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Entanglement of projection and a new class of quantum erasers
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Lucien Hardy
Clarendon Laboratory, Oxford OX1 3PU, England

~Received 26 August 1998!

We define a new measurement of entanglement, the entanglement of projection, and find that it is natural to
write the entanglements of formation and assistance in terms of it. Our measure allows us to describe a new
class of quantum erasers which restore entanglement rather than just interference. Such erasers can be imple-
mented with simple quantum computer components. We propose realistic optical versions of these erasers.
@S1050-2947~99!02508-1#

PACS number~s!: 03.65.Bz, 03.67.Lx
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Entanglement is the degree to which the wave funct
does not factorize. For example, anS50 two-particle system
u12&2u21& is maximally entangled: measurement of t
spins reveals they are completely anticorrelated. The con
of entanglement goes to the very heart of quantum mech
ics, and understanding its nature is a prerequisite to un
standing quantum mechanics itself. Two-particle entang
ment was used by Einstein, Podolsky, and Rosen@1# to argue
that quantum mechanics could not be a complete descrip
of reality; that there had to be an underlying local theory. B
Bell used such entangled states to show that any local un
lying theory would have to satisfy certain inequalities, whi
quantum mechanics explicitly violates@2#. Experiments on
such entangled states have shown that these inequalitie
violated just as quantum mechanics predicts@3#. Modern re-
search on entanglement includes proposals for provid
cleaner demonstrations of this nonlocality using thr
particle entangled states@4#, and on quantifying entangle
ment @5–8#.

The goal of this paper is to define a new class of quan
erasers which restore entanglement of a multiparticle s
system, rather than just interference, and to quantify that
toration with a new measure of entanglement@9#. Our mea-
sure highlights the importance of considering mixed state
higher dimensional pure states by showing that certain
servables cannot be specified independent of informa
about the pure state, strongly suggesting that mixed state
not fundamental.

A quantum eraser@10# is a device in which coherenc
appears to be lost in a subset of the system, but in which
coherence can be restored by erasing the tagging informa
which originally ‘‘destroyed’’ it. Traditional erasers@11,12#
need only two distinct subsystems. For example, if one se
particleA through two slits, and if one ‘‘tags’’ which slitA
goes through via the interaction with a tagging particle,T,
then the interference pattern will disappear. But if one ma
the ‘‘which slit’’ information in T unobservable, even in
principle, then one can restore the interference pattern foA.
To avoid the use of a double-negative, one could refer to
as aninterference restorer.

A simple way to erase this tagging information is to me
sureT in the u0&T6u1&T basis. Here ‘‘u0&T’’ means ‘‘T in-
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teracted withA at slit 0.’’ The positions ofA on the screen
corresponding toT in the stateu0&T1u1&T display an inter-
ference pattern, and those corresponding toT in the state
u0&T2u1&T display a shifted interference pattern. While th
overall pattern on the screen shows no interference, for
subsets of these events corresponding tou0&1u1& or u0&
2u1&, coherence is restored.

Our new class of erasers involves at least three s
systems,A, B, and T. Consider an entangled stateu00&AB
1u11&AB of subsystemAB. If we tag the pieces of this with
T so that the wave function of the whole system
u00&ABu0&T1u11&ABu1&T , then the entanglement of sub
systemAB appears to be lost. But if one erases that tagg
information, then the entanglement is restored. Thus we
refer to this object as adisentanglement eraser, or, equiva-
lently, as anentanglement restorer. This leads to the pro-
found point that the entanglement of any two particles t
do not interact~directly or indirectly!, never disappears bu
rather is encoded in the ancilla of the system. A project
measurement that seems to destroy such entanglement
always inprinciple ~though rarely in practice! be erased by
suitable manipulation of the ancilla.

In order to discuss these new erasers, we will need
define several measures of entanglement. For apure, two-
particle, two-state system that can be thought of as a pa
qubits~quantum bits!, the entanglement is well-defined. On
can always write such a pure ‘‘232’’ system in the Schmidt
basis so thatucAB&5au00&AB1bu11&AB , with a andb posi-
tive and real, anda21b251. The AB system has a pure
density matrixrAB5ucAB&^cABu, while the subsystem forA
alone has a mixed density matrixrA5TrBrAB . Then one can
write entanglement ofAB in terms of the von Neumann en
tropy @5#,

E~cAB!52Tr@rA log2 rA#5e~a2!, ~1!

where e(x)52@x log2 x1(12x)log2(12x)#. Since emin
5e(0)5e(1)50 andemax5e(1/2)51, E(c) ranges from 0
for no entanglement, to 1 for a fully entangled state. T
E(c) remains constant with any unitary operation onA or B,
and is changed only by operations where the effect on
subsystem~sayA) depends upon another~eitherB or a third
827 ©1999 The American Physical Society
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828 PRA 60ROBERT GARISTO AND LUCIEN HARDY
subsystem!. Such interactions can be implemented w
controlled-NOT gates~c-NOTs!. One can show that all logic
gates of a quantum computer can be constructed solel
terms of unitary operations on individual qubits and
c-NOTs between the qubits. Thus, one role of multiqu
logic gates is to change the entanglement between pair
qubits.

Mixed states, on the other hand, do not have a uni
measure of entanglement. One can construct measures
different dependences on the possible decompositions o
density matrixrAB . Let us writerAB in terms of pure states
ux i&AB , with weightspi ,

rAB5 (
i 50

m21

pi ux i&^x i u. ~2!

Note that thex i ’s need not be orthogonal. Herem>n, with n
being the number of nonzero eigenvalues ofrAB . If one
naively tries to define the entanglement of Eq.~2! as
( i piE(x i), one finds that it depends on thex i ’s chosen@8#.
Instead what has been done traditionally is to write theen-
tanglement of formation@7#,

Ef~rAB!5min(
i 50

m21

piE~x i !, ~3!

which is theminimumvalue of the naive measure over a
decompositions ofrAB . Recently, a new measure has be
defined called theentanglement of assistance@8#, Ea , which
is just the maximumvalue of the naive measure over a
decompositions.

To see what the decomposition dependence of the n
measure really means, let us write the mixed staterAB in
terms of a higher dimensional pure state,

uCABT&5 (
i 50

dT21

Api uc i&ABu i &T , ~4!

where u i &T are dT orthonormal pure states of a set of ‘‘tag
ging particles’’ or ‘‘taggants.’’ If we trace over thedT tag-
ging states of the pure density matrixuCABT&^CABTu, we
obtain rAB of Eq. ~2! with dT component pure states
$ux i&%5$uc i&% with m5dT . This decomposition depend
upon the chosen taggant basis,$u i &T%. For a given taggant
basis, the entanglement is well defined:

Ep$u i &T%~CABT!5 (
i 50

dT21

piE~c i !, ~5!

where the entanglement of the component pure states,E(c i),
is given by Eq.~1!. We call this theentanglement of projec
tion because it corresponds to the projection of the full p
stateCABT onto a given taggant basis to yield a mixed su
systemAB with an entanglementEp . ~Cohen @13# uses a
similar quantity to bound the amount of classical informati
one would need to unlock entanglement hidden in a se
rable mixed state.! What this means practically is that if sub
systemAB is entangled with a taggantT, and one measure
the taggant in basis$u i &T%, the resulting projected pure state
of AB have an average entanglement equal toEp$u i &T% .
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If one measures the taggant in a different basisu i 8&T
5Uu i &T , then the entanglement of projection becomes
weighted average( i pi8E(c i8), where we have rewritten Eq
~4! in the new taggant basis: uCABT&
5( i 50

dT21Api8uc i8&ABu i 8&T . This shows that for a given pur
state uCABT&, Ep takes on different values for differen
choices of taggant basis; there is no unique measure of
tanglement for a mixed subsystemAB. In fact, by taking the
minimum and maximum values ofEp$U% over all possible
taggant basesUu i &T , one recovers the entanglements of fo
mation and assistance,

Ef5minUEp$U% , Ea5maxUEp$U% , ~6!

so Ep is bounded byEf andEa : Ef<Ep$U%<Ea .
Our Ef in Eq. ~6! is identical to that of Eq.~3! for all the

cases we consider. ForEa , however, there are cases whe
the number of pure statesma needed for an entanglemen
maximizing decomposition ofr is greater than the rank ofr
(ma.n) @14#. Since we consider only projective measur
ments, this means that ourEa depends ondT . For dT
,ma , our Ea can be smaller than theEa of Ref. @8#. Our Ea
measures the amount of assistance a specific ‘‘friend’’T can
give to AB for a specific pure stateCABT , whereas theirEa
measures how much assistance an arbitraryT leading torAB
could give.

To quantify the entanglement in our erasers, we need
take into account whether or not the taggant has been m
sured. Let us defineh to be the number of outcomes resultin
from any measurements ofT, andPj as the projection opera
tor for outcomej, which occurs with probabilityqj and re-
sults inAB stater j . Then we can define theentanglement of
projections’ formation,

Ep f5 (
j 50

h21

qjEf~r j !. ~7!

If no measurement has been performed onT, then h51,
r05rAB , andEp f5Ef . If a nondegenerate measurement
performed onT, thenh5dT , ther j are all pure, andEp f is
just Ep for the basis ofT defined by the projectors$Pj%. For
Ep f to increase after a measurement, there must have b
entanglement betweenT andAB.

To illustrate the utility ofEp and Ep f , consider a pure
systemABT whose 232 subsystemAB is a mixed state of
only two pure states:uCABT&5au00&ABu0&T1bu11&ABu1&T .
It is clear thatEp50 in the taggant basis$u0&T ,u1&T%, and
thus Ef50 for subsystemAB. SinceT has not been mea
sured,Ep f5Ef50. But if we project the taggant onto bas
u i 8&T5Uu i &T , with

U5S a b

2b* a* D , ~8!

the entanglement of projection ofAB in that basis is

Ep$U%5p0e~a2a2/p0!1p1e~b2a2/p1!, ~9!

with the probability of the taggant being projected into sta
u08& being p05a2a21b2b2, and withp1512p0. ~For our
choice of basis we can takea and b to be real.! Note that,
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PRA 60 829ENTANGLEMENT OF PROJECTION AND A NEW CLASS . . .
after some algebra, Eq.~9! can be rewritten asEp$U%
5e(a2)1e(a2)2e(p0). For a25b25 1

2 , AB is in mixed
staterAB5 1

2 (u00&^00u1u11&^11u) and the entanglement o
projection depends on the choice of projection basis:Ep
50 (Ep51) for a250 (a251/2). ThusEf50, Ea51, and
Ep f is between 0 to 1, depending on which basis one use
measure T. For a251, AB is in the pure staterAB
5u00&^00u, and Ep50 in all bases, so thatEa5Ef5Ep f
50.

Before we use these definitions on our new erasers,
need to briefly address the entanglement of a 234 sub-
system, where subsystemB has dimension 4 instead of 2.
the ‘‘B’’ part of CABT can be written just usingu0&B and
u1&B , and notu2&B and u3&B , then theAB subsystem can
simply be treated like the 232 case above. On the othe
hand, ifCABT can be written in the form

uCABT&5
1

2
$@ u00&AB1u11&AB] u0&T1@ u02&AB1u13&AB] u1&T%,

~10!

then no rotation of the taggant basis will change the
tanglement of the two component pure states, and thus
AB mixed state is unambiguously fully entangled (Ep f5Ef
5Ep5Ea51).

Disentanglement erasers can be divided into two kin
reversible and irreversible. Reversible erasers restore
tanglement by simply undoing the tagging operation t
caused the apparent disentanglement. Consider Fig.~a!,
which starts with a fully entangled pure state

uCABT&5
1

A2
@ u00&AB1u11&AB] u0&T . ~11!

By design,Ep f5Ef5Ea51. Now let A ~or B) act as the
controller in a c-NOT onT in what we call thetagger ~or,

FIG. 1. ~a! Entangled stateAB enters the tagger, which dilute
the entanglement into the wholeABT system. Reversing this opera
tion restoresAB entanglement.~b! After tagging, entanglement is
restored by measuringT.
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alternatively, thediluter, since it dilutes the entanglement o
AB into the full ABT state@5#!. This putsABT into GHZ
state

uCABT&5
1

A2
@ u000&ABT1u111&ABT], ~12!

whose entanglement of projection’s formation is zero:Ep f
5Ef50. Note thatEa is still 1, which is the best possible
Ep f achievable after erasure.

We accomplish the erasure in Fig. 1~a! simply by passing
ABT through the same c-NOT. Thisuntaggeracts as acon-
centratorof entanglement intoAB @5#. The wave function is
left in the state of Eq.~11! with Ep f5Ef51. Entanglement
has thus been restored.

On the other hand, the eraser of Fig. 1~b! is irreversible.
The entangled state of Eq.~11! again goes through a tagge
producing the state of Eq.~12! with Ep f5Ef50. But now
we erase the tagging information by measuring the taggan
some basis. Unlike the reversible eraser, this can be don
a delayed choice~i.e., after the measurement ofA andB). If
T is measured in basis$U% defined above, thenEp f is just
given byEp$U% in Eq. ~9!. In particular, if one measuresT in
basis u0&T6u1&T ~so thata251/2), thenEp f5Ep51, and
thus entanglement is fully restored.

Two optical experiments in Fig. 2 illustrate the working
of entanglement restorers. Both use two-photon states
duced from a parametric down-conversion crystal, and b
are feasible with current technology. But an entanglem
restorer needs three separate subsystems, so we need
more than one quantum number on each particle, nam
their spin and path~i.e., position! @15,16#. In regions where
no spin-path interactions occur, the states cannot inter

FIG. 2. ~a! At t51, thes1-s2 entanglement of the two photons
tagged by pathp1 via a PBS~c-NOT!. As in Fig. 1~a!, the tagging
operation is simply reversed.~b! The s1-p1 entangled state oft
52 is ~re!tagged withs2 at t53. Next one measuress1 andp1 in a
basis determined by the possible path BS and orientation of ths1

PBS analyzers. Finally, as in Fig. 1~b!, one can restore entangle
ment by measurings2.
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830 PRA 60ROBERT GARISTO AND LUCIEN HARDY
even though they are on the same photon. So the state
have as if they were spatially separated.

The reversible eraser in Fig. 2~a! uses the two photon
spins as theAB subsystem and one of their paths as
taggant. We can write the initial wave function as

uC t50
rev.&5

1

A2
@ uhv&s1s2

2uvh&s1s2
] u0&p1

, ~13!

which can be written as~11!. Thus thes1-s2 subsystem of
Eq. ~13! has Ep f5Ef51. By passing photon 1 through
polarizing beam splitter~PBS!, we create a spin-path inter
action which is equivalent to a c-NOT on its path, giving

uC t51
rev.&5

1

A2
@ uhv&s1s2

u0&p1
2uvh&s1s2

u1&p1
], ~14!

which is the same as the tagged state in Eq.~12!. ThusEp f
5Ef50. What this means is that if one were to measure
spins of the photons at this point~summing over paths 0 an
1), one would obtain a mixed state withr5(uhv&^hvu
1uvh&^vhu)/2, which could just as well have been forme
from states that were never entangled. And while Eq.~14! is
technically a GHZ state, one cannot use it to perform
unambiguous test of nonlocality because there are only
distinct locations for the three states@15#. Still, any local
effect mimicking GHZ correlations would involve som
novel spin-position interaction and so an experimental
seems worthwhile.

To reversibly erase the tagging information att52, we
simply perform the reverse of the operation oft51. This
PBS evolvesC back to Eq.~13!, and thus entanglement i
restored:Ep f5Ef51. Note that we could have instead co
structed an irreversibles1-s2 eraser by removing the secon
PBS and measuringp1 in the u0&6u1& basis. But this could
not be done as a ‘‘delayed choice,’’ sinces1 and p1 are
properties of the same photon.

The irreversible eraser in Fig. 2~b! treats the spin and pat
of photon 1 as its subsystemAB, and the spin of the othe
photon as the taggant. This allows us to restore the entan
ment ofAB after the properties ofA andB have been mea
sured. Since we start out with the wave function of Eq.~13!,
we need to create spin-path entanglement vias1-p1 interac-
tions. First we pass photon 1 through a PBS oriented in
h/v direction to obtain

uC t51
irrev.&5

1

A2
@ uh0&s1p1

uv&s2
2uv2&s1p1

uh&s2
]. ~15!

This can be written as the tagged state@ u00&ABu0&T

1u12&ABu1&T]/A2, which is of the same form as Eq.~12!.
be-
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Here we have madeB a two-qubit subsystem since it encom
passes four separate paths. So the operation att51 is a
c-NOT on the first qubit ofB by A. The reason we putABT
in a tagged state first is that the onlyABT interaction that
takes place in this eraser occurs in the down-conversion c
tal at t50. Thus we need to preserve the taggant connec
to AB even in the fully entangled state.

To create thes1-p1 entangled state, we pass photon
through a pair of PBS’s in theh̄/ v̄5(h1v)/(2h1v) direc-
tion, which act as a c-NOT on the second qubit ofB by A ~in
the 0̄/1̄ basis!,

uC t52
irrev.&5

1

2
$@ uh̄0&s1p1

2uv̄1&s1p1
] uv&s2

2@ uh̄2&s1p1
1uv̄3&s1p1

] uh&s2%. ~16!

This can be written as the 234 system in Eq.~10!. As we
stated before, no rotation ofT for such a 234 system will
changeEp from 1, so thatEp f5Ef51. Thes1-p1 subsystem
is fully entangled despite its connection tos2.

To makeEp f50, we simply reverse the last step to obta
the tagged state of Eq.~15! again. Finally, we erase the tag
ging information by measuring the taggants2 in some basis.
If we measures2 in the h/v basis, theAB subsystem is left
in a mixed staterAB5(u00&^00u1u12&^12u)/2, andEp f5Ep

50. But if we measures2 in the h̄/ v̄ basis,AB is left in the
mixed state rAB5(@ u00&1u12&] @^00u1^12u#1@ u00&
2u12&] @^00u2^12u#)/4, whose component pure states ea
are fully entangled. ThusEp f5Ep51 and we can restores1-
p1 entanglement even after photon 1 has been measure

The entanglement of projection provides a new fram
work for quantifying the entanglement of mixed states
thinking of them as higher dimensional pure states. It allo
us to describe a new class of quantum erasers, called
tanglement restorers, which can be thought of as sim
quantum computer components. They show how c-NOT
erations can shift entanglement from one part of the co
puter to another. It is possible that understanding how
tanglement changes in a quantum computer will aid
pinpointing the source of their exponential speedup o
classical computers.

Recently there has been considerable progress in man
lating three- and four-photon states@17#, although as of yet it
has not been possible to implement a c-NOT on two photo
Once this technological hurdle has been cleared, it will
possible to construct three-particle disentanglement eras
Until that time, the two-photon experiments described abo
should be used to test most of their interesting features.

We thank David DiVincenzo, A. Thapliyal, Martin Ple
nio, Seth Lloyd, and Tony Leggett for useful comments.
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