the registration apparatus~e.g., detector! we denote by
uc2&^c2u, thusc2PF1 ~cf. Appendix B for the scattering
experiment!. Therefore we need two rigged Hilbert space
one for prepared in statesf1:

f1PF2,H,F2
3 , ~3.8!

and the other for the registered observablesuc2&^c2u or
detected out statesc2:

c2PF1,H,F1
3 . ~3.9!

Here the spaceH is the same Hilbert space~with the same
physical interpretation!.

Mathematically one can define the spaces of the vec
F by the spaces of their energy wave functions^Euf&:3.

f1PF2⇔ ^1Euf1&

PSùH2
2 uR1 ~well-behaved Hardy functions inC2!.

~3.10!

c2PF1⇔^2Euc2&

PSùH1
2 uR

1 ~well-behaved Hardy functions inC1!.

~3.11!

The notation here is the following:C1(C2) denotes the open
upper~lower! half of the complex energy plane of the seco
Riemann sheet for the analytically continuedS matrix, and
H7

2 denotes the Hardy class functions@25# and S the
Schwartz space functions. This explains the notationF2 and
F1 for the spaces. The subscript refers to the subscript in
standard notation of mathematics for Hardy class functi
(H2

p ,H1
p , respectively!. The superscripts forf1 ~in states!

andc2 ~out states! are the most common convention in sca
tering theory, cf. Appendix B.

Thus, in the physical interpretation, for each species
quantum physical system one has a pair of RHS’s, Eqs.~3.8!
and ~3.9!. Whereas the ‘‘in state’’f1PF2 describes the
state that is physically defined by the preparation appara
the ‘‘out state’’ c2PF1 describes the observable that
physically defined by the registration apparatus.

3In the same way as one can define the Hilbert spaceH by the
space of Lebesgue square integrable functionsH{h⇔h(E)
PL2@0,̀ ), where the functionsh(E) are uniquely determined only
up to a set of Lebesgue measure zero, which is a complicated
unphysical notion, cf. Sec. 3, Ref.@24#
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It is by this clear differentiation between the set of vecto
$f1% which are admitted as in states and the set of vec
$c2% which are admitted as out observables that the R
theory differs from the usual scattering theory, where$f1%
5$c2%5F,H ~cf. the asymptotic completeness conditio
according to which$f1%5$f2%5H). According to Eqs.
~3.10! and~3.11!, F2 andF1 are different dense subspac
of the same Hilbert spaceH ~which are both complete with
respect to a stronger topology thanTH) with

F1ùF2Þ$0%, and F5F11F2 is also dense inH.

~3.12!

After the RHS’s~3.8! and ~3.9! have been chosen to be th
Hardy class spaces~3.10! and ~3.11!, the semigroup of Sec
II turns up naturally from the mathematics. How one cou
empirically conjecture the RHS’s of the Hardy class will n
be discussed here@26#.

To obtain the semigroups we start with the unitary gro
of time evolutions in the Hilbert spaceH.

U~ t !5eiHt , U†~ t !5e2 iHt , ~3.13!

whereU†(t) denotes the Hilbert space adjoint ofU(t).4

We first turn to the RHS~3.9! and consider

U1~ t ![U~ t !uF1
,U~ t !, and U~ t !†,U1

3~ t !.
~3.14!

It can be shown that, as a consequence of the mathema
properties ofF1 , the restriction ofU(t) to F1 , U1(t), is a
TF1

-continuous operator only for 0<t,` @8,27#. Therefore

its conjugate operatorU1
3(t), which is an extension of the

Hilbert space adjoint operatorU†(t), is well defined@by Eq.
~3.2!# and continuous for 0<t,` only. Thus in F1

3 we
have only the semigroup

U1
3~ t !5~eiHt uF1

!3[e1
2 iH 3t , 0<t,`. ~3.15!

The same considerations apply to the other RHS~3.8!.
One considersU2(t)[U(t)uF2

,U(t), and its conjugate

U(t)†,U2
3(t), and proves mathematically thatU2(t) is a

TF2
-continuous operator only for2`,t<0. Therefore

U2
3(t) is defined and continuous for2`,t<0 only and one

has inF2
3 the semigroup

U2
3~ t !5~eiHt uF2

!3[e2
2 iH 3t , 2`,t<0. ~3.16!

Thus in the RHS~3.8! for the prepared states one has t
semigroup~3.16! for times t<t050, and in the RHS~3.9!
for the registered observables one has the semigroup~3.15!
for times t>t050. Sincet5t050 is the time by which the
state has been prepared and the registration of the obser
can begin, this separation of the~mathematical! group~3.13!
into the two semigroups~3.16! and ~3.15! reflects the situa-

4Note that inH the right hand side of Eq.~3.13! is not defined by
the exponential series which only converges with respect toTH on a
dense subspace of analytic vectors inH, but by the Stone–von
Neumann calculus.
s
rs
S

p

cal

ble

tion envisioned on empirical grounds in Sec. II. The scatt
ing ~e.g., resonance scattering! process is separated into tw
parts, the preparation part dealing with the preparation of
statef1PF and the registration part dealing with the re
istration of the observable~or detection of the out state!
c2PF1 . The timet50(t0) is the time at which the prepa
ration is completed and the registration can commence;
meaning oft0 will be discussed in detail in Sec. IV.

In addition to the vectorsf1 andc2 defined by the ap-
paratuses, there also are the vectors inF6

3 which are outside
of H:

uE,up ,wp
7&PF6

3 ~Dirac8s scattering states!,
~3.17!

where (up ,wp) denotes the direction of momentum; and t

cG5uER7 iG/2,j , j 3
7&PF6

3 ~Gamow8s resonance states!,

~3.18!

with the property

H3uER2 iG/22&5~ER2 iG/2!uER2 iG/22&. ~3.19!

In the RHS theory Dirac kets and Gamow vectors a
mathematically very similar. Both are generalized eigenv
tors of self-adjoint Hamiltonians in the sense of Eq.~3.2! and
are equally well defined~though the choice of spacesF for
which Gamow kets can be defined is smaller than for Di
kets since the former also requires some analyticity prop
ties as for Hardy class spacesF1). Dirac kets and Gamow
kets just differ in their eigenvalues; whereas Dirac’s scat
ing state vectors inF1

3 or F2
3 have real~except for the6 i0)

eigenvalues corresponding to the scattering energies,
Gamow kets have complex eigenvalues corresponding to
resonance pole of theS matrix ~see below!.

The Gamow vectorscG5uER2 iG/2&A2pGPF1
3 have a

semigroup time evolution and obey an exponential law:

cG~ t ![U1
3~ t !cG5e2 iERte2Gt/2uER2 iG/22&, t>0.

~3.20!

This is a formal consequence of applying the right hand s
of Eq. ~3.15! to cG and using Eq.~3.19!. But for the math-
ematical proof of Eq.~3.20!, in particular of the semigroup
character, the whole mathematical apparatus of the RHS
the Hardy class is needed@22#.

There are other Gamow vectors c̃G5uER

1 iG/21&A2pGPF2
3 , and there is another semigrou

~3.16!, e2
2 iH 3t for t<0 in F2,H,F2

3 with the asymmetric
evolution

c̃G~ t !5e2 iH 3tuER1 iG/21&5e2 iERteGt/2uER1 iG/21&,

t<0. ~3.21!

Gamow vectors have the following features.
~1! They are derived as functionals of the resonance p

term atzR5ER2 iG/2 ~and atzR* 5ER1 iG/2) in the second
sheet of the analytically continuedS matrix @9,27#.

~2! They have a Breit-Wigner energy distributio
z^2EucG& z25(G/2p)1/@(E2ER)21(G/2)2#˜d(E2ER) for
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G/ER˜0 which extends to negative energy values on
second sheet indicated in the representation

ucG&5 iA G

2pE2` II

1`

dE
uE2&

E2~ER2 iG/2!
~3.22!

by 2` II @9#.
~3! The decay probabilityP(t)5Tr(LucG&^cGu) of

cG(t), t>0, into the final non-interacting decay produc
described byL can be calculated as a function of time, a
from this the decay rateR(t)5dP(t)/dt is obtained by dif-
ferentiation@24#. This leads to an exact golden rule~with the
natural linewidth given by the Breit-Wigner distribution! and
the exponential decay law

R~ t !5e2 iGtGL , t>0 ~3.23!

whereGL is the partial width for the decay productsL (GL

equals the branching ratio timesG). In the Born approxima-
tion (cG

˜ f D, an eigenvector ofH05H2V; G/ER˜0;
ER˜E0) this exact golden rule goes into Fermi’s gold
rule No. 2 of Dirac.

~4! The Gamow vectorsc i
G are members of a ‘‘complex’’

basis vector expansion@27#. In place of the well-known
Dirac basis system expansion~nuclear spectral theorem o
the RHS! given by

f15(
n

uEn)~Enuf1!1E
0

1`

dEuE1&^1Euf1&

~3.24!

~where the discrete sum is over bound states, which
henceforth ignore!, every prepared state vectorf1PF2 can
be expanded as

f152(
i 51

N

uc i
G&^c i

Guf1&1E
0

2` II
dEuE1&^1Euf1&

~3.25!

~where2` II indicates that the integration along the negat
real axis or other contour including around cuts is in t
second Riemann sheet of theS matrix!. N is the number of
resonances in the system~partial wave!, each one occurring
at the pole positionzRi

5ERi
2 iG i /2. This allows us to math-

ematically isolate the exponentially decaying statesc i
G .

The ‘‘complex’’ basis vector expansion~3.25! is rigorous;
it is sometimes also called ‘‘complex spectral resolution
which is a misnomer. The Weisskopf-Wigner approxima
methods are tantamount to omitting the background inte
in Eq. ~3.25!, i.e., writing

f1 5
WW

(
i 51

N

uc i
G&ci , ci52^c i

Guf1&. ~3.26!

For instance, for theKL2KS system withN52, Eq. ~3.26!
becomes

f15cS
GbS1cL

GbL . ~3.27!

For the case of a single decaying state,N51, Eq. ~3.25!
becomes
e

e

’
e
al

f152ucG&^cGuf1&1E
0

2`

dEuE1&^1Euf1&

~3.28!

and only approximately is a prepared statef1PF2 repre-
sented by an exponentially decaying Gamow vectorcG

PF1
3 ,

f1 5
WW

cG. ~3.29!

The time evolution of every state prepared by a mac
scopic apparatus is thus

f1~ t !5e2 iHtf1

52e2 iERte2G/2tucG&^cGuf1&

1E
0

2`

dE e2 iEtuE1&^1Euf1&. ~3.30!

It has in addition to the exponential time dependence du
Eq. ~3.20! the time dependence given by the ‘‘backgrou
integral’’ which is nonexponential.

Theoretically such a background term is always presen
the prepared state vectorf1PF2,H but it could be arbi-
trarily small ~as in the Hilbert space theory!. Its time depen-
dence can be calculated from the energy wave function of
prepared statef in(E)5^Euf in&5^1Euf1&, 0<E,` ~using
the Mellin transform@22,28#!, if this experimental energy
distribution of the prepared state is known. Since it depe
upon the state preparation the effect of the background t
will change with the experimental conditions and can b
come substantial. This is a familiar effect in resonance s
tering experiments where deviations from the pure Bre
Wigner distribution of the Gamow state are common
observed and attributed to the background phase shifts
apparatus resolution, see, e.g.,@29#. Without knowing the
specific form of the functionf in(E) all that one can infer
from general mathematical theorems~Riemann-Lebesgue
lemma! is that the background time dependence goes to z
in time and decreases slower than exponentially@28#.

The properties~3.18!–~3.25! are not independently postu
lated conditions for the Gamow vectors but derived fro
each other in the mathematical theory of the RHS. One
start, for instance, with the most widely accepted definit
of the resonance by the pair of poles of theS matrix ~B3! of
Appendix B at zR5ER7 iG/2 and associate to it the
Lippmann-Schwinger-Dirac ketuzR

7& obtained from analytic
continuation in Eq.~B3!. Then one obtains the Breit-Wigne
energy distribution~3.22! from the Hardy class property
~3.11! and vice versa. From Eq.~3.22!, using Eq.~3.11!—in
particular, the property of the Schwartz spaceS—one de-
rives Eq. ~3.19! as generalized eigenvalue equati
^c2uH3 nuzR

2&5zR
n^c2uzR

2&, not only for n51 but for all
powersn. The generalized eigenvalue equation~3.20! is also
derived from the representation~3.22! but only for t>0 be-
cause of the Hardy class property~which in turn was needed
to justify the Breit-Wigner energy distribution for the po
term of the S matrix!. The Dirac basis vector expansio
~3.24! is fulfilled for every RHS, e.g., whenF is realized just
by S. The basis vector expansion~3.25! follows by analytic
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continuation and therefore requires the Hardy class prop
~3.10!, ~3.11!. The derivation of the exact golden rule@24#
uses in addition the Lippmann-Schwinger equation~B4!.

IV. PHYSICAL INTERPRETATION
AND THE MEANING OF THE INITIAL TIME

The semigroup time evolution introduces a ne
concept—the timet0(50) at which the preparation of th
state is completed and the registration of the observable
begin. This is the most difficult new concept, because on
unprepared for it by the school of thinking based on the
time-symmetric quantum mechanics. For the state of our
verse as a whole, considered as aclosedquantum mechanica
system, there is no problem, because we deal only with
single system and the timet0 is the time of the creation o
this single universe~big bang time!. Alternatively, we could
consider this universe as a member of an ensemble of
verses, of which we have access to only our universe. T
the probabilities~2.19a!–~2.26a! are the statistical probabili
ties ~‘‘relative frequencies’’! of this ensemble and we hav
the usual interpretation of quantum mechanics, where
density operatorr, W, the state vectorf1, or wave function
^1Euf1& is the mathematical representative of an ensem
of microsystems.

For an experiment performed on a quantum system in
laboratory, the states prepared by a macroscopic prepar
apparatus, i.e., states described byf1PF2 or W
5( iwi uf i

1&^f i
1u, f i

1PF2 , are best interpreted as en
sembles~e.g., the proton or electron beam prepared by
accelerator!. But there are other ‘‘states’’ which are prepar
by a macroscopic apparatus in conjunction with a quan
scattering process~e.g., resonance scattering!, which are best
interpreted as states of a single microsystem. For their
scription the RHS offers, e.g., the Dirac kets~3.17! or the
Gamow kets~3.18!. From the basis vector expansion~3.25!,
we know that, mathematically, the apparatus-prepared s
f1 can be represented as the sum of a Gamow vectorcG

and a background integral. We shall now argue that
Gamow state can also be isolated experimentally and dis
its creation timet0 and its asymmetric development in time5

This microphysical irreversibility is the analog of the arro
of time for the state of our universe.

The best example is the decaying state of the neutral k
system because it is a wonderfully closed system, isola
from most external influences~including the electromagneti
field! whose ~exact! evolution in time is probably entirely
due to the Hamiltonian of the neutral kaon system and fre
external influences like those mentioned in footnote 1 of S
II. Since we are here only interested in the fundamental c
cepts of decay, we discuss a simplifiedK0 system for which
the KL

0 as well as theCP violation is ignored@30#.
The process~idealized, because in the real experiment o

does not use ap—but a proton beam! by which the neutral
kaon state is prepared is

p2p⇒LK0, K0⇒p1p2. ~4.1!

5For another discussion of the impossibility of time reversing
development of a decaying microphysical system, see Lee@17#.
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K0 is strongly produced with a time scale of 10223sec and it
decays weakly, with a time scale of 10210sec, which is
roughly the lifetime of theKS

0 , tKs
. Thus t0, the time at

which the preparation of theK0 state, which we callWK0
, is

completed and the registration can begin, is very well
fined. ~Theoretical uncertainty is 10213tK .) A schematic
diagram of a real experiment@31# is shown in Fig. 1. The
stateWK0

is created instantly at the baryon targetT @and the
baryonB is excited from the ground state~proton! into theL
state, with which we are no longer concerned#. We imagine
that a single particleK0 is moving into the forward beam
direction, because somewhere at a distance, say atd2 from T,
we ‘‘see’’ a decay vertex forp1p2, i.e., a detector~regis-
tration apparatus! has been built such that it countsp1p2

pairs which are coming from the positiond2. The observable
registered by the detector is the projection operator

L~ t2!5up1p2,t2&^p
1p2,t2u5ucout~ t2!&^cout~ t2!u

~4.2!

for thosep1p2 which originate from the fairly well speci-
fied locationd2. From the position~in the laboratory frame!
d2

lab, the four-momentump of the K0~equal to thez compo-
nent of the momentum of thep1p2 system! and the mass
mK of K0, one obtains the timet2

rest ~in the K0 rest frame!
which theK0 has taken to move fromT to d2

lab. This is given
by the simple formula of relativityd2

lab5t2
restp/mK which we

write d25t2p/mK .
We do not have to focus at only one locationd2 but can

count decay vertices at any distanced ~of the right order of
magnitude!. The detector~described by the projection opera
tor L(t)[up1p2,t&^p1p2,tu) counts thep1p2 decays at
different timest5t1 , t2 , t3 , . . . ~in the rest frame of the
K0), and these correspond to the distances from the ta
d15pt1 /mK , d25pt2 /mK , . . . ~in the laboratory frame!.

One ‘‘sees’’ the decay vertexdi for each single decay an
imagines a single decayingK0 microsystem that had bee
created on the targetT at timet050 and then traveled a time
t i until it decayed at the vertexdi . We give the following
interpretation to these observations: a single microphys
decaying systemK0 described byWK0

has been produced b
a macroscopic preparation apparatus and a quantum sc
ing process, at a timet50. Each count of the detector is th
result of the decay of such a single microsystem. This p
ticular microsystem has lived for a timet i—the time that it
took the decaying system to travel from the scattering ce
T to the decay vertexdi . The whole detector registers th
counting rateDN(t)/Dt'NR(t) as a function ofdi , i.e., of
t i5(mK /p)di , for •••t i.•••t2.t1.t050. (N is the total
number of counts.!

The counting rateDN(t i)/Dt is plotted as a function of
time t ~in the K0 rest frame!, in Fig. 2.

No p1p2 are registered fort,0, i.e., clicks of the
counter forp1p2 that would point to a decay vertex at th
positiond21 in front of the targetT are not obtained~if there
were any, they would be discarded as noise!. One finds for
the counting rate

DN~ t i !

Dt
'0, t,0. ~4.3!e
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FIG. 1. Schematic diagram of the neutralK-meson decay experiment.
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This is so obvious that one usually does not mention it.
t.0 one can fit the experimental counting rate with the
ponential function to as good accuracy as one wants~by
taking largerN and smallerDt):

DN~ t i !

Dt
'Ne2Gt, t.05t0 . ~4.4!

The ' in Eq. ~4.4! means, as in Eq.~2.1!, the equality be-
tween experimental numbers and the idealized, theore
hypothesise2Gt @32,33#.

Theoretically, the counting rate is given by the probabil
rate

FIG. 2. KS decay vs proper time.
r
-

al

R~ t !5
dP~ t !

dt
, ~4.5!

whereP(t) is the probability for the observableL(t) of Eq.
~4.2! ~i.e., p1p2) in the stateWK0

.
According to the postulate~2.17!, the probability should

be given by

P~ t !5Tr@L~ t !WK0
#5Tr@LWK0

~ t !# for t>t050,

~4.6!

where

WK0
~ t !5e2 iHtWK0eiHt

for t>t0 . ~4.7!

For t,t050, WK0
(t) is nonexistent because theK0 had not

been prepared byt,t0.
To calculate theoretical results that agree with the obs

vations~4.3! and ~4.4!, one has to choose the state opera
WK0

(t) in Eq. ~4.6! such thatWK0
(t) is nonexistent fort

,t050, and such that fort.t050, yields by Eqs.~4.5! and
~4.6!, a result that is in agreement with the right hand side
Eq. ~4.4!. The state operator which has this property is giv
by Eq. ~2.16!,

WK0
~ t !5uF~ t !&^F~ t !u, ~4.8!

where

F~ t !5U1
3~ t !F0 ~4.9!
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is a semigroup solution~2.15! of the quantum mechanica
Cauchy problem, and where the initial vector is given by
Gamow vector

F05uER2 iG/22&PF1
3 , ~4.10!

with ER5mS andG51/tS for the K0 at rest@34#.
Then we obtain the time evolved state vector~3.20! by

applying the semigroup~3.15!. For this vectoruER2 iG/22&
~and only for this Gamow vectoruER2 iG/22&PF1

3 , which
is defined by the pole term of theS matrix! one derives the
exact Golden Rule with the~exact! exponential decay law
~3.23!, thus reproducing the right hand side of Eq.~4.4! @33#.

Therewith we see that the Gamow state vectorcG5uER
2 iG/22& or the operatorWG5ucG&^cGu, whose time evolu-
tion is governed by the exact HamiltonianH, describes the
decaying neutral kaon system~4.1! in its rest frame ifER

5ms andG5Gs51/ts , WG5WK0
.

For this Gamow state one can calculate the decay rate
decay probability as a function of time and obtain the ex
nential law fort.t050. The decay probability is thea pri-
ori probability for a single decaying microsystemK0 that has
been created in the stateWK0

at the initial timet50 ~for the
quantum mechanical Cauchy problem with semigroup e
lution!. This is the same point of view mentioned at t
beginning of this section for the quantum state of our u
verse@2#, except that its initial stater(t0) is probably not a
‘‘pure’’ Gamow state. AlternativelyWK0

(t) can also be
thought of as describing the state of an ensemble of sin
microsystemsK0 created at an ‘‘ensemble’’ of timest0, all
of which are chosen to be the initial timet50 for the quan-
tum mechanical Cauchy problem. Then the decay proba
ties are the statistical probabilities for this ensemble of in
vidual K0 systems, butt in WK0

(t) is the time in the ‘‘life’’
of each single decayingK0 system which had started att
50. It is not the time in the experimentalists life or the tim
in the laboratory or the time of a ‘‘wave packet’’ ofK0’s.

With this interpretation the single quasistable particle a
the single quantum universe are perfectly analogous, and
time t0, at which the preparation of the state is comple
and at which the registration of the observables can be
has been observationally defined.

V. SUMMARY AND CONCLUSION

If we want to have a quantum theory that applies to
~closed! universe as a whole then we would like this qua
tum theory to be time asymmetric, because of the cosmol
cal arrow of time. By the same reasoning if a quantum the
is to apply to the electromagnetic field then it should be ti
asymmetric, because of the radiation arrow of time. Stand
quantum theory is time symmetric. This is a mathemati
consequence due to the property of the Hilbert space po
lates.

There is a mathematical theory that describes tim
symmetric as well as time-asymmetric quantum physics.
an extension of the rigged Hilbert space formulation of qu
tum mechanics which in about 1965 gave a mathemat
justification to Dirac’s kets and his continuous basis vec
expansion.
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To incorporate causality, the RHS theory distinguish
meticulously between states and observables for whic
uses two RHS’sF7,H,F7

3 of Hardy class with comple-
mentary analyticity properties. The dual spaces in the RH
contain, besides the Dirac ketsuE6&PF7

3 @(out
in ! plane

waves#, also Gamow ketsuER2 iG/26&PF7
3 . The Gamow

kets have all the properties attributed to eigenvectors o
complex finite-dimensional Hamiltonian in the phenomen
logical effective theories, in particular, an exponential tim
evolution and a Breit-Wigner energy wave function. Neith
of these is possible in Hilbert space.6 These effective finite-
dimensional theories can therefore not be considered
proximations@16# of standard quantum mechanics, but th
go beyond it. The RHS formulation is the mathematic
theory of which these finite-dimensional models, e.g.,
two-dimensional Lee-Oehme-Yang theory for neutral kao
and the Weisskopf-Wigner method, are approximations.

Features of the exact theory which are not already f
tures of these effective models and phenomenological m
ods are the Breit-Wigner wave function~3.22! of the Gamow
ket which extends over2` II,E,1` ~rather than the val-
ues 0<E,`), the background integral in~3.25!, and the
exact Golden Rule@24# for the decay probabilityP(t) from
which the decay rateR(t) with exponential time dependenc
~3.23! is obtained by differentiation. Dirac’s Golden Rule fo
the initial decay rate is the Born approximation att50 of
this exact rule for the decay rateR(t). These are feature
which one may welcome or accept. The most surprisi
unwanted, and mostly rejected feature of the exact R
theory is the semigroup time evolution~3.20! and ~3.21! of
the Gamow state, which is a manifestation of a fundame
quantum mechanical arrow of time.

Decaying Gamow states can be experimentally isolate
quasistationary microphysical systems if their time of pre
ration can be accurately identified. The observed decay p
abilities~4.3!, ~4.4! of the neutral kaon system have the sam
features as derived from a Gamow state, including the t
ordering, Eq.~4.6!. This time ordering is the same as th
postulated time ordering in the probabilities of the histor
of the universe considered as a quantum system, E
~2.19!–~2.25!. Under this hypothesis the fundamental qua
tum arrow of time—expressing the vague notion
causality—can be considered subsumed under the cos
logical arrow of time.
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APPENDIX A: THEOREMS OF THE HILBERT SPACE
THEORY

In the Hilbert space formulation of quantum mechani
the linear scalar product spaceFalg is completed with respec
to the norm to obtain a Hilbert spaceH. The HamiltonianH
in the Schro¨dinger–von Neumann equations~2.8! is self-
adjoint and semibounded, and the initial dataf0 ,c0PH.

Then one has the following mathematical theorems
~1! ~Gleason! For every probabilityP(L), there exists a

positive trace class operatorr such thatP(L)5Tr(Lr) @35#.
~2! ~Stone–von Neumann! The solutions of the

Schrödinger–von Neumann equations for thisr are time
symmetric and given by the groupU†(t)5e2 iHt of unitary
operators@36#.

~3! ~Hegerfeldt! For every HamiltonianH ~self-adjoint,
semibounded!, either

Tr@L~ t !r#5Tr@Lr~ t !#50 for 2`,t,`

or

Tr@L~ t !r#5Tr@Lr~ t !#.0 for all t

~except on a set of Lebesgue measure zero!.
Here, L can be any positive, self-adjoint operator such
L5uc&^cu or L5Ca of Eq. ~2.20! and r any trace class
operator liker5uf&^fu or r5r(tbig bang) @37#.

Theorem 1 says that all probabilities must be given by
trace. From theorem 3 it then follows that there cannot b
stater in the Hilbert spaceH that has been created or pr
pared a finite timet2t0 ago, and for which therefore
Tr@Lr(t)#50 for t,t0, which for t>t0 decays into decay
productsL with a decay probability that is different from
zero. This means there exist no elementsf in H that can
represent decaying states. Also absent are the statesreff(t i)
that have been created at timest5t05tbig bang, t5t1.t0 ,
t5t2.t1, etc., and whose probabilities Tr@P(tn)reff(tn21)#
are different from zero. Theorem 2 prohibits the asymme
time evolution of a state inH and therewith the existence o
a distinguished timet0 of creation.

APPENDIX B: S MATRIX AND LIPPMANN-SCHWINGER
EQUATION

Every experiment consists of a preparation stage an
registration stage. In the preparation stage of the scatte
experiment, a~mixture of! initial statesf in is prepared be-
fore the interactionV5H2K is effective~e.g., by an accel-
erator outside the interaction region of the target!. The initial
state vectorsf in, describing the noninteracting beam and t
get, evolve in time according to the free HamiltonianK:
f in(t)5e2 iKtf in. When the beam reaches the interaction
gion, the free in statef in turns into the exact state vectorf1

whose time evolution is governed by the exact Hamilton
H5K1V,

V1f in~ t ![f1~ t !5e2 iHtf15V2fout. ~B1!
,

s

e
a

c

a
ng
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-

n

This vector leaves the interaction region and ends up as
well-determined statefout. The state vectorfout is deter-
mined fromf in by the dynamics of the scattering process

fout5Sf in, S5V2†V1. ~B2!

f in is controlled and determined by the preparation appar
tus. fout is also controlled by the preparation apparatus a
is in addition determined by the interactionV.

In the registration stage, the detector outside the inte
tion region does not detectfout, but rather it detects an ob
servablecout(t)5eiKtcout ~or a mixture thereof!. cout is con-
trolled by the registration apparatus~trigger, energy
efficiency, etc., of the detector!. The detector counts are
measure of the probability to find the observable~property!
ucout&^coutu in the statefout. This probabilityu(cout,fout)u2 is
calculated by theS matrix.

The S matrix is the probability amplitude (cout,fout)
which is calculated in the following way:

~cout,fout!5~cout,Sf in!5~V2cout,V1f in!5~c2,f1!

5E
0

`

dE^c2uE2&S~E1 i0!^1Euf1&. ~B3!

f1(t)5eiHt /\f1 comes from the prepared in statef in(t˜
2`)5(V1)21f1(t˜2`). The free observable vecto
cout emerges from the observable vectorc2 whose time evo-
lution is governed by the exact HamiltonianH.

c2(t)5eiHt /\c2 goes into the measured out statecout(t
˜1`)5(V2)21c2(t˜1`). V1 andV2 are the Mo” ller
wave operators. The Lippmann-Schwinger equation rela
the ~known! eigenvectors of the free HamiltonianK to two
sets of eigenvectors of the exact HamiltonianH,

uE6&5uE&1
1

E2K6 i e
VuE6&5uE&1

1

E2H6 i e
VuE&

5V6uE&, ~B4!

where

KuE&5EuE&, HuE6&5EuE6&. ~B5!

This defines the exact energy wave functions in terms of
in and out energy wave functions, whose modulus is giv
by the energy resolution of the experimental apparatuses

^1Euf1&5^Euf in& ~B6!

describes the energy distribution of the incident beam,
the energy distribution given by the accelerator~preparation
apparatus!,

^2Euf2&5^Eufout& ~B7!

is the energy distribution of the detected state; it is given
the energy resolution of the detector~registration apparatus!.
Since f in is controlled by the preparation apparatus, so
f1. Likewise, sincecout is controlled by the registration
apparatus, so isc2. All this is quite standard, cf.@38#, Chap-
ter 7, except that of the two versions, mentioned on p. 188
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@38# as equally valid descriptions, we allow only the fir
version, which is in agreement with our physical intuition
causality. In order to do this we distinguish between the
of in-state vectors$f1%[F2 and the set of out-observab
vectors$c2%[F1 . This hypothesis is quite natural sinc
the statef1 ~or f in) must be prepared before the observa
uc2&^c2u ~or cout) can be measured in it. As was discuss
in Sec. III, F2 andF1 are different dense subspaces of t
same Hilbert spaceH.

APPENDIX C: IRREVERSIBILITY IN CONVENTIONAL
QUANTUM STATISTICAL MECHANICS

The irreversible time evolution described by the sem
group~2.15! and~2.16! is not the irreversible time evolution
of open systems in quantum statistical mechanics whic
described by a LiouvillianL not a Hamiltonian. Irreversibil-
ity in conventional quantum theory is always thought of
being due to external influences upon the nonisola
~‘‘open’’ ! quantum system. The irreversible time evoluti
of open quantum systems is described by the master equ
@18#

]r~ t !

]t
5Lr~ t !, ~C1!

wherer(t) represents the state of the open systemS, and the
Liouville operatorL is given by

Lr~ t !52
i

\
@H,r~ t !#1Ir~ t !, ~C2!

whereH is the Hamiltonian of the open system andI is the
interaction of the external reservoir upon the system, e.g

I5 (
a51,2,•••

$@Var~ t !,Va
† #1@Va ,r~ t !Va

† #%. ~C3!

For Ir50, Eq. ~C1! with Eq. ~C2! is the von Neumann
equation~2.8!. Its Hilbert space solution is the reversib
time evolution of the isolated quantum system given by E
~2.9!. Equation~C1! with Eq. ~C2! is the standard equatio
for extrinsic irreversibility under the influences of an exte
nal reservoirR ~which could be, for example, a measurin
apparatus! upon the systemS. The termIr represents some
complicated external effects of the reservoirR upon the
quantum systemS. Under particular assumptions about t
termIr the irreversible time evolution ofScan be shown to
be described by a completely positive semigroup gener
by a Liouvillian L:

r~ t !5L~ t !r~0!, L~ t !5eLt for t>0. ~C4!

This is the conventional semigroup evolution of open qu
tum systems. The semigroup~C4! can evolve a pure stat
uf&^fu into a mixture, which our semigroup~2.15! probably
cannot. A special case of this irreversible time evolution
obtained if one chooses for the reservoirR the measuring
apparatus. It has been argued@39# that the collapse axiom
et
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r~ t0!˜rafter~ t0!5(
i

Pa i
r~ t0!Pa i

~C5a!

or

r~ t0!˜rafter~ t0!5Pa1
~ t0!r~ t0!Pa1

~ t0! ~C5b!

together with the Schro¨dinger equation~2.8! leads to semi-
group evolutions~C4! generated by a LiouvillianL.

Our semigroup~2.15! or ~2.16! is not the semigroup~C4!
with Eq. ~C3!. The ‘‘irreversibility’’ described by our semi-
group~2.15!, ~2.16! is also not a consequence of the increa
of von Neumann entropy due to the collapse axiom~C5!. On
the contrary, it is our quantum mechanical arrow of tim
given by~2.15! that has a consequence for the von Neuma
entropy increase.

The collapse axiom~C5! is an unrealistic mathematica
idealization. A real measurement process which changesr to
rafter is a scattering process of microsystem on a macros
tem ~‘‘measurement scattering’’@10#!. Every measuremen
takes time and the collapse~C5b! cannot happen instantly
thus one is led to the time ordering as in Eq.~2.22!. The
measurement scattering, like every scattering experim
possesses an arrow of time, because preparation ofr(t0)
must always precede registration ofPa i

(t1). The change of
state due to measurement, if it leads from a less mixed s
r(t0) to a more mixed state and is given by something l
Eq. ~C5a!, must therefore have the same time ordering as
~2.22!. This means in place of Eq.~C5a! one must have

r~ t0!˜r~ t1!5(
i

Pa i
~ t1!r~ t0!Pa i

~ t1! with t1.t0 only.

~C6!

As a consequence the von Neumann entropy increases i
same time direction:

2Tr@rafter~ t1!ln rafter~ t1!#>2Tr r ln r, for t1.t0 only.

~C7!

This means the von Neumann entropy arrow of time is s
sumed under the fundamental quantum mechanical arrow
time given by the time evolution semigroup~2.15!.

A realistic quantum mechanical measurement is proba
not precisely described by Eq.~C6!, but one is probably right
to assume that the state after a measurementrafter(t1) is a
more mixed state than the stater(t0) before a measuremen
so that Eq.~C7! will be valid also for a realistic quantum
measurement. This means the von Neumann entropy
creases in the direction of the quantum mechanical arrow
time. The above conclusion does not mean that we h
derived the entropy increase from the quantum mechan
semigroup, because we also had to assume mixture incre
i.e., something like Eq.~C5a! or Eq. ~C6! and this cannot be
derived from the semigroup evolution alone. But we ha
obtained for the von Neumann entropy increase an arrow
time, which is the same as the direction of the quantum m
chanical semigroup or the same as the preparation⇒ regis-
tration arrow of time, assuming state mixture increase~‘‘de-
coherence’’!.
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