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Sturmian basis functions for the harmonic oscillator
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We define Sturmian basis functions for the harmonic oscillator, and investigate whether recent insights into
Sturmians for Coulomb-like potentials can be extended to this important potential. We also treat many-body
problems such as coupling to a bath of harmonic oscillators. Comments on coupled oscillators and time-
dependent potentials are also made. It is argued that the Sturmian method amounts to a nonperturbative
calculation of the energy levels, but the limitations of the method is also pointed out, and the cause of this
limitation is found to be related to the divergence of the potential. Thus the divergent nature of the anharmonic
potential leads to the Sturmian method being less accurate than in the Coulomb case. We discuss how modified
anharmonic oscillator potentials, which are well behaved at infinity, leads to a rapidly converging Sturmian
approximation[S1050-294{@9)10107-0

PACS numbds): 03.65.Ca, 03.65.Ge

[. INTRODUCTION these form an orthonormal seffhe problem is, however,
that for many cases continuous as well as discrete eigenval-
A typical situation in quantum theory is to be faced with aues have to be taken into account in order to obtain a basis
physical potentialV for which one has to solve the corre- for the full Hilbert space. This is, for instance, the case in the
sponding wave equation to find the energies, etc. For mostoulomb potential case already in nonrelativistic quantum
realistic potentials it is impossible to find the energies andnechanics, where continuum eigenstates are needed to ob-
wave functions analytically, hence one must resort to variougain completeness. Consequently, alternatives will have to be
approximation or numerical schemes. It is the purpose of thiound. Shull and Lavdin [1] introduced another approach for
paper to extend one such approximation scheme fronthe Coulomb potential. Their methods were generalized by
Coulomb-like potentials to harmonic and anharmonic oscil-Rotenberg, who also coined the word “Sturmians” for the

lators. new basis sef2]. It has recently been realized that this ap-
The general situation in quantum theory is a systerhlof proach can be even further generalized to handle, e.g., many

particles interacting through some potentigl(x,, . . . Xy). center potential$4], as well as relativistic effectgr], and

The eigenvalue equation for the HamiltoniGmave equa- many-particle systemi$]. It is the purpose of this paper to

tion) is then an equation of the general form outline the general theory and to apply it to other potentials

such as harmonic oscillators and variations thereof.
The structure of the paper is as follows. First we outline
(D+Vo—E)y=0, (1)  the general Sturmian machinery and derive the most impor-
tant properties of these kinds of functions, then we find the
explicit formula for the Sturmians corresponding to the
whereD is some differential operator of first or second or- harmonic-oscillator potential. Next we consider the anhar-
der,V, is the above-mentioned potential, alads an eigen- monic oscillator, and show that our approach amounts to a
value. Examples include the followin@nits wherez=c  nonperturbative calculation which, however, is merely an
=1): asymptotic series and not a converging one. This is due to
(1) The Dirac equation:D:iyOy“aM (summation over the divergence of the matrix elements of the potential. Some
repeated indices impliegy=0,1,2,3,y* are the Dirac ma- comments are made on generalizations to the many-particle
trices andVo=V(x) + ¥°m, wherev,(x) is some potential. case and to time-dependent potentiétee Caldirola-Kanai
(2) The Schrdinger equatiorD = (1/2m)V? whereV?is  oscillato, and finally we show that the nonconvergence can
the Laplace operator id dimensions. be remedied by considering appropriately “regularized” po-
(3) The Klein-Gordon equation wherB=[J, and the tentials involving a Gaussian regulator.
d’Alembertian operatoW,=m?+v(x).
For N>1 we simply haveD=3! ,D; whereD; is the
appropriate operato_r for. theh particle. Thus _aII relat?vistic . IActually, for the Klein-Gordon case, hermiticity is more subtle
as well as nonrelat|V|st|c quantum mechanics fall |_nto thlsand depends on a precise definition of the inner product, but for the
category(even '_n CurV?d space-timesOne the_n typically Schralinger equationand the Dirac equationwhich is the only
proceeds by trying to find a complete set of eigenstates COne we will be using in this paper, such subtleties are abserband
responding to the different values Bf whenD is Hermitian s indeed Hermitian. Moreover, by reformulating everything in
terms of an appropriate inner product instead of the uk@abne
used here, one can verify that Klein-Gordon Sturmians have prop-
*Electronic address: Antonsen@alf.nbi.dk erties like those derived in this paper.
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ll. BASIC PROPERTIES OF STURMIANS respect to the minor quantum numbers then follow from the

Instead of finding a set of eigenfunctions all correspond-orthOnorm‘fjl“ty of the spherical harmonit, and the sepa-

ing to the same “coupling constantdi.e., charges for the :j?::}%?]sgn;a;i?éen?sw%(g g}; )gﬂt(artl);mc(:grz.ocizrr Zﬂﬁ;)u h
Coulomb and Yukawa potentiataw? for the harmonic os- Y ' Y ' g

g . . we will make some comments on many-particle and many-
cillator, etc) but to different energies as one normally does, y-p Y

. M . center Sturmians, which correspond to higher dimensions,
one can take the “dual” approach and fix the enefgpnd we will not encounter this subtlety in this paper.

then allow t_he couplln_g constants to vary. Thus we consider To solve the Schidinger, Klein-Gordon, or Dirac equa-
not the original equatiofl), but instead . . ) . o
tion for some physical potentidd, we begin by considering
(D+ BVo—E)#,=0, (2)  Sturmians corresponding to a “base potenti&l; for which
we can easily solve the corresponding differential equation
where B,, is some constant depending on the setf quan-  to find the basis set. I¥/, is sufficiently similar toV, the
tum numbers. The solution of this equation giesas a  convergence has been found, for the Coulomb and Yukawa
function of B, which can then be inverted to find, as a  potentials, to be very rapid. IE is taken to be the actual
function of E, assuming we can solve E@), of course. We physical energy the Sturmians will, furthermore, have the
will refer to B, as theeffective coupling constantfor V,  right asymptotic behavior. We will see, however, that this
=—2Z/r it corresponds to scaling the nuclear charge, and forapid convergence only takes place when the poteKbial
Vo=mw?x? it corresponds to scaling the mass and/or therather its matrix elementshave sufficiently nice conver-
frequency. gence properties themselves.
The assumed hermiticity dd then implies Equation(4) has far reaching consequences. Consider a
new potentiaVy—V=V,+V’, whereV, is some potential
for which we can easily find the SturmiafsayVy~r ! or
Vo~x?).? The eigenvalue equation for the Hamiltoniath,

. . . , . , =D+Vy+V’, for this new system is then
i.e., the Sturmian functions satisfy the potential weighted or-

(Ba—Br) f U Voundx=0, 3

thogonality relation (D+Vy+V'—E")y=0. 5)
B Suppose we can expand on the Sturmians foV as ¢
f Y Voin dx=Nnnn - @ =5 ¢ 4,2 we then obtain

Strictly speaking, Eq(3) only impliesfl_p;‘,voz.pndx=0 for_ (D+Vo+V' —ENS c i
Bn# Bn . For sufficiently nice potentials, i.e., potentials n

without any violent oscillations, such that the enegyde-

pends monotonically on the quantum numbeyshe ortho- => ¢ [(1-B)Vo+V' +E—E'ly, (6
normality condition(4) follows. An example of a potential n

which we do not expect to be able to handle with this ap- ) ) i
proach isVy(x)=sinx/x, but potentialsx—%, x"le X, and ~ UPON USIing Eq(2). From this we get the secular equation by

x2 can be treated this way. It will also be shown later that thé/Sing the potential weighted orthogonality relation. Thus
many-center analogs of these potentials are also within

reach. Another subtlety concerns “major” and “minor” > [(1=Ba)NnSnnr + ([ V! [ 40
guantum numbers in the terminology of Aquilanti and Avery n
[5]. The coefficien{,, need not depend on all quantum num- +(E—E" )¢ | ) ]Ch=0 @

bers; those on which it does depend are referred to as “ma-

jor” quantum numbers, and the remaining ones are therfrom which the kinetic energy has disappeared and only the
“minor” quantum numbers. For the Coulomb potential, for potential V' appears together with the overlap integrals of
instance,3, only depends om and not on the angular mo- the Sturmians. It is this feature of Sturmians which is so
mentum quantum numbefsandm. The orthogonality with  important. We can rewrite this equation as

[(1_,8n’)Nn’+<wn’|v,|¢n’>]cn’+ 2 <¢n’|vl|'pn>cn
n#n’

E'=E+ (8
<l//n’| lr/fn’>+ E <‘//n’| l/fn>cn

n#n’

20ften, when working with Sturmians, one would like to také=V to be a physical potential, and only ugg to find the basis set. We
will want to includeV, as part of the physical potential in this paper, however, in order to be able to make a comparison with perturbation
theory.

3For one-dimensional systems, it follows from standard Sturm-Liouville theory that the Sturmians do form a basis. Furthermore, for the
case of radial potentials in higher dimensions this is also known to be the case.



814 FRANK ANTONSEN PRA 60

[(1_:8n’)Nn’+Wn’n’]Cn’+ E Wn’nCn
n#n’

=E+ , 9
annrcnr + 2 annCn

n#n’

where we have defined the overlap matrices the physical effect of thg, as a kind of screened charge in
the Coulomb and Yukawa cases: {B,) measures the
Torni=(n ), (10 “screening.” Now B,=1 corresponds to an unscaled cou-
, pling constant. From (% B,) (¢, |V'|#,), we then see
Woyni= (e [V [ ). 1) that for E=E’ also to be an ;Ilov|ved| er?ergy value far
=V,, we must fit the coupling constar, to exactly the
ght value as given by the perturbatidf.

Since the above consideration only used the fact Ehat
was Hermitian, the results hold for all the above-mentioned
cases provided we can find effective coupling}ssuch that

’ (1= BNy — (| (V' —E) | ) E can be held fixed. It is knovyn that suq_f}]1 exist. f_or the
= A, , Coulomb and Yukawa potentials both in relativisiithe
nn Dirac equatioh and nonrelativistic quantum mechanics and
giving an explicit formula forE’, which, whenV’ is suffi- also fo_r their many-center analogs. It will s_imilarly be shown
ciently close toV, and the potentials are sufficiently well that tr_us also holds for the harmonic 030|_Ilat(_)r. In fact, the
behaved, is a surprisingly good [#4,7]. The reason for this followmg argun"_ne.nt seems t_o suggest that it will always_ hold.
success is to be found in the very nature of Sturmian basi¥/€ Write the original potential a¢o(x) = av(x), wherea is
sets. By construction, Sturmians take the potential mucl§OMe constant, the original coupling constant, specifying the
more into account, and thus contain much more informatiorstrength of the potential, e.gy=2 for the Coulomb case.
about the potential. In a sense, Sturmian functions are optcleéarly, E=E(«) if E is an allowed energy eigenvalue. If
mized with respect to the specific features of the given pothere is no degeneracy, choices &oand for the set of quan-
tential, and it is precisely this that lies behind their success ifUm numbers uniquely specify the energlg, and thus we
the Coulomb case. can invert the relation to find as a function o andn. If
Another consequence of this can be seen if one attempt§ere is degeneracy, the equatier «(E,n) has more than
to use Sturmians as a starting point for a variational calcula®ne solution in the physical range, but this merely means that
tion. Suppose we know the Sturmians ¥, and now want more than one set of quantum_numbers exists giving the
to use variational theory to estimate the ground-state energ§@Me energy; for each such choice of quantum numbers we
of the HamiltonianH =D + V,+V’, using the standard for- Obtain a new solutiorg,= a(E,n).

The secular equation often implies that one can E\dvith i
very great accuracy from an extremely small basis set, evelt
with just one basis functiony,, in which case we have
simply

E

mula Another interesting relationship is the momentum space
orthonormality relation. Letp, (k) be the Fourier transform
(g|H|¢) of ¢,(X); this then satisfies
o=l
(D'=E)én=—BVo* ¢, (14)

with = ¢,,, a Sturmian, we obtain
whereD' and Vg are Fourier transforms dd andV,, and

(Wl Volthn) (4l V' | ¢h) where* denotes convolution
Eo<E+(1+ + , 12 !
A AN (AT A
which only concerns the starting potenti4) and the energy Vo* ¢n:f Vo(k—k') ¢h(k')dk'. (15)

E to which the Sturmians correspond. If the Hamiltonian,

moreover, is of the formH=D+V", we obtain We multiply by qs:, from the left, and perform thk integral

(alVoln) (V' ) to arrive at
AT PATA S

which, in any case, is a rather simple integral to compute,

suggesting that Sturmians would be a good starting point for

variational calculations. Now, by the Fourier convolution theorenig)'= f'*g!, and
It should be noted that one will often also assue from Parzival's formula(f|g)=(f'|g'), we then obtain

=E’ to be an allowed energy of the “perturbed” potential

V=V,+V' for an appropriate value of the effective cou- %t _

plings B,,. In this instance Eq(l) can be seen as showing f bn (D" =E) dndk= = BNnSpn: 17

Eos<E+ B,
J¢>§,(D‘—E)¢>ndk=—ﬁnf bn(Vo* dn)dk. (16)
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Hence the momentum-space Sturmians satisfy a weightew'
orthonormality relation where the weighting factor is given ™ s
by thekineticpart of the Hamiltonian and not thpotentialas

in X space. For the three operatddsmentioned in the be- 0.4

ginning, this relation reads

f qb:f(yo'yﬂk,u_E_Vom)¢ndk:_BnNn5nn’ ) 2 3 4 -
~-0.2
f ¢:’(k2_2mE)¢ndk:_ZmBnNn‘snn’ ) 0.4
* L2 2 _ FIG. 1. Plot of the first ten harmonic-oscillator Sturmians show-
f G (K2=M"=E) k= = BaNndnn ing how they are scaled to all have essentially the same range.

for the Dirac, Schrdinger, and Klein-Gordon equations, re- When V. is some function ofk and k', this is a useful

spectively. In the nonrelativistic case, one will often write g\, mation formula for the momentum-space Sturmians
> o i .
ko=—2mE, which is then positive K, rea) for bound \ypen i js a differential operator, on the other hand, as
states, and negativek{ imaginary for unbound states. In happens wheN,=x", y>0, then this is a spectral represen-
this case, the weighting factor beconk&s- k3, which can be tation of that operator.
interpreted as the length of the momentum vectod inl It should be emphasized that the coefficients in the above
d|me,nS|ons. It is this extra dimension which is related Oexpansion are very simple in the sense that they are the natu-
Fock’'s famous treatment of the hydrogen atom, where hey| quantities related to the basis set, namely, the normaliza-
found the existence of S@) symmetry. This can be gener- o the “effective charge”s,, and the kinetic operator
alized to arbitrary dimensions by means of hypersphenca{which is then a polynomial in momentum spac@his
harmonics(3,4]. shows more precisely how Sturmians are adapted to the po-

_The momentum-space relations have other important iMgential. We will now turn to the specific case of a harmonic
plications. The eigenvalue equation of the Hamiltonian ingggijjjator.

momentum space is

(D'—E) ¢pn(K)=— B V¥ dy,. (18 IIl. HARMONIC OSCILLATOR

) S~ To begin with we work withN=1 and ind=1 dimen-
— t_ .

W? define, for simplicity, $,=(D"—E) ¢y t.hen WE Can  gion. The potential i&/,=3x2, and we solve the equation
write  the momentum-space orthonormality relation as

[ on b dk=— BN, 8, and the eigenvalue equation for the

Hamiltonian as _id_2+£,3 x2—E | 4,=0 (29
2m d)(2 2 n n !
Bn(K) == Br(Vo* ) (K) (19
which is the harmonic oscillator Schiinger equation with
__ to, Lo N L mw? replaced byB,,. We will henceforth use mass weighted
B”j Vo(k=k') dn(k")dk’. (20 coordinates and set=1; if the mass needs to be reinstated
Now, we make the following ansatz: TABLE I. Normalization constants for harmonic-oscillator Stur-
mians.
Vo(k—k') =2 Cabn(k) 5 (K'). (22)
n n Np n Nn
Inserting this into Eq(20) we then obtain 0 iEfS/z 5 121 1—1E‘3’2
N 8v2 8 2

n
Cn= 52" (22) 1 g\ﬁE—” 5 1_69\/ESE_3/2
8 V2 8 V2
Le., 2 2_5 \/EE*?»/Z 7 2_25 \/ESE*NZ
8 V2 8 V2

N~ ~
Vok—k) =2 —5 dn(K) b5 (k') (23 3 4_9\ﬁE,3,2 8 289 [ e
n n 8 2 8 2
361 /19
N 243 N g 1)
=3 22D KDk oK) 45 (K. 4 SE 9 g V2 ©
n n

(29
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one simply replaces by ymx. In this casew in the original
harmonic-oscillator Hamiltonian has been replacedGﬁS?. Hn(
The solution of this is clearly

12, ,12 2
Vae)H . (B e~ (12085 + B 2dx

=N /72" nl S, . (28)

_ _ _ _ 122
Pa(x) =7 ¥(nl) " 2724 (BT )e W28, (26)  The first few normalization factorl, turn out to be as in
Table 1. We see thaN,x<E~*%—in general, (y|x¥|¢n)

wheren=n is a non-negative integeH,, is a Hermite poly- o«E~*12 for k=0,1,2,... . This is easily seen from a
nomial, andE= w(n+3)=B,(n+%). From this relation- simple scaling argument: perform the scalirxg—»/i‘,l]/“x
ship betweerk, n, and 8, we read off ~EY2x (for the sake of this argument we can ignore the
dependencein the integral and the result follows directly.
E \?2 From Table | it is clear that
ﬂn: _1 ' (27) (2 +1)3/2 1
n+ - _len —3/2_ —3/4
2 No=—g ——E ¥%=28,"". (29

which is the promised relationship between the effectiveNotice that the Sturmian orthonormality relation above dif-

coupling, the quantum number, and the energy, needed #ers slightly from the usual one in two wayd) the Hermite

make the Sturmian machinery work. polynomials have different argumentsormally the argu-
The effect of scaling the argument by andependent ment is justywx, irrespective of the value of the quantum

guantity is to scale all the functions to take values within thenumbern), and(2) the appearance of the facte?.

same interval. This is illustrated in Fig. 1. The orthonormal- Similarly, the overlap matrix between the first five Stur-

ity relation, (| 3X?| /) =N, , then reads mians T, = [} ¢ dX is

1
Lo, 0 f o, nf
V2 3 V3 25 V5

1 \F \F 132 [30
-2l = ]2 0 e 0 It g
T=F 3V3 2 343V 7 | 30

12 \F 0 132 [30 0 3

25V 5 343V 7 V2
Ford>1, the energy spectrum B= w(n+d/2), leading to a very simple modification in the expression linkihgandE.
The wave functions become products of Hermite polynomialsreadn,, ... ,ng), n=n;+n,+ - - - +ny:

1/2

d
= 71_d/42dn/z< H (ni!)1’2Hn.(/3ﬁ’4xi))e(1’2)ﬁn 0+ - .xﬁ)_ (31)
i=1 !

Note, 8,,= B,, depends only om=n;+ - - - nq, the “total quantum number.” The case of more than one particle merely
corresponds to a harmonic oscillatorih=dN dimensions, wher& denotes the number of particles addhe number of
spatial dimensions. If the particles have different masses, one has to use mass-weighted cooxgingtes,/mx;, but
otherwise no modifications are needed. Clearly, all the important features can be found alreadi=iNthd. case, for which
reason we will stick to this situation in the following unless otherwise stated.

The momentum-space formulation of the harmonic oscillator needs the Fourier transform of the Hermite polynomials. It is
proven in the Appendix that

¢n(k): 7771/4(n! )71/227n/2 \ ,%/TZ

is the Fourier transform ofy,,. The Hermite polynomials of imaginary arguments appear in this formula, this means that for
n evend, is purely real, whereas far odd it is purely imaginary. The momentum-space orthogonality relation then gives the
following new relationship between Hermite polynomials

1 14 -2 2,12
1+ =B e(12KB, (32

2

1
1+§ﬂﬁ’4)Hn(ik
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1 —-1/2
f Hnm(1+iﬁyﬂ H,|ik

a somewhat unexpected result.

n’

1 ) -1/2 )
1+ 5,81 4) e(1/2)k B
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12
n

7 1
+'3n'2)(k2—2E)dk= — —n'2”+1,85/4N
/277_ : n n

IV. ANHARMONIC OSCILLATOR

1+ 1
5,3

1/4
n

817

-2
) 5nn' ’

(33

We now add a new potenti®l’ = ax® to V, furthermore, to get a feeling of how the Sturmian method works, we will begin
by considering the “standard case” &' =E—this is what is usually done in the literature. It will turn out, however, that

taking E' #E is advantageous in our case.

We then need to compute the matrix elements of this in the basis of harmonic oscillator Sturmians. We need to compute the
[t x3ydx. Forn,n’=0,1,...,4 weobtain the following explicit result:

matrix Wfi), =
27
0 _
64
27
64
P 0 74255
2048
3433 0
2048
3159
0 7
512/2

343/3
2048
74255 3159
2048 5122
677425/5
41472
6774255 431831169
41472 4194304
431831169
4194304

The secular equation then redgsit E' =E in the general secular equati¢r]

det(1— BN 8y + aW®)=0.

By including the firstN Sturmians we obtain the ground-state energies shown in Table llawith.1.

Another version isv’ =x*, for this case the matri)l\/ff)

135

\f
16 V2
27783\/§
2000 V5

25

@_g-s2 22
WH=E 144

\/g

243

\f
1000V 5

As for x® we obtain the energieB by including the firstN

n’

=[x, dx becomes

25_\/5 243_\/§
144N 3 1000V 5
0 27783\/§ 0
2000 V5
975\/5 0 625725\/16
16 V2 9604 V14

3675\/2 0

16 V2
625725\/15 29889
9604 N 14 16/2

(34)

(39

(36)

consequence of the divergent behavior of the potentials as

=1,...,5Sturmians also shown in Table Il. As is apparentx—o. Although the Coulomb and Yukawa potentials are

from the table, the ground-state values are unstablethe.,
approximation has failed to convergehis is in sharp con-

singular at the origin;, = 0, their matrix elements nonetheless
fall off rather rapidly as the quantum numbers increase, due

trast to what is known to be the case for the Coulomb ando the quick fall off of the potentials themselves @asn-
Yukawa potentialg(in their one-center form as well as in creases.

their many-center forirwhere the convergence is very rapid.

But all is not lost yet. The anharmonic oscillator is a very

This failure can be traced back to the nonconvergence of th@ell-studied case precisely because standard techniques tend

matrix elementsWV®) o for n,n’—o, which again is

nn’

a

to fail. We will see that although the Sturmian method gives
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TABLE Il. The energies for the cubic and quartic anharmonic pling constantx: as« increases, so does the real par&gf.
oscillatorsV’ = ax® andax®, with «=0.1 found by using only the  FyrthermoreE) has a small imaginary part which is wildly
first N Sturmians. Only the ground-state energies are shown. oscillating but vanishes fo#>0.003 and hence quickly be-
comes unimportant.

N E(<) E(x) Thus, we must compare our Sturmian energies with non-
1 0.500000 0.562709 perturbative results. The divergence of the perturbation series
2 0.014628 0.562709 can be improved in a number of ways, as done recently by
3 0.112767 0.562709 Bender and Bettencoul8], and Kunihiro[9]. The latter au-
4 0.351135 0.562544 thor performed a resummation of the perturbation series by
5 0.102981 0.562516 using a renormalization-group improved technique. From
10 1.27012 0.533858 this, very rapidly converging expressions for the ground-
state energy for the quartic anharmonic oscillator are found.
Some high-precision numerical results for the quartic anhar-
a nonconvergent series, it is still of great use. monic oscillator were found in ReﬁlO], and we will make a
Standard perturbation theory would give a value for thecomparison with those findings. Other recent papers on re-
ground-state energy in the two cases of lated topics are contained in ReL1].
We will go back to the original secular equati¢r), and
11 %242 let E be the energy of the harmonic oscillator. WhEn
0=Eo— &5 (cubic potentia, (37 =E,=(n+1/2)hw, we obtainB,=1 (we will say we are

8 mo “on shell”) and the secular equation simplifies, since the
results then no longer depend on the normalization factor

- 3 #%a 23 ha? _ _ N,<E %2 Let the number of Sturmians in our basis set be
Bo=Bot 16 5 57 7 o8 (auartc potentia N; then forN=1 we obtain simply
(38) < 4
Yl X ) .
: : . E'=E+a————=E+aT, W, 39
by going to second order in the coupling constanand U “%on 39

using standard Rayleigh-Schiinger perturbation theory, _

which gives a nonconvergent series—for the particular exLet N=2, and let the basis set correspond to the quantum
ample ofm=7%=w=1 anda=0.1 we obtairE,=0.3625 for numbersn,n+1; we then findE’ by solving the quadratic
the cubic anharmonic oscillator arf,=0.46125 for the ~€duation

guartic anharmonic oscillator. Clearly, this is not in good e en2 o (4)

agreement with the result found by using Sturmians, but, as 0=(E=E) TmnTnsineat @(BE=E)(TnaWniynis
will be seen below, this is due to the divergence of the per- + e e W) + a?WEAWE (40)
turbation series. That the Sturmian method is nonperturba-

tive is suggested by the general solution of the secular equavhich, interestingly, can be rewritten as

tion. For the quartic anharmonic potential the ground-state

energy as a function ofr is found to be(for N=1)E} W,
=73+ 57718 where ol T,
, E'=E+ 5 Wff,? (41

= )
Tn+1,n+1

z= .
2592u + \/671846412— 6912
analogous to Eq39).
Such a dependence &f on « can only be obtained in per- Forn=0,1, ...,4 weobtain the results shown in Table
turbation theory by performing at least a partial resummatiorill, where we also show the highly accurgtpproximately
of the infinite series. That the perturbation series is divergen®0 significant digits of Ref. [10]. We note that this crude
is mirrored in the behavior oE; as a function of the cou- Sturmian approximation is able to obtain thight order of

TABLE Ill. A comparison between the perturbed energy states for the quartic anharmonic oscillater=n0t found by using two
Sturmians and the high-precision results of R&€]. The second-order perturbative result for this caaecé, w=2) isEy=0.4900 for the
ground state.

E (Sturmian E (Ref.[10]) Difference
n N=1 N=2 N=1 N=2
0 1.07500 1.07500 1.06529 —0.00971 —0.00971
1 3.37500 3.37500 3.30687 —0.06813 —0.06813
2 5.97500 5.97500 5.74795 —0.22705 —0.22705
3 8.87500 7.00152 8.35268 —0.52232 1.35116
4 12.0750 9.30093 11.09860 —0.97640 1.79767
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magnitudefor the energy statesven for the excited states where y is some constant, the friction, ariddenotes time.
but we also note that theccuracy decreasessn increases. This can be re-expressed in terms of a potential

This is once more due to the nonconvergence of the matrix L

elements of the perturbation potential. Increasing the basis L "

set will notlead topan improvedpaccuracy, but can i?] fact lead Vi= §w2x2e27’[ W=EUVo(), (43
to quite the opposite because of this divergence. Hence the

best results are found by the simplest approximationwith

namely,N=1. This is in contrast to the case of asymptoti- o

cally well-behaved potentials such as the Coulomb and t(t)= 1-e . (44)
Yukawa ones, hitherto studied in the literature.

For time-dependent potentials, the secular equation have

to be modified. The Schdinger equation for the full system

reads
Another important variant of the harmonic oscillator is the

damped oscillator. The particular Hamiltonian we are going

to study is the so-called Caldirola-Kanai oscillaf@2,13,

V. COMMENT ON TIME-DEPENDENT POTENTIALS:
THE DAMPED OSCILLATOR

(D+V0+V'(t))(//:ih%df (45)

H— p—ze‘27‘+ }wxzezyt (42) expanding/=Zc,(t) ¢, leads to the modified secular equa-
2 2 ’ tion
En: [(l_IBn)Nn5nn’ +<¢nf|V'(t)| $n>+ E< wn’ | ’pn>]cn: i ﬁ; Cn< ¢n’| ‘/’n) (46)

Using the relationship betwee#’ andV,, we can rewrite this as
; {[1_ Bn(1+ g(t))]Nnénn’ + E< lpn’ | ¢n>}cn: [ ﬁ; Cn< '»bn’| wn> (47)

For the simplest possible case of only includiNg=1 Sturmians in the basis set, the solution to this secular equation is of
course

N, [t
—i(l—ﬁn)T—nLg(t')dt' . 49

cn(t)zcn(O)exp( —it{(l—,@n) _’;I—n+ E

It turns out that one can actually compute the integf(al):ez‘zefw, and the integral can be expressed in terms of the
exponential integral function leading to

Ca(t)=Cn(0)e 1ot~ (49
where
Np
woz(l_lgn)T_+Ea (50
(H=(1- )ﬁe—z(Ei(—Z)—Ei(—Ze_zyt)) (51
> Pn Ton 2y .

Naturally, “on shell” (i.e., for 8,=1) we simply obtairc,(t)=c,(0)e 'E!, as one would expect, whereas “off shelli’e.,
for B,#1) we obtain a highly oscillatory behavior. The explicit results Xbr 1, n=0 arewy=(1+4E?)/8E, w(t)=[e?(1
—4E?)]/16E y(Ei(—2)—Ei(—2e~2")). One should also note that this result holds evenNerl; one must then interpret
the division byT,, as multiplication from the left by the inverﬁnl, , Wherebywg,w(t) become matrices.

The real and imaginary parts of(t) ¢o(x) are plotted in Figs. @) and Zb). We note that the oscillations in thelirection
die out either ax increasegbecause of the decrease #af(x)] or ast does.

The Caldirola-Kanai oscillator can be solved, and the solution is known fad3gwith w=1)

Hn(%),

1 (6* ) n/2 1 i-6e2yt )

¢n(X)=—%\/Z e \/ﬁex S X
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wheree=0 Y%~ ("INt (= /1—42 This can be rewritten as

4[1—472 — —
bo(X)= \/l 777 e1/2yt—[n+(1/2)]ivl—yztz—n/z(n!)—1/2e—(1/2)i(y—iVfl—yz)eZVtszn( /71_y2eytx)_

These states are related to our Sturmians through a rathdependent problems simplify in the Sturmian approach be-
complicated linear transformation due, essentially, to thecause of the simplification of the secular equation. Thus
Sturmians not being orthonormal with respect to the standar&turmians are well suited for problems with time-dependent
L2 inner product. Moreover, the states, have (H)=0, potentials or for scattering processes. But they are of course
which in our case can be achieved by simply lettlhg 0,  subject to the same limitations as in the time-independent
but, beyond that, it is very difficult to actually compare the case.
two solutions. ForE=n+ 3, i.e., “on shell,” the two ex- It also shows that this particular time-dependent damped
pressions fokH) differ by a quantity which grows as either oscillator is exactly solvable using the Sturmian approach,
y or t grows. In any caseg,(t) #,(t) is, by construction, a which is nice since it is known that the Caldirola-Kanai os-
solution to the time-dependent ScHimger equation, al- cillator can be solved by using a time-dependent canonical
though the transformation connecting the Sturmians with théransformation on the usual harmonic oscillgtbg].
exact statesp, is nonunitary(is not an isometry Further-
more, the Sturmians have the advantage of also being de-
fined for y=1, whereasp, is only defined for 6= y<1.

This simple example does show, however, how time- Consider the potential

VI. BATH OF HARMONIC OSCILLATORS

V=32 gi(x—x)?, (52)

wherei runs over some index set. This represents the poten-
tial coming from a family, indexed by, of harmonic oscil-
lators situated ax; and with coupling constant&haracter-
istic frequenciesg;. We will usually restrict ourselves to
being discrete corresponding to an infinite lattice of oscilla-
tors, but for field-theoretical purposes it can also be relevant
to allowi to run over a continuous index s@h which case

the sum must be interpreted as an integrahis example is
the harmonic-oscillator analog of the many-center Coulomb
potential treated in Ref§4,5]. Note that we can rewrit¢ as

V:%@(Z_Xzi gixi"'%Ei gixf (53

=gVo—Xxc ey, (54
where g=3,g;, ¢;=3,0;X;, and c,=33,g;x*; hence we
can see this as a perturbation of the original potential
Because of this feature of the bath of harmonic oscillators,
our computations will simplify somewhat from the many-
center Sturmians introduced for the Coulomb potential in
Refs.[4,5], which is very fortunate since those papers use a
Fourier-transform approach which is not useful for the har-
monic oscillator—as mentioned earlier, the Fourier trans-
form V'(k) of the potentiaV is a differential operator for the
harmonic oscillatofactually, the Hamiltonian is form invari-
®) ant under Fourier transforms

Furthermore, we can complete the squares to Wites
FIG. 2. The real(@ and imaginary(b) parts of the first time- ~@nother harmonic oscillator plus a constant; in fact,
dependent Sturmian for the dampédaldirola-Kanaj oscillator,
cn(t) ¥o(x), in the ranges €[0,10] andxe[0,5], and withE=1y 1<( C1>2 Ci
9 2~

=1. VZE X*TE +cC 476 (55)
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Consequently, we can obtain a solution to the many-centere  the newg,, B, say, reads
Schralinger equation by simply making the following sub-

stitutions in the solution for the single harmonic oscillator: - E—-c,+ c§/4g 2
Bn=0\——"7p
c C2 n+1/2
1 — 1
X=X+ 2_§ Pr—=09Bn, E—E-cot 4_5 (56 Hence the Sturmians read

ci

X+ 4_6 )e—(1/2)\/2;[x+(ci)/4§]2_ (57)

\Pn(X;Xi) = 1/4(n! )—1/22—n/2Hn(~Bﬁ/4

These are then a convenient basis for many-center problems.

For the many-center Coulomb potential, the Sturmians become related to the one-center Sturmians by means of phase
factorse'ki*i, whereas for the harmonic oscillators the many-center Sturmians are related to the one-center ones by means of
a translationx—>x—c§/4§as well as a scaling and a shift in energy.

As a simple example, consider a particle moving in a potential coming from harmonic oscillators situaged ,at
=1,... M all with equal strengthsg;=1. Theng=M, c;=3M(M+1),c,=5M(M+1)(2M+1) and

x—X+i(M+1), E—E—5M(5M?+6M+1);

thus

2

~  [96E—2M(5M?+6M+1)
n 48(2n+1)

and the first two Sturmians read explicitly

i 48E—M(5M2+6M+1) 1 2
Wo(x;x) =7 Yrexp —M 28 x+7(M+1) | |, (58)
1 [ 1 48E—M(5M2+6M+1) 1 2
Pi(x;x)=m Y= \M(48E—M(5M?+6M+1))| x+ = (M+1) |exp —M X+~ (M+1)
6 4 144 4
(59

The energy is found from the Schiioger equation, which which is then the energy of @onrelativistio particle mov-
leads to the “on shell” condition3,= 1. Consequently, the ing in a one-dimensional lattice of oscillators—a highly sim-

energy of thenth state is plified model of, say, a particle in a solid. For a many-
dimensional lattice we would simply use products of
1\_ c? unidimensional Sturmians.
En: n+§ g—1/2_02+ 4—§, (60)

) ) ) VIl. COMMENT ON COUPLED OSCILLATORS
irrespective of the number of Sturmians used as the secular

equation (by constructioh is diagonal. In the particularly ~ Consider now a potential of the form
simple case oM evenly spaced oscillators all with the same

value of the couplingg;=1 read$ V=LY gix—x)2+ 13 hj(x—x)2x—x,)% (62)
i 1#]

E.,= n+E M‘l’z—iM(M+1)(2M+1)
n 2 12

which introduces a coupling between the oscillators at the

1 various positions. In a manner similar to the manipulations

+ —M(M+1)2, (61) o_f the bath of o_scnlat_ors, this can be transformed into a
16 single anharmonic oscillator potential

V: %EXZ— C1X+ C2_ C3X3+ C4X4, (63)
“Note, forM=1,E#n+3, because the potential in this instance
is V=3(x—1)? andnot V=V,. Had we instead used=i—1, we
would have obtaine(M=1)=V, andE(M =1)=n+1/2. In that
case, by the wayc,=sM(M—1) and c,=5M(M—1)(2M =g, (64)
-1). i

where
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5 new, shifted position. Hence the secular equation would end
= 2(g-> Nij (X +X1Xi))Xi, (65  up having the same structure and thus the same level of
' complication. Consequently, nothing is lost by expanding on

s

the single oscillator Sturmiang, , x=2,a,#,. The secular

C2= Z 9i+; X12>X|2 (66)  equation then becomes
0= +GINp S — W,
ng_#_ )\ij(xi+xj)r (67) % [(IBn @ nOnn’ —C1W
i#]
1 + T — CaW, — e, W T (69)
Cs=5 2 Nij- (68)
‘ 217 where

Supposey is a solution to the corresponding Sctimger

equation. We can then expanckither on the ordinary Stur- W, ::j XK dx (70)
mians,,,, or the Sturmians for a bath of oscillatork,,. If

we choose the latter option, we have to complete the squares

to obtain the center of the new oscillator, but this wouldis the matrix elements of thkth power ofx, W) =T, .
mean that the anharmonic terms too would have to b&he only one of these we do not already know isker1, in
shifted, and this would again introduce lower powers of thewhich instance a straightforward computation yields

0 3 0 21 V3 0
8 ~ 128"
3 75 81
e 0 > 0 =
8 128 64V2
75 1925
(H—g-1 0 —— 0 — 0
W = 128‘/§ 1728\/g (7D
21 ; 0 1925 0 508599
128 1728 131072
81 508599
0 -— 0 aTAo 0
642 131072

for the first five Sturmians. Consequently, fid=1 we ob-  states, the latter of which essentially oscillates around the
tain (sinceW*1) is diagonal ground state of the single harmonic oscillator.

(Bn+§)Nn+CZTnn_C4VVI(qAr'1):O! (72)
L . . VIll. GAUSSIAN-DAMPED ANHARMONIC OSCILLATOR
which is a cubic equation fdEg; e.g., forn=0,
G- 3C,E+4E2+ 160,E3=0 The previous computations seem to suggest that the Stur-
’ mian method is best suited for potentials which are well

which for the extremely simple case gi=c,=c,=1 has behaved at infinity such as the Coulomb potential, but very
the three solutionsE= —0.669498,0.209749i0.222168, ~Slowly converging for potentials diverging fgx|—c such
i.e., one negative-energy stateence a bound statand two @S the anharmonic oscillator. To test this hypothesis, we will
complex conjugate oscillatory states. A9r=2, g=c;=15 NOW briefly consider a toy model, the anharmonic oscillator
. ! . 2
leads to the solutionsE=—9.91107—1.51155 andE damped by a Gaussiaf = ax*e *" wherek=3,4.° Includ-
=0.129506-10.435961,0.537995i1.32394, which then ing only the first five Sturmians, we obtain the following
correspond to two bound states and two pairs of oscillatorynatrix elementsiW*, of V', k=3.4:

nn’

Which, by the way, is only possible for two coupled oscillators if ®0ne could also consider simply the exponentially damped oscil-
—l1— [1ra 14 —1_ _ 1, 28175 ' — ke |X]
X1=7(1¥V1+814) andx,=35—Xq, 91= 5= 719s08V1+ 814, lator V' =x"e™ ™, but, due to the presence of the absolute value, the
g,=1-09;. matrix elements become too complicated.
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TABLE IV. The ground-state energies for’ =xke >’ k=3 torily one would probably have to make a thorough study

and 4 computed usiny Sturmians. based on the renormalization-group and/or on partial resum-
mation techniques, which would require a paper of its own.
N E(x%) E(x%) Given the generality of the approach, as outlined in Sec. I,
the Sturmian procedure should also be extendible, for in-
; g'iggggg 8'25225; stance, to problems in quantum field theory using a func-
: ' tional Schralinger picture, and to problems in quantum ki-
3 0.491822 0.622878 netic theory in phase space using Wigner functions. In field
4 0.491282 0.622877 theory the inner product, however, becomes more compli-
5 0.491282 0.622878 cated and a lot of care will have to be taken.
which leads to the ground-state energies shown in Table IV. ACKNOWLEDGMENT

We notice the improved convergence properties supporting | thank John Avery for introducing me to Sturmians in the

our claim that it was the nonconvergence of the matrix elesjyst place, and for stimulating discussions during the writing
ments of the undamped anharmonic oscillator that was thgs this paper.
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the Sturmian method. APPENDIX: CERTAIN RESULTS CONCERNING

HERMITE POLYNOMIALS
IX. CONCLUSION

In this appendix we prove a few results concerning Her-

We have seen that the powerful technique of Sturmianyite nolynomials. The generating function is known to be
functions developed for Coulomb-like potentials can be ex-

tended to harmonic and anharmonic oscillators, where it fur- " ®gn
thermore can be seen that the technique is highly nonpertur- e SFSX= 2 — Hn(X); (A1)
bative, but the divergence of the potenfiatx— +«) leads n=0 M:

to a nonconvergence of the Sturmian approximation, in con- o _

trast to the Coulomb case, where we have very rapid conveﬁom this it is straightforward to deduce the standard ortho-

gence. It turned out, however, that already with 1 and 2 normality relation for the Hermite polynomials and the

Sturmians the correct order of magnitude for the energies d?ar_monlc—oscnlﬁtor Wa;/el funcltlons. We will also use it to

even the excited states could be obtained. This indicates thQFrl':‘_’e some other ust? uFresq s. ¢ fah :

the problem with convergence is perhaps not so serious after Irst we require the Fourier transform of a harmonic-

all, if one merely wants to find the order of magnitude. Foroscillator Sturmian. Thus we want to compute the integral

higher precision, one should probably utilize a hybrid "

method, using_ the first few Sturmians.to_ obtain the correct J eikan(ax)e*“’Z)ﬁdex.

order of magnitude and then some variational approach, say, —o

to obtain the required precision. o ) ) o
We also saw how to treat time-dependent problemsThe corresponding integral with the generating function is

where once again the Sturmian properties lead to some infherely a Gaussian integral and can be readily computed:

portant simplifications. Finally, we considered a bath of

coupled or uncoupled oscillators which could be transformed f oSt tasx— (L2 +ikxy

into a single anharmonic oscillator problem. This is contrary

to what one does for the Coulomb potential, where Fourier 5

transform-techniques are used instead. Furthermore, when —e 54 /_We(llzm(asﬂk)dz (A2)

using a modifiedor regularized potential, convergent at in-

finity but with the same behavior for not ;)?0 large, we did

obtain rapid convergence, especially for #vecase, whereas Y B 2.

the x* case had slightly slower convergence. All of this =n20 o7 | Halax)e WapCHody,  (A)

seems to suggest that the Sturmian techniques have a very

wide range of applicability covering basically all important

potentials known in atomic physics or quantum chemistryfrom which, by Taylor expansion, we obtain the desired re-

but one should be very careful when using potentials whichgy|t:

are not well behaved at infinity. The failure of the numerical

approximation to converge for the case of a divergent poten- (U2 B+ ikx

tial suggests that the Sturmian secular equation should only J Hn(ax)e dx

be taken as defining asymptotic expansiofor the energy.

This is just like the usual perturbation expansion, but with /277(1 az)”’zH (ik a
ﬁ n

the important difference that the Sturmian results are nonper- 23 —(1+a?(2p))
2B B
turbative, and therefore the first, rough approximation of
only using one Sturmian basis function gives considerably x eV2B~ 1, (Ad)
better accuracy than finite-order perturbation theory. This is
certainly an interesting possibility, but to answer it satisfac-Actually, this formula is a little more general than we need.
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For harmonic-oscillator Sturmians it turns out that g Fi(3:3:x)=1eX(3+2x),
[ =(B8,m)*4] which leads to a slight simplification, resulting
in the formula given in the text. 1F1(L:3:x) = & eX(15+ 20k + 4%2).

Another expression we need is the matrix element’f
for y some positive integer 2, i.e., we need to compute  For the two cases of interest to us, wheris an even or odd
positive integer, we obtain a simpler relation since one of the
) two terms on the right-hand side will vanish.
lnm(a,B,7.,6) ==f Hn(ax)Hp(BX)x7e” (M2 dx, For y=2k we arrive at

(A5) 2 1
I(a,B,2k,8)=2K1e 25" 1 kyi Smé

Again, in terms of the generating function, the integral we
need to compute is quite simply (a+ B)%s? i (a+ B)2s?
Xex ZT Lk _ZT y
—25242(a+ B)sx—(1/2) 6x2y, y
e x¥dx ,
j whereas fory=2k+1 we find

3
—e 225 1-vizp( 14 2 T(a,B,2k+1,0) = 24+ %28 5=k=302p | |4 =
2 2
33 (at+p)?s?
X\2(a+B)s(1—(—1)") 1F4 Xs(a+B) 1Fq| k+ E;E;ZT .
y 3 (a+p)?s? Taylor expanding irs, we obtain
X1+ 5, 5,2——
2'2 é o0 "
By, 8)= 2 To(@,B,y.8)
o n=0 n!
+(1+(—-1)) >
*° gntm
weox 2 CEOS) | af (et B =2 i (@ B0 (A8)
1) /2 1)
From this we can obtain relationships between the matrix
(AB) eIementsWﬁ';), for different k's, since |, =W for «
_pUd o pli4 ;
—T(a.B,7.5), A7) Bn ", B=PBy . Forinstance, such rules as

loo=Zo,
which is valid even for nonintegey. Here 1F, is a hyper-
geometric function, and.? is an associated Laguerre poly- loit 110=11,
nomial. The first few of these are 1 1 1
zlozt 2120t 1117215,
—U2 N _ 1
L7 )=z-x, Host 130+ 310t 1) =375

L, Y2(x)=%(3—12x+4x?), (essentially following from the recursion relation for the Her-
mite polynomial$ can be used to simplify the computation
of matrix elements. One should also note that, since the
above is valid even whef is not a positive integer, we can
use it to obtain the matrix elements of the Coulomb potential
Fi(3:3:x)=¢€%, between harmonic-oscillator Sturmians.

L5 YAx)= (15— 90x+ 60x>— 8x%),
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