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Sturmian basis functions for the harmonic oscillator

Frank Antonsen*
Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen, Denmark

~Received 23 September 1998!

We define Sturmian basis functions for the harmonic oscillator, and investigate whether recent insights into
Sturmians for Coulomb-like potentials can be extended to this important potential. We also treat many-body
problems such as coupling to a bath of harmonic oscillators. Comments on coupled oscillators and time-
dependent potentials are also made. It is argued that the Sturmian method amounts to a nonperturbative
calculation of the energy levels, but the limitations of the method is also pointed out, and the cause of this
limitation is found to be related to the divergence of the potential. Thus the divergent nature of the anharmonic
potential leads to the Sturmian method being less accurate than in the Coulomb case. We discuss how modified
anharmonic oscillator potentials, which are well behaved at infinity, leads to a rapidly converging Sturmian
approximation.@S1050-2947~99!10107-0#

PACS number~s!: 03.65.Ca, 03.65.Ge
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I. INTRODUCTION

A typical situation in quantum theory is to be faced with
physical potentialV for which one has to solve the corre
sponding wave equation to find the energies, etc. For m
realistic potentials it is impossible to find the energies a
wave functions analytically, hence one must resort to vari
approximation or numerical schemes. It is the purpose of
paper to extend one such approximation scheme f
Coulomb-like potentials to harmonic and anharmonic os
lators.

The general situation in quantum theory is a system oN
particles interacting through some potentialV0(x1 , . . . ,xN).
The eigenvalue equation for the Hamiltonian~wave equa-
tion! is then an equation of the general form

~D1V02E!c50, ~1!

whereD is some differential operator of first or second o
der,V0 is the above-mentioned potential, andE is an eigen-
value. Examples include the following~units where\5c
51):

~1! The Dirac equationsD5 ig0gm]m ~summation over
repeated indices implied,m50,1,2,3,gm are the Dirac ma-
trices! andV05v0(x)1g0m, wherev0(x) is some potential.

~2! The Schro¨dinger equationD5(1/2m)¹2 where¹2 is
the Laplace operator ind dimensions.

~3! The Klein-Gordon equation whereD5h, and the
d’Alembertian operatorV05m21v0(x).

For N.1 we simply haveD5( i 51
N Di where Di is the

appropriate operator for thei th particle. Thus all relativistic
as well as nonrelativistic quantum mechanics fall into t
category~even in curved space-times!. One then typically
proceeds by trying to find a complete set of eigenstates
responding to the different values ofE; whenD is Hermitian
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these form an orthonormal set.1 The problem is, however
that for many cases continuous as well as discrete eigen
ues have to be taken into account in order to obtain a b
for the full Hilbert space. This is, for instance, the case in
Coulomb potential case already in nonrelativistic quant
mechanics, where continuum eigenstates are needed to
tain completeness. Consequently, alternatives will have to
found. Shull and Lo¨wdin @1# introduced another approach fo
the Coulomb potential. Their methods were generalized
Rotenberg, who also coined the word ‘‘Sturmians’’ for th
new basis set@2#. It has recently been realized that this a
proach can be even further generalized to handle, e.g., m
center potentials@4#, as well as relativistic effects@7#, and
many-particle systems@6#. It is the purpose of this paper t
outline the general theory and to apply it to other potenti
such as harmonic oscillators and variations thereof.

The structure of the paper is as follows. First we outli
the general Sturmian machinery and derive the most imp
tant properties of these kinds of functions, then we find
explicit formula for the Sturmians corresponding to t
harmonic-oscillator potential. Next we consider the anh
monic oscillator, and show that our approach amounts t
nonperturbative calculation which, however, is merely
asymptotic series and not a converging one. This is due
the divergence of the matrix elements of the potential. So
comments are made on generalizations to the many-par
case and to time-dependent potentials~the Caldirola-Kanai
oscillator!, and finally we show that the nonconvergence c
be remedied by considering appropriately ‘‘regularized’’ p
tentials involving a Gaussian regulator.

1Actually, for the Klein-Gordon case, hermiticity is more subt
and depends on a precise definition of the inner product, but for
Schrödinger equation~and the Dirac equation!, which is the only
one we will be using in this paper, such subtleties are absent anD
is indeed Hermitian. Moreover, by reformulating everything
terms of an appropriate inner product instead of the usualL2 one
used here, one can verify that Klein-Gordon Sturmians have p
erties like those derived in this paper.
812 ©1999 The American Physical Society
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PRA 60 813STURMIAN BASIS FUNCTIONS FOR THE HARMONIC . . .
II. BASIC PROPERTIES OF STURMIANS

Instead of finding a set of eigenfunctions all correspo
ing to the same ‘‘coupling constants’’~i.e., charges for the
Coulomb and Yukawa potentialsmv2 for the harmonic os-
cillator, etc.! but to different energies as one normally doe
one can take the ‘‘dual’’ approach and fix the energyE and
then allow the coupling constants to vary. Thus we consi
not the original equation~1!, but instead

~D1bnV02E!cn50, ~2!

wherebn is some constant depending on the setn of quan-
tum numbers. The solution of this equation givesE as a
function of bn which can then be inverted to findbn as a
function ofE, assuming we can solve Eq.~2!, of course. We
will refer to bn as theeffective coupling constant—for V0
52Z/r it corresponds to scaling the nuclear charge, and
V05mv2x2 it corresponds to scaling the mass and/or
frequency.

The assumed hermiticity ofD then implies

~bn2bn8!E cn8
* V0cndx50, ~3!

i.e., the Sturmian functions satisfy the potential weighted
thogonality relation

E cn* V0cn8dx5Nndnn8 . ~4!

Strictly speaking, Eq.~3! only implies *cn8
* V0cndx50 for

bnÞbn8 . For sufficiently nice potentials, i.e., potentia
without any violent oscillations, such that the energyE de-
pends monotonically on the quantum numbersn, the ortho-
normality condition~4! follows. An example of a potentia
which we do not expect to be able to handle with this a
proach isV0(x)5sinx/x, but potentialsx21, x21e2kx, and
x2 can be treated this way. It will also be shown later that
many-center analogs of these potentials are also wi
reach. Another subtlety concerns ‘‘major’’ and ‘‘minor
quantum numbers in the terminology of Aquilanti and Ave
@5#. The coefficientbn need not depend on all quantum num
bers; those on which it does depend are referred to as ‘‘
jor’’ quantum numbers, and the remaining ones are th
‘‘minor’’ quantum numbers. For the Coulomb potential, f
instance,bn only depends onn and not on the angular mo
mentum quantum numbersl andm. The orthogonality with
-
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respect to the minor quantum numbers then follow from
orthonormality of the spherical harmonicsYlm and the sepa-
ration of variables, cn(r ,V)5xnl(r )Ylm(V). For one-
dimensional systems, no such subtlety can occur. Altho
we will make some comments on many-particle and ma
center Sturmians, which correspond to higher dimensio
we will not encounter this subtlety in this paper.

To solve the Schro¨dinger, Klein-Gordon, or Dirac equa
tion for some physical potentialV, we begin by considering
Sturmians corresponding to a ‘‘base potential’’V0 for which
we can easily solve the corresponding differential equat
to find the basis set. IfV0 is sufficiently similar toV, the
convergence has been found, for the Coulomb and Yuka
potentials, to be very rapid. IfE is taken to be the actua
physical energy the Sturmians will, furthermore, have
right asymptotic behavior. We will see, however, that th
rapid convergence only takes place when the potential~or
rather its matrix elements! have sufficiently nice conver
gence properties themselves.

Equation~4! has far reaching consequences. Conside
new potentialV0˜V5V01V8, whereV0 is some potential
for which we can easily find the Sturmians~sayV0;r 21 or
V0;x2).2 The eigenvalue equation for the Hamiltonian,H
5D1V01V8, for this new system is then

~D1V01V82E8!c50. ~5!

Suppose we can expandc on the Sturmians forV as c
5(ncncn ,3 we then obtain

~D1V01V82E8!(
n

cncn

5(
n

cn@~12bn!V01V81E2E8#cn ~6!

upon using Eq.~2!. From this we get the secular equation b
using the potential weighted orthogonality relation. Thus

(
n

@~12bn!Nndnn81^cn8uV8ucn&

1~E2E8!^cn8ucn&#cn50, ~7!

from which the kinetic energy has disappeared and only
potential V8 appears together with the overlap integrals
the Sturmians. It is this feature of Sturmians which is
important. We can rewrite this equation as
rbation

, for the
E85E1

@~12bn8!Nn81^cn8uV8ucn8&#cn81 (
nÞn8

^cn8uV8ucn&cn

^cn8ucn8&1 (
nÞn8

^cn8ucn&cn

~8!

2Often, when working with Sturmians, one would like to takeV85V to be a physical potential, and only useV0 to find the basis set. We
will want to includeV0 as part of the physical potential in this paper, however, in order to be able to make a comparison with pertu
theory.

3For one-dimensional systems, it follows from standard Sturm-Liouville theory that the Sturmians do form a basis. Furthermore
case of radial potentials in higher dimensions this is also known to be the case.
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@~12bn8!Nn81Wn8n8#cn81 (
nÞn8

Wn8ncn

Tn8n8cn81 (
nÞn8

Tn8ncn

, ~9!
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where we have defined the overlap matrices

Tn8nª^cn8ucn&, ~10!

Wn8nª^cn8uV8ucn&. ~11!

The secular equation often implies that one can findE8 with
very great accuracy from an extremely small basis set, e
with just one basis function,cn , in which case we have
simply

E85
~12bn!Nn2^cnu~V82E!ucn&

^cnucn&
,

giving an explicit formula forE8, which, whenV8 is suffi-
ciently close toV0 and the potentials are sufficiently we
behaved, is a surprisingly good fit@4,7#. The reason for this
success is to be found in the very nature of Sturmian b
sets. By construction, Sturmians take the potential m
more into account, and thus contain much more informat
about the potential. In a sense, Sturmian functions are o
mized with respect to the specific features of the given
tential, and it is precisely this that lies behind their succes
the Coulomb case.

Another consequence of this can be seen if one attem
to use Sturmians as a starting point for a variational calc
tion. Suppose we know the Sturmians forV0 , and now want
to use variational theory to estimate the ground-state en
of the HamiltonianH5D1V01V8, using the standard for
mula

E0<
^cuHuc&

^cuc&
;

with c5cn , a Sturmian, we obtain

E0<E1~11bn!
^cnuV0ucn&

^cnucn&
1

^cnuV8ucn&

^cnucn&
, ~12!

which only concerns the starting potentialV0 and the energy
E to which the Sturmians correspond. If the Hamiltonia
moreover, is of the formH5D1V8, we obtain

E0<E1bn
^cnuV0ucn&

^cnucn&
1

^cnuV8ucn&

^cnucn&
, ~13!

which, in any case, is a rather simple integral to compu
suggesting that Sturmians would be a good starting point
variational calculations.

It should be noted that one will often also assumeE
5E8 to be an allowed energy of the ‘‘perturbed’’ potenti
V5V01V8 for an appropriate value of the effective co
plings bn . In this instance Eq.~1! can be seen as showin
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the physical effect of thebn as a kind of screened charge
the Coulomb and Yukawa cases: (12bn) measures the
‘‘screening.’’ Now bn51 corresponds to an unscaled co
pling constant. From (12bn)}^cn8uV8ucn&, we then see
that for E5E8 also to be an allowed energy value forV
5V0 , we must fit the coupling constantbn to exactly the
right value as given by the perturbationV8.

Since the above consideration only used the fact thaD
was Hermitian, the results hold for all the above-mention
cases provided we can find effective couplingsbn such that
E can be held fixed. It is known that suchbn exist for the
Coulomb and Yukawa potentials both in relativistic~the
Dirac equation! and nonrelativistic quantum mechanics a
also for their many-center analogs. It will similarly be show
that this also holds for the harmonic oscillator. In fact, t
following argument seems to suggest that it will always ho
We write the original potential asV0(x)5av(x), wherea is
some constant, the original coupling constant, specifying
strength of the potential, e.g.,a5Z for the Coulomb case
Clearly, E5E(a) if E is an allowed energy eigenvalue.
there is no degeneracy, choices fora and for the set of quan
tum numbersn uniquely specify the energyE, and thus we
can invert the relation to finda as a function ofE andn. If
there is degeneracy, the equationa5a(E,n) has more than
one solution in the physical range, but this merely means
more than one set of quantum numbers exists giving
same energy; for each such choice of quantum numbers
obtain a new solutionbn5a(E,n).

Another interesting relationship is the momentum spa
orthonormality relation. Letfn(k) be the Fourier transform
of cn(x); this then satisfies

~Dt2E!fn52bnV0
t
* fn , ~14!

whereDt and V0
t are Fourier transforms ofD and V0 , and

where* denotes convolution,

V0
t
* fn5E V0

t ~k2k8!fn~k8!dk8. ~15!

We multiply byfn8
* from the left, and perform thek integral

to arrive at

E fn8
* ~Dt2E!fndk52bnE fn8

* ~V0
t
* fn!dk. ~16!

Now, by the Fourier convolution theorem (f g) t5 f t* gt, and
from Parzival’s formulâ f ug&5^ f tugt&, we then obtain

E fn8
* ~Dt2E!fndk52bnNndnn8 . ~17!
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Hence the momentum-space Sturmians satisfy a weig
orthonormality relation where the weighting factor is giv
by thekineticpart of the Hamiltonian and not thepotentialas
in x space. For the three operatorsD mentioned in the be-
ginning, this relation reads

E fn8
* ~g0gmkm2E2g0m!fndk52bnNndnn8 ,

E fn8
* ~k222mE!fndk522mbnNndnn8 ,

E fn8
* ~k22m22E!fndk52bnNndnn8

for the Dirac, Schro¨dinger, and Klein-Gordon equations, r
spectively. In the nonrelativistic case, one will often wr
k0

2522mE, which is then positive (k0 real! for bound
states, and negative (k0 imaginary! for unbound states. In
this case, the weighting factor becomesk21k0

2, which can be
interpreted as the length of the momentum vector ind11
dimensions. It is this extra dimension which is related
Fock’s famous treatment of the hydrogen atom, where
found the existence of SO~4! symmetry. This can be gene
alized to arbitrary dimensions by means of hyperspher
harmonics@3,4#.

The momentum-space relations have other important
plications. The eigenvalue equation of the Hamiltonian
momentum space is

~Dt2E!fn~k!52bnV0
t
* fn . ~18!

We define, for simplicity,f̃n5(Dt2E)fn ; then we can
write the momentum-space orthonormality relation
*fn* f̃n8dk52bnNndnn8 and the eigenvalue equation for th
Hamiltonian as

f̃n~k!52bn~V0
t
* fn!~k! ~19!

52bnE V0
t ~k2k8!fn~k8!dk8. ~20!

Now, we make the following ansatz:

V0
t ~k2k8!5(

n
cnf̃n~k!f̃n* ~k8!. ~21!

Inserting this into Eq.~20! we then obtain

cn5
Nn

bn
2 , ~22!

i.e.,

V0
t ~k2k8!5(

n

Nn

bn
2 f̃n~k!f̃n* ~k8! ~23!

ª(
n

Nn

bn
2 Dt~k!„Dt~k8!…* fn~k!fn* ~k8!.

~24!
ed

e

al

-

s

When V0
t is some function ofk and k8, this is a useful

summation formula for the momentum-space Sturmia
When V0

t is a differential operator, on the other hand,
happens whenV05xg, g.0, then this is a spectral represe
tation of that operator.

It should be emphasized that the coefficients in the ab
expansion are very simple in the sense that they are the n
ral quantities related to the basis set, namely, the norma
tion, the ‘‘effective charge’’bn , and the kinetic operato
~which is then a polynomial in momentum space!. This
shows more precisely how Sturmians are adapted to the
tential. We will now turn to the specific case of a harmon
oscillator.

III. HARMONIC OSCILLATOR

To begin with we work withN51 and ind51 dimen-
sion. The potential isV05 1

2 x2, and we solve the equation

S 2
1

2m

d2

dx2
1

1

2
bnx

22ED cn50, ~25!

which is the harmonic oscillator Schro¨dinger equation with
mv2 replaced bybn . We will henceforth use mass weighte
coordinates and setm51; if the mass needs to be reinstat

FIG. 1. Plot of the first ten harmonic-oscillator Sturmians sho
ing how they are scaled to all have essentially the same range

TABLE I. Normalization constants for harmonic-oscillator Stu
mians.

n Nn n Nn

0
1

8&
E23/2 5

121

8
A11

2
E23/2

1
9

8
A3

2
E23/2 6

169

8
A13

2
E23/2

2
25

8
A5

2
E23/2 7

225

8
A15

2
E23/2

3
49

8
A7

2
E23/2 8

289

8
A17

2
E23/2

4
243

&
E23/2 9

361

8
A19

2
E23/2
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one simply replacesx by Amx. In this casev in the original
harmonic-oscillator Hamiltonian has been replaced bybn

1/2.
The solution of this is clearly

cn~x!5p21/4~n! !21/222n/2Hn~bn
1/4x!e2~1/2!bn

1/2x2
, ~26!

wheren5n is a non-negative integer,Hn is a Hermite poly-
nomial, andE5v(n1 1

2 )5Abn(n1 1
2 ). From this relation-

ship betweenE, n, andbn we read off

bn5S E

n1
1

2
D 2

, ~27!

which is the promised relationship between the effect
coupling, the quantum number, and the energy, neede
make the Sturmian machinery work.

The effect of scaling the argument by ann-dependent
quantity is to scale all the functions to take values within
same interval. This is illustrated in Fig. 1. The orthonorm

ity relation, ^cnu
1
2 x2ucn8&5Nndnn8 , then reads
e
to

e
-

E Hn~bn
1/4x!Hn8~bn8

1/4x!e2~1/2!(bn
1/2

1b
n8
1/2

)x2
x2dx

5NnAp2n11n!dnn8 . ~28!

The first few normalization factorsNn turn out to be as in
Table I. We see thatNn}E23/2—in general,^cnuxkucn8&
}E2(k11)/2 for k50,1,2, . . . . This is easily seen from
simple scaling argument: perform the scalingx˜bn

1/4x
;E1/2x ~for the sake of this argument we can ignore then
dependence!, in the integral and the result follows directly

From Table I it is clear that

Nn5
~2n11!3/2

8&
E23/25

1

4
bn

23/4. ~29!

Notice that the Sturmian orthonormality relation above d
fers slightly from the usual one in two ways:~1! the Hermite
polynomials have different arguments~normally the argu-
ment is justAvx, irrespective of the value of the quantu
numbern), and~2! the appearance of the factorx2.

Similarly, the overlap matrix between the first five Stu
miansTnn85*cn* cn8dx is
rely

ls. It is

at for
s the
T5E21/21
1

&
0 2

1

3
A5

3
0

12

25
A3

5

0 A3

2
0 2

21

25
A3

5
0

2
1

3
A5

3
0 A5

2
0 2

132

343
A30

7

0 2
21

25
A3

5
0 A7

2
0

12

25
A3

5
0 2

132

343
A30

7
0

3

&

2 . ~30!

For d.1, the energy spectrum isE5v(n1d/2), leading to a very simple modification in the expression linkingbn andE.
The wave functions become products of Hermite polynomials andn5(n1 , . . . ,nd), n5n11n21 • • • 1nd :

cn5p2d/422dn/2S )
i 51

d

~ni ! !21/2Hni
~bn

1/4xi !D e2~1/2!bn
1/2(x1

2
1 • • • xd

2). ~31!

Note, bn5bn depends only onn5n11 • • • nd , the ‘‘total quantum number.’’ The case of more than one particle me
corresponds to a harmonic oscillator inD5dN dimensions, whereN denotes the number of particles andd the number of
spatial dimensions. If the particles have different masses, one has to use mass-weighted coordinates,xi°yi5Amixi , but
otherwise no modifications are needed. Clearly, all the important features can be found already in thed5N51 case, for which
reason we will stick to this situation in the following unless otherwise stated.

The momentum-space formulation of the harmonic oscillator needs the Fourier transform of the Hermite polynomia
proven in the Appendix that

fn~k!5p21/4~n! !21/222n/2A2p

bn
1/4S 11

1

2
bn

1/4DHnXikS 11
1

2
bn

1/4D 21/2Ce~1/2!k2bn
21/2

~32!

is the Fourier transform ofcn . The Hermite polynomials of imaginary arguments appear in this formula, this means th
n evenfn is purely real, whereas forn odd it is purely imaginary. The momentum-space orthogonality relation then give
following new relationship between Hermite polynomials
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E HnXikS 11
1

2
bn

1/4D 21/2CHn8XikS 11
1

2
bn8

1/4D 21/2Ce~1/2!k2(bn
1/2

1b
n8
1/2

)~k222E!dk52
1

A2p
n!2n11bn

5/4NnS 11
1

2
bn

1/4D 22

dnn8 ,

~33!

a somewhat unexpected result.

IV. ANHARMONIC OSCILLATOR

We now add a new potentialV85ax3 to V, furthermore, to get a feeling of how the Sturmian method works, we will be
by considering the ‘‘standard case’’ ofE85E—this is what is usually done in the literature. It will turn out, however, th
taking E8ÞE is advantageous in our case.

We then need to compute the matrix elements of this in the basis of harmonic oscillator Sturmians. We need to com
matrix Wnn8

(3)
5*cn* x3cn8dx. For n,n850,1,. . . ,4 weobtain the following explicit result:

W(3)5E221
0

27

64
0 2

343)

2048
0

27

64
0

7425A5

2048
0 2

3159

512&

0
7425A5

2048
0

677425A5

41472
0

2
343)

2048
0

677425A5

41472
0

431831169

4194304

0 2
3159

512&
0

431831169

4194304
0

2 . ~34!

The secular equation then reads@put E85E in the general secular equation~7!#

det„~12bn!Nndnn81aW(3)
…50. ~35!

By including the firstN Sturmians we obtain the ground-state energies shown in Table II witha50.1.
Another version isV85x4, for this case the matrixWnn8

(4)
ª*cn* x4cn8dx becomes

W(4)5E25/21
3

16&
0

25

144
A5

3
0 2

243

1000
A3

5

0
135

16
A3

2
0

27783

2000
A3

5
0

25

144
A5

3
0

975

16
A5

2
0

625725

9604
A15

14

0
27783

2000
A3

5
0

3675

16
A7

2
0

2
243

1000
A3

5
0

625725

9604
A15

14
0

29889

16&

2 . ~36!
n
,

n
n
d.
th

as
re
s

due

ry
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es
As for x3 we obtain the energiesE by including the firstN
51, . . . ,5 Sturmians also shown in Table II. As is appare
from the table, the ground-state values are unstable, i.e.the
approximation has failed to converge. This is in sharp con-
trast to what is known to be the case for the Coulomb a
Yukawa potentials~in their one-center form as well as i
their many-center form! where the convergence is very rapi
This failure can be traced back to the nonconvergence of
matrix elementsWnn8

(k)
˜` for n,n8˜`, which again is a
t

d

e

consequence of the divergent behavior of the potentials
x˜`. Although the Coulomb and Yukawa potentials a
singular at the origin,r 50, their matrix elements nonetheles
fall off rather rapidly as the quantum numbers increase,
to the quick fall off of the potentials themselves asr in-
creases.

But all is not lost yet. The anharmonic oscillator is a ve
well-studied case precisely because standard techniques
to fail. We will see that although the Sturmian method giv
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a nonconvergent series, it is still of great use.
Standard perturbation theory would give a value for

ground-state energy in the two cases of

E085E02
11

8

\2a2

m3v4
~cubic potential!, ~37!

E085E01
3

16

\2a

m2v2
2

23

4

\a2

m2v3
~quartic potential!

~38!

by going to second order in the coupling constanta and
using standard Rayleigh-Schro¨dinger perturbation theory
which gives a nonconvergent series—for the particular
ample ofm5\5v51 anda50.1 we obtainE0850.3625 for
the cubic anharmonic oscillator andE0850.46125 for the
quartic anharmonic oscillator. Clearly, this is not in go
agreement with the result found by using Sturmians, but
will be seen below, this is due to the divergence of the p
turbation series. That the Sturmian method is nonpertu
tive is suggested by the general solution of the secular e
tion. For the quartic anharmonic potential the ground-st
energy as a function ofa is found to be~for N51) E08
5z1/31 1

12 z21/3, where

z5
2

2592a1A6718464a226912
.

Such a dependence ofE on a can only be obtained in per
turbation theory by performing at least a partial resummat
of the infinite series. That the perturbation series is diverg
is mirrored in the behavior ofE08 as a function of the cou

TABLE II. The energies for the cubic and quartic anharmon
oscillatorsV85ax3 andax4, with a50.1 found by using only the
first N Sturmians. Only the ground-state energies are shown.

N E(x3) E(x4)

1 0.500000 0.562709
2 0.014628 0.562709
3 0.112767 0.562709
4 0.351135 0.562544
5 0.102981 0.562516

10 1.27012 0.533858
e

-

s
r-
a-
a-

te

n
nt

pling constanta: asa increases, so does the real part ofE08 .
Furthermore,E08 has a small imaginary part which is wildl
oscillating but vanishes fora.0.003 and hence quickly be
comes unimportant.

Thus, we must compare our Sturmian energies with n
perturbative results. The divergence of the perturbation se
can be improved in a number of ways, as done recently
Bender and Bettencourt@8#, and Kunihiro@9#. The latter au-
thor performed a resummation of the perturbation series
using a renormalization-group improved technique. Fr
this, very rapidly converging expressions for the groun
state energy for the quartic anharmonic oscillator are fou
Some high-precision numerical results for the quartic anh
monic oscillator were found in Ref.@10#, and we will make a
comparison with those findings. Other recent papers on
lated topics are contained in Ref.@11#.

We will go back to the original secular equation~7!, and
let E be the energy of the harmonic oscillator. WhenE
5En5(n11/2)\v, we obtainbn51 ~we will say we are
‘‘on shell’’ ! and the secular equation simplifies, since t
results then no longer depend on the normalization fac
Nn}E23/2. Let the number of Sturmians in our basis set
N; then forN51 we obtain simply

E85E1a
^cnux4ucn&

^cnucn&
[E1aTnn

21Wnn
(4) . ~39!

Let N52, and let the basis set correspond to the quan
numbersn,n11; we then findE8 by solving the quadratic
equation

05~E2E8!2TnnTn11,n111a~E2E8!~TnnWn11,n11
(4)

1Tn11,n11Wnn
(4)!1a2Wnn

(4)Wn11,n11
(4) , ~40!

which, interestingly, can be rewritten as

E85E1
a

2 H Wn11,n11
(4)

Tnn

Wnn
(4)

Tn11,n11
,

~41!

analogous to Eq.~39!.
For n50,1, . . . ,4 weobtain the results shown in Tabl

III, where we also show the highly accurate~approximately
90 significant digits! of Ref. @10#. We note that this crude
Sturmian approximation is able to obtain theright order of
TABLE III. A comparison between the perturbed energy states for the quartic anharmonic oscillator witha50.1 found by using two
Sturmians and the high-precision results of Ref.@10#. The second-order perturbative result for this case (m5

1
2 , v52) is E050.4900 for the

ground state.

n

E ~Sturmian! E ~Ref. @10#! Difference

N51 N52 N51 N52

0 1.07500 1.07500 1.06529 20.00971 20.00971
1 3.37500 3.37500 3.30687 20.06813 20.06813
2 5.97500 5.97500 5.74795 20.22705 20.22705
3 8.87500 7.00152 8.35268 20.52232 1.35116
4 12.0750 9.30093 11.09860 20.97640 1.79767
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magnitudefor the energy stateseven for the excited states,
but we also note that theaccuracy decreasesasn increases.
This is once more due to the nonconvergence of the ma
elements of the perturbation potential. Increasing the b
set will not lead to an improved accuracy, but can in fact le
to quite the opposite because of this divergence. Hence
best results are found by the simplest approximati
namely,N51. This is in contrast to the case of asympto
cally well-behaved potentials such as the Coulomb a
Yukawa ones, hitherto studied in the literature.

V. COMMENT ON TIME-DEPENDENT POTENTIALS:
THE DAMPED OSCILLATOR

Another important variant of the harmonic oscillator is t
damped oscillator. The particular Hamiltonian we are go
to study is the so-called Caldirola-Kanai oscillator@12,13#,

H5
p2

2
e22gt1

1

2
vx2e2gt, ~42!
ix
is

d
he
,

d

g

whereg is some constant, the friction, andt denotes time.
This can be re-expressed in terms of a potentialV8,

V85
1

2
v2x2e2gt8~ t ![j~ t !V0~x!, ~43!

with

t8~ t !5
12e22gt

g
. ~44!

For time-dependent potentialsV8, the secular equation hav
to be modified. The Schro¨dinger equation for the full system
reads

„D1V01V8~ t !…c5 i\
]

]t
c ~45!

expandingc5(ncn(t)cn leads to the modified secular equ
tion
is of

the

t

(
n

@~12bn!Nndnn81^cn8uV8~ t !ucn&1E^cn8ucn&#cn5 i\(
n

ċn^cn8ucn&. ~46!

Using the relationship betweenV8 andV0 , we can rewrite this as

(
n

$@12bn„11j~ t !…#Nndnn81E^cn8ucn&%cn5 i\(
n

ċn^cn8ucn&. ~47!

For the simplest possible case of only includingN51 Sturmians in the basis set, the solution to this secular equation
course

cn~ t !5cn~0!expS 2 i t F ~12bn!
Nn

Tnn
1EG2 i ~12bn!

Nn

Tnn
E

0

t

j~ t8!dt8D . ~48!

It turns out that one can actually compute the integral.j(t)5e222e22gt
, and the integral can be expressed in terms of

exponential integral function leading to

cn~ t !5cn~0!e2 iv0t2 iv~ t !, ~49!

where

v05~12bn!
Nn

Tnn
1E, ~50!

v~ t !5~12bn!
Nn

Tnn

e2

2g
„Ei~22!2Ei~22e22gt!…. ~51!

Naturally, ‘‘on shell’’ ~i.e., for bn51) we simply obtaincn(t)5cn(0)e2 iEt, as one would expect, whereas ‘‘off shell’’~i.e.,
for bnÞ1) we obtain a highly oscillatory behavior. The explicit results forN51, n50 arev05(114E2)/8E, v(t)5@e2(1
24E2)#/16Eg„Ei(22)2Ei(22e22gt)…. One should also note that this result holds even forNÞ1; one must then interpre
the division byTnn as multiplication from the left by the inverseTnn8

21 , wherebyv0 ,v(t) become matrices.
The real and imaginary parts ofc0(t)c0(x) are plotted in Figs. 2~a! and 2~b!. We note that the oscillations in thet direction

die out either asx increases@because of the decrease ofc0(x)] or as t does.
The Caldirola-Kanai oscillator can be solved, and the solution is known to be@13# ~with v51)

fn~x!5
1

A4 pAe
S e*

2e D n/2 1

An!
expS i ėe2gt

2e
x2DHnS x

ueu D ,
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wheree5V21/2e2(g2 iV)t, V5A12g2. This can be rewritten as

fn~x!5A4 12g2

p
e1/2gt2@n1~1/2!# iA12g2t22n/2~n! !21/2e2~1/2!i ~g2 iA12g2!e2gtx2

Hn~A12g2egtx!.
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These states are related to our Sturmians through a ra
complicated linear transformation due, essentially, to
Sturmians not being orthonormal with respect to the stand
L2 inner product. Moreover, the statesfn have ^H&50,
which in our case can be achieved by simply lettingE50,
but, beyond that, it is very difficult to actually compare t
two solutions. ForE5n1 1

2 , i.e., ‘‘on shell,’’ the two ex-
pressions for̂ H& differ by a quantity which grows as eithe
g or t grows. In any case,cn(t)cn(t) is, by construction, a
solution to the time-dependent Schro¨dinger equation, al-
though the transformation connecting the Sturmians with
exact statesfn is nonunitary~is not an isometry!. Further-
more, the Sturmians have the advantage of also being
fined for g>1, whereasfn is only defined for 0<g,1.

This simple example does show, however, how tim

FIG. 2. The real~a! and imaginary~b! parts of the first time-
dependent Sturmian for the damped~Caldirola-Kanai! oscillator,
cn(t)c0(x), in the rangestP@0,10# andxP@0,5#, and withE5g
51.
er
e
rd

e

e-

-

dependent problems simplify in the Sturmian approach
cause of the simplification of the secular equation. Th
Sturmians are well suited for problems with time-depend
potentials or for scattering processes. But they are of cou
subject to the same limitations as in the time-independ
case.

It also shows that this particular time-dependent dam
oscillator is exactly solvable using the Sturmian approa
which is nice since it is known that the Caldirola-Kanai o
cillator can be solved by using a time-dependent canon
transformation on the usual harmonic oscillator@12#.

VI. BATH OF HARMONIC OSCILLATORS

Consider the potential

V5 1
2 (

i
gi~x2xi !

2, ~52!

wherei runs over some index set. This represents the po
tial coming from a family, indexed byi , of harmonic oscil-
lators situated atxi and with coupling constants~character-
istic frequencies! gi . We will usually restrict ourselves toi
being discrete corresponding to an infinite lattice of oscil
tors, but for field-theoretical purposes it can also be relev
to allow i to run over a continuous index set~in which case
the sum must be interpreted as an integral!. This example is
the harmonic-oscillator analog of the many-center Coulo
potential treated in Refs.@4,5#. Note that we can rewriteV as

V5 1
2 ḡx22x(

i
gixi1

1
2 (

i
gixi

2 ~53!

[ḡV02xc11c2 , ~54!

where ḡ5( igi , c15( igixi , and c25 1
2 ( igixi

2 ; hence we
can see this as a perturbation of the original potentialV0 .
Because of this feature of the bath of harmonic oscillato
our computations will simplify somewhat from the man
center Sturmians introduced for the Coulomb potential
Refs.@4,5#, which is very fortunate since those papers us
Fourier-transform approach which is not useful for the h
monic oscillator—as mentioned earlier, the Fourier tra
form Vt(k) of the potentialV is a differential operator for the
harmonic oscillator~actually, the Hamiltonian is form invari-
ant under Fourier transforms!.

Furthermore, we can complete the squares to writeV as
another harmonic oscillator plus a constant; in fact,

V5
1

2
ḡS x2

c1

2ḡD 2

1c22
c1

2

4ḡ
. ~55!
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Consequently, we can obtain a solution to the many-ce
Schrödinger equation by simply making the following su
stitutions in the solution for the single harmonic oscillato

x˜x1
c1

2ḡ
, bn˜ḡbn , E˜E2c21

c1
2

4ḡ
, ~56!
u

e

ce
eri.e., the newbn , b̃n , say, reads

b̃n5ḡS E2c21c1
2/4ḡ

n11/2 D 2

.

Hence the Sturmians read
of phase
means of
Cn~x;xi !5p21/4~n! !21/222n/2HnXb̃n
1/4S x1

c1
2

4ḡD Ce2~1/2!Ab̃n@x1~c1
2
!/4ḡ#2

. ~57!

These are then a convenient basis for many-center problems.
For the many-center Coulomb potential, the Sturmians become related to the one-center Sturmians by means

factorseikixi, whereas for the harmonic oscillators the many-center Sturmians are related to the one-center ones by
a translationx˜x2c1

2/4ḡ as well as a scaling and a shift in energy.
As a simple example, consider a particle moving in a potential coming from harmonic oscillators situated atxi5 i , i

51, . . . ,M all with equal strengths,gi51. Thenḡ5M , c15 1
2 M (M11), c25 1

12 M (M11)(2M11) and

x˜x1 1
4 ~M11!, E˜E2 1

48 M ~5M216M11!;

thus

b̃n5M S 96E22M ~5M216M11!

48~2n11! D 2

,

and the first two Sturmians read explicitly

C0~x;xi !5p21/4expX2M
48E2M ~5M216M11!

48 S x1
1

4
~M11! D 2C, ~58!

C1~x;xi !5p21/4
1

6
AM ~48E2M ~5M216M11!!S x1

1

4
~M11! DexpX2M

48E2M ~5M216M11!

144 S x1
1

4
~M11! D 2C

~59!
-
y-
of

the
ns
a

The energy is found from the Schro¨dinger equation, which
leads to the ‘‘on shell’’ conditionb̃n51. Consequently, the
energy of thenth state is

En5S n1
1

2D ḡ21/22c21
c1

2

4ḡ
, ~60!

irrespective of the number of Sturmians used as the sec
equation ~by construction! is diagonal. In the particularly
simple case ofM evenly spaced oscillators all with the sam
value of the couplinggi51 reads4

En5S n1
1

2D M 21/22
1

12
M ~M11!~2M11!

1
1

16
M ~M11!2, ~61!

4Note, for M51,EÞn1
1
2 , because the potential in this instan

is V5
1
2 (x21)2 andnot V5V0 . Had we instead usedxi5 i 21, we

would have obtainedV(M51)5V0 andE(M51)5n11/2. In that
case, by the way,c15

1
2 M (M21) and c25

1
12M (M21)(2M

21).
lar

which is then the energy of a~nonrelativistic! particle mov-
ing in a one-dimensional lattice of oscillators—a highly sim
plified model of, say, a particle in a solid. For a man
dimensional lattice we would simply use products
unidimensional Sturmians.

VII. COMMENT ON COUPLED OSCILLATORS

Consider now a potential of the form

V5 1
2 (

i
gi~x2xi !

21 1
2 (

iÞ j
l i j ~x2xi !

2~x2xj !
2, ~62!

which introduces a coupling between the oscillators at
various positions. In a manner similar to the manipulatio
of the bath of oscillators, this can be transformed into
single anharmonic oscillator potential

V5 1
2 ḡx22c1x1c22c3x31c4x4, ~63!

where

ḡ5(
i

gi , ~64!
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c15(
i

2S gi2(
j Þ i

l i j ~xj
21xjxi ! D xi , ~65!

c25
1

2 (
i

S gi1(
j Þ i

xj
2D xi

2, ~66!

c35(
iÞ j

l i j ~xi1xj !, ~67!

c45
1

2 (
iÞ j

l i j . ~68!

Supposex is a solution to the corresponding Schro¨dinger
equation. We can then expandx either on the ordinary Stur
mians,cn , or the Sturmians for a bath of oscillators,Cn . If
we choose the latter option, we have to complete the squ
to obtain the center of the new oscillator, but this wou
mean that the anharmonic terms too would have to
shifted, and this would again introduce lower powers of
or

if
es

e
e

new, shifted position. Hence the secular equation would
up having the same structure and thus the same leve
complication. Consequently, nothing is lost by expanding
the single oscillator Sturmianscn , x5(nancn . The secular
equation then becomes

05(
n8

@~bn1ḡ!Nndnn82c1Wnn8
~1!

1c2Tnn82c3Wnn8
~3!

2c4Wnn8
~4!

#an8 , ~69!

where

Wnn8
~k!

ªE cn* xkcn8dx ~70!

is the matrix elements of thekth power ofx, Wnn8
(0)

5Tnn8 .
The only one of these we do not already know is fork51, in
which instance a straightforward computation yields
W~1!5E211
0

3

8
0 2

21

128
) 0

3

8
0

75

128
) 0 2

81

64&

0
75

128
) 0

1925

1728
A5 0

2
21

128
) 0

1925

1728
A5 0

508599

131072

0 2
81

64&
0

508599

131072
0

2 ~71!
the

tur-
ell
ery

will
tor

g

cil-
the
for the first five Sturmians. Consequently, forN51 we ob-
tain ~sinceW(2k11) is diagonal!

~bn1ḡ!Nn1c2Tnn2c4Wnn
~4!50, ~72!

which is a cubic equation forE; e.g., forn50,

ḡ23c4E14E2116c2E350,

which for the extremely simple case ofḡ5c25c451 has
the three solutionsE520.669498,0.2097496 i0.222168,
i.e., one negative-energy state~hence a bound state! and two
complex conjugate oscillatory states. ForN52, ḡ5ci515

leads to the solutionsE529.91107,21.51155 and E
50.1295066 i0.435961,0.5379956 i1.32394, which then
correspond to two bound states and two pairs of oscillat

5Which, by the way, is only possible for two coupled oscillators
x15

1
4 (17A118A14) and x25

1
2 2x1 , g15

1
2 6

28175
110608A118A14,

g2512g1 .
y

states, the latter of which essentially oscillates around
ground state of the single harmonic oscillator.

VIII. GAUSSIAN-DAMPED ANHARMONIC OSCILLATOR

The previous computations seem to suggest that the S
mian method is best suited for potentials which are w
behaved at infinity such as the Coulomb potential, but v
slowly converging for potentials diverging foruxu˜` such
as the anharmonic oscillator. To test this hypothesis, we
now briefly consider a toy model, the anharmonic oscilla
damped by a GaussianV85axke2x2

wherek53,4.6 Includ-
ing only the first five Sturmians, we obtain the followin
matrix elements,W̃nn8

(k) of V8, k53,4:

6One could also consider simply the exponentially damped os
lator V85xke2uxu, but, due to the presence of the absolute value,
matrix elements become too complicated.
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which leads to the ground-state energies shown in Table
We notice the improved convergence properties suppor
our claim that it was the nonconvergence of the matrix e
ments of the undamped anharmonic oscillator that was
cause or the nonconvergence of the ground-state energi
the Sturmian method.

IX. CONCLUSION

We have seen that the powerful technique of Sturm
functions developed for Coulomb-like potentials can be
tended to harmonic and anharmonic oscillators, where it
thermore can be seen that the technique is highly nonpe
bative, but the divergence of the potential~asx˜6`) leads
to a nonconvergence of the Sturmian approximation, in c
trast to the Coulomb case, where we have very rapid con
gence. It turned out, however, that already withN51 and 2
Sturmians the correct order of magnitude for the energie
even the excited states could be obtained. This indicates
the problem with convergence is perhaps not so serious
all, if one merely wants to find the order of magnitude. F
higher precision, one should probably utilize a hyb
method, using the first few Sturmians to obtain the corr
order of magnitude and then some variational approach,
to obtain the required precision.

We also saw how to treat time-dependent problem
where once again the Sturmian properties lead to some
portant simplifications. Finally, we considered a bath
coupled or uncoupled oscillators which could be transform
into a single anharmonic oscillator problem. This is contra
to what one does for the Coulomb potential, where Fou
transform-techniques are used instead. Furthermore, w
using a modified~or regularized! potential, convergent at in
finity but with the same behavior forx not too large, we did
obtain rapid convergence, especially for thex3 case, whereas
the x4 case had slightly slower convergence. All of th
seems to suggest that the Sturmian techniques have a
wide range of applicability covering basically all importa
potentials known in atomic physics or quantum chemis
but one should be very careful when using potentials wh
are not well behaved at infinity. The failure of the numeric
approximation to converge for the case of a divergent po
tial suggests that the Sturmian secular equation should
be taken as defining anasymptotic expansionfor the energy.
This is just like the usual perturbation expansion, but w
the important difference that the Sturmian results are non
turbative, and therefore the first, rough approximation
only using one Sturmian basis function gives considera
better accuracy than finite-order perturbation theory. Thi
certainly an interesting possibility, but to answer it satisfa

TABLE IV. The ground-state energies forV85xke2x2
, k53

and 4 computed usingN Sturmians.

N E(x3) E(x4)

1 0.500000 0.622877
2 0.495852 0.622877
3 0.491822 0.622878
4 0.491282 0.622877
5 0.491282 0.622878
.
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torily one would probably have to make a thorough stu
based on the renormalization-group and/or on partial res
mation techniques, which would require a paper of its ow

Given the generality of the approach, as outlined in Sec
the Sturmian procedure should also be extendible, for
stance, to problems in quantum field theory using a fu
tional Schro¨dinger picture, and to problems in quantum k
netic theory in phase space using Wigner functions. In fi
theory the inner product, however, becomes more com
cated and a lot of care will have to be taken.
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APPENDIX: CERTAIN RESULTS CONCERNING
HERMITE POLYNOMIALS

In this appendix we prove a few results concerning H
mite polynomials. The generating function is known to be

e2s21sx5 (
n50

`
sn

n!
Hn~x!; ~A1!

from this it is straightforward to deduce the standard orth
normality relation for the Hermite polynomials and th
harmonic-oscillator wave functions. We will also use it
derive some other useful results.

First we require the Fourier transform of a harmon
oscillator Sturmian. Thus we want to compute the integra

E
2`

`

eikxHn~ax!e2~1/2!bx2
dx.

The corresponding integral with the generating function
merely a Gaussian integral and can be readily computed

E e2s21asx2~1/2!bx21 ikxdx

5e2s2A2p

b
e~1/2b!(as1 ik)d2

~A2!

5 (
n50

`
sn

n! E Hn~ax!e2~1/2!bx21 ikxdx, ~A3!

from which, by Taylor expansion, we obtain the desired
sult:

E Hn~ax!e2~1/2!bx21 ikxdx

5A2p

b S 11
a2

2b D n/2

HnS ik
a

b
„11a2/~2b!…21/2D

3e~1/2!b21k2
. ~A4!

Actually, this formula is a little more general than we nee
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For harmonic-oscillator Sturmians it turns out thata5b
@5(bnm)1/4# which leads to a slight simplification, resultin
in the formula given in the text.

Another expression we need is the matrix element ofxg

for g some positive integer>2, i.e., we need to compute

I nm~a,b,g,d!ªE Hn~ax!Hm~bx!xge2~1/2!dx2
dx.

~A5!

Again, in terms of the generating function, the integral
need to compute is quite simply

E e22s212(a1b)sx2~1/2!dx2
xgdx

5e22s2
2g/2d212g/2GS 11

g

2D
3X2~a1b!s„12~21!g

… 1F1

3S 11
g

2
;
3

2
;2

~a1b!2s2

d D
1„11~21!g

…Adp

2

3expS 2
~a1b!2s2

d DLg/2
21/2S 22

~a1b!2s2

d D C
~A6!

[I~a,b,g,d!, ~A7!

which is valid even for nonintegerg. Here 1F1 is a hyper-
geometric function, andLa

b is an associated Laguerre pol
nomial. The first few of these are

L1
21/2~x!5 1

2 2x,

L2
21/2~x!5 1

8 ~3212x14x2!,

L3
21/2~x!5 1

48 ~15290x160x228x3!,

1F1~ 3
2 ; 3

2 ;x!5ex,
ve

-

1F1~ 5
2 ; 3

2 ;x!5 1
3 ex~312x!,

1F1~ 7
2 ; 3

2 ;x!5 1
15 ex~15120x14x2!.

For the two cases of interest to us, whereg is an even or odd
positive integer, we obtain a simpler relation since one of
two terms on the right-hand side will vanish.

For g52k we arrive at

I~a,b,2k,d!52k11e22s2
d212kk!A1

2
pd

3expS 2
~a1b!2s2

d DLk
21/2S 22

~a1b!2s2

d D ,

whereas forg52k11 we find

I~a,b,2k11,d!52k15/2e22s2
d2k23/2GS k1

3

2D
3s~a1b! 1F1S k1

3

2
;
3

2
;2

~a1b!2s2

d D .

Taylor expanding ins, we obtain

I~a,b,g,d![ (
n50

`

In~a,b,g,d!
sn

n!

5 (
n,m50

`
sn1m

n!m!
I nm~a,b,g,d!. ~A8!

From this we can obtain relationships between the ma
elementsWnn8

(k) for different k’s, since I nm}Wnm
(k) for a

5bn
1/4, b5bm

1/4. For instance, such rules as

I 005I0 ,

I 011I 105I1 ,

1
2 I 021

1
2 I 201I 115

1
2I2 ,

1
6 ~ I 031I 30!1 1

2 ~ I 211I 12!5 1
6I3

~essentially following from the recursion relation for the He
mite polynomials! can be used to simplify the computatio
of matrix elements. One should also note that, since
above is valid even wheng is not a positive integer, we ca
use it to obtain the matrix elements of the Coulomb poten
between harmonic-oscillator Sturmians.
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J. Math. Phys. 32, 3392 ~1991!; L. Salasnick, e-print
quant-ph/9803069; S. Biswas, K. Datta, R. Sexena, P. Sri
tava, and V. Varma, J. Math. Phys.14, 1190~1973!.

@12# P. Caldirola, Nuovo Cimento18, 393 ~1941!; E. Kanai, Prog.
s-

Theor. Phys.3, 440 ~1948!; A. Mostafazadeh, Phys. Rev. A
55, 4084 ~1997!; J. Phys. A31, 6495 ~1998!; S. S. Safanov,
e-print quant-ph/9802057.

@13# V. V. Dodonov and V. I. Man’ko, Phys. Rev. A20, 550
~1979!.


