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First-order self-energy correction in hydrogenlike systems
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We present a detailed description of a procedure for the numerical evaluation of the first-order self-energy
correction for an arbitrary excited state. An efficient schema of the numerical treatment of the many-potential
part of the Dirac-Coulomb Green function improves the speed of the computation considerably. This feature is
extremely important for higher-order self-energy calculations. We apply this method to the evaluation of the
self-energy correction for the excited states withuku<5 andn<5 for some high-Z ions.
@S1050-2947~99!09907-2#
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INTRODUCTION

The self-energy is the dominant QED effect in atom
structure calculations. While the formula for the bound-st
self-energy and the general renormalization scheme h
long been understood, the numerical evaluation of this c
rection for high-Z ions (Z is the nuclear charge number! was
a hard problem for a long time. All the calculations ma
within theaZ expansion~a is the fine-structure constant! fail
for these systems, asaZ is valid as an expansion paramet
no longer.

The numerical evaluation of the self-energy correction
all orders inaZ has a long history. It is beyond the task
this paper to recite all the authors who contributed to t
problem. We mention only a few results here, which are
most important ones in our opinion. The first correct se
energy calculation to all orders inaZ was performed by
Desiderio and Johnson@1# for some high-Z ions using a
method suggested by Brown, Langer, and Schafaer@2#. Later
a method was developed by Mohr@3,4# and a high-precision
calculation of the self-energy correction was performed
states in point-nucleus hydrogenic ions with principal qu
tum numbersn51 and 2. This work was extended ton
53 – 5 for uku<2 by Mohr and Kim @5# ~k is the Dirac
angular quantum number!. The effect of the extended
nucleus on the self-energy correction was studied by M
and Soff@6#. The method of the potential expansion of t
bound-electron propagator for the calculation of the s
energy correction was developed by Snyderman@7# and nu-
merically realized by Blundell and Snyderman@8#. Recently
the method of the partial-wave renormalization was dev
oped for the self-energy calculations by Persson, Lindg
and Salomonson@9# and by Quiney and Grant@10#.

In this work we present a procedure for the numeri
evaluation of the first-order self-energy correction which
closely related to the methods of Snyderman@7# and Mohr
@3#, and is applicable for an arbitrary excited state. T
present schema differs from the method of Snyderman in
treatment of the many-potential part which is the most tim
consuming part of the calculation. A highly efficient proc
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dure is developed for a numerical evaluation of the ma
potential part of the Coulomb-Dirac Green function which
expressed in terms of the Whittaker functions and their
rivatives. The usage of this procedure and the good con
gence efficiency of the resulting partial-wave decomposit
simplify the numerical evaluation considerably. The calcu
tion of the self-energy correction for the ground state of h
drogenlike uranium up to a relative precision of 1025 takes

only 1 1
2 h on a Pentium with a 100-MHz processor. Th

feature makes the approach a good basis for higher-o
self-energy calculations. The method was successfully
plied to calculations of the self-energy screening correcti
@11# and the self-energy corrections to the hyperfine splitt
@12#.

I. BASIC FORMALISM

The energy shift of an electron in a bound stateca due to
the first-order self-energy correction is given by the real p
of the expression1

DEa52iaE
CF

dvE d3x1E d3x2ca
†~x1!am

3G~«a2v,x1 ,x2!anca~x2!Dmn~v,x12!

2dmE d3xc̄a~x!ca~x!, ~1!

wheream5(1,a), a are the Dirac matrices, the bar over th
wave function denotes the Dirac adjointc̄a(x)5ca

†(x)g0 ,
dm is the mass counterterm,G(v,x1 ,x2)51/(v2H) is the
Dirac-Coulomb Green function, andH5(a•p)1bm
1V(x) is the Dirac-Coulomb Hamiltonian. The functio
ca(x) is the bound solution of the Dirac equation@Hca(x)
5«aca(x)# written in the form

1Relativistic units are used in this paper (\5c5m51). We use
roman style~p! for four vectors, bold face~p! for three vectors, and
italic style (p) for scalars. Four vectors have the form p5(p0 ,p).
The scalar product of two four vectors is (p•k)5p0k02(p•k). We
use the notations p”5pmgm, p̂5p/upu.
800 ©1999 The American Physical Society
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PRA 60 801FIRST-ORDER SELF-ENERGY CORRECTION IN . . .
ca~x!5S ga~x!xkama
~ x̂!

i f a~x!x2kama
~ x̂!D , ~2!

wherexkm( x̂) is the spin-angular spinor@13#. The function
Dmn(v,x12) denotes the photon propagator. In this paper
work in the Feynman gauge, thus the photon propagator
be written as

Dmn~v,x12!5gmn

exp@ iAv21 idux12u#
4pux12u

, ~3!

wherex125x12x2 , and the branch of the square root is fix
with the conditionI(Av21 id).0, whered is small and
positive.

The self-energy correction~1! is graphically represente
in Fig. 1. The integration contourCF is shown in Fig. 2. To
make expression~1! meaningful one should regularize bo
parts of it in the same covariant way, separate diverg
terms, and then pass to the limit which removes the regu
ization.

To isolate the ultraviolet divergences in Eq.~1!, we ex-
pand the Dirac-Coulomb Green function in terms of the f
Dirac Green function using the operator identity

FIG. 1. First-order self-energy correction. The double line d
notes the bound-electron propagator, and the cross indicate
mass counterterm.

FIG. 2. ContourCF in the complexv plane, the singularities
and the branch cuts of the Green function and the photon prop
tor. «a denotes the energy of the initial state.
e
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1

v2H5
1

v2H0
1

1

v2H0
V

1

v2H0
1

1

v2H0

3V
1

v2HV
1

v2H0
, ~4!

whereH05(a•p)1bm is the free Dirac Hamiltonian,V
denotes the interaction with the nucleus. This expansio
widely used in atomic QED calculations. It was used first
Baranger, Bethe, and Feynman@14# to extract the physica
self-energy shift through ordera(aZ)5. Whichmann and
Kroll @15# employed this method for an evaluation of th
vacuum-polarization correction. For the calculation of t
self-energy correction in all orders ofaZ, this method was
developed by Snyderman@7# and numerically realized by
Blundell and Snyderman@8#.

The three terms in Eq.~4! inserted into Eq.~1! correspond
to zero-potential, one-potential, and many-potential term
respectively. The resulting expansion is graphically rep
sented in Fig. 3. It can be expressed with the first two ter
converted into the momentum space as follows:

DEa5E d3p

~2p!3 c̄a~p!„S (0)~p!2dm…ca~p!

1E d3p8

~2p!3 E d3p

~2p!3 c̄a~p8!G0~p8,p!

3V~ up82pu!ca~p!

12iaE
CF

dvE d3x1E d3x2ca
†~x1!am

3G21~«a2v,x1 ,x2!anca~x2!Dmn~v,x12!, ~5!

where «a5p05p08 , S (0)(p) is the free-electron self-energ
operator defined in Appendix A,G0(p8,p) is the time com-
ponent of the free-electron vertex operator defined in App
dix B, andca(p) is the Fourier transform of the coordinate
space wave function~2!:

ca~p!5E d3x e2 ipxca~x!5 i 2 l aS g̃a~p!xkama
~ p̂!

f̃ a~p!x2kama
~ p̂!D .

~6!

l a5uka11/2u21/2. TheG21 function denotes a part of th
electron propagator containing two or more Coulomb int
actions with the nucleus

G21~v!5
1

v2H0
V

1

v2HV
1

v2H0
. ~7!

It can be easily shown that the many-potential term does
contain any divergences. After the isolation of ultravio
divergences in the zero- and one-potential terms~see Appen-
dixes A and B!, one can obtain

S (0)~p!5dm2
a

4p
De~p”2m!1SR

(0)~p!,

~8!

-
the

a-
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802 PRA 60V. A. YEROKHIN AND V. M. SHABAEV
Gm~p8,p!5
a

4p
Deg

m1GR
m~p8,p!.

Using the Fourier transformed Dirac equation

~p”2m!ca~p!5E d3p8

~2p!3 g0V~ up2p8u!ca~p8!, ~9!

one can see the explicit cancellation of the ultraviolet div
gences between the zero- and one-potential terms in Eq.~5!.

As a result, we express the self-energy correctionDEa as
the sum of the three finite terms:

DEa5DEzero1DEone1DEmany, ~10!

DEzero5E d3p

~2p!3 c̄a~p!SR
(0)~p!ca~p!, ~11!

DEone5E d3p8

~2p!3 E d3p

~2p!3 c̄a~p8!GR
0~p8,p!

3V~ up82pu!ca~p!, ~12!

DEmany52iaE
CF

dvE d3x1E d3x2ca
†~x1!am

3G21~«a2v,x1 ,x2!anca~x2!Dmn~v,x12!.

~13!

II. ZERO- AND ONE-POTENTIAL TERMS

The angular integration in Eq.~11! can be easily per-
formed using the expression for the free self-energy oper
~A5! and the relation

~s•p̂!xkm~ p̂!52x2km~ p̂!. ~14!

The result of the angular integration is

DEzero5
a

4p E
0

` p2dp

~2p!3 $a~r!@ g̃a
2~p!2 f̃ a

2~p!#1b~r!

3@«a„g̃a
2~p!1 f̃ a

2~p!…12pg̃a~p! f̃ a~p!#%. ~15!

Herep5upu, the functionsa(r) andb(r) are defined by Eq.
~A6! and ~A7!, and g̃a(p) and f̃ a(p) are the components o
the momentum-space wave function~6!.

The one-potential term is given by expression~12!. The
Coulomb potential in the momentum space is

V~ up2p8u!524p
aZ

~p2p8!2 . ~16!

The angular integration can be easily performed using
pression~B18! and the following relation:

1

2 j 11 (
m

xkm
† ~ p̂8!xkm~ p̂!5

1

4p
Pl~j!, ~17!

wherej5cos(pp8̂), j 5uku21/2, l 5uk1 1
2 u2 1

2 , andPl(j) is
a Legendre polynomial. As a result, we have
-

or

x-

DEone52
a2Z

32p5 E
0

`

dp8E
0

`

dpE
21

1

dj
p82p2

q2

3$F1~p8,p,j!Pl~j!1F2~p8,p,j!Pl̄ ~j!%,

~18!

where p5upu, p85up8u, l̄ 52 j 2 l , and q25p21p82

22pp8j, and the functionsF1 andF2 are given by Eqs.
~B19! and ~B20!.

III. MANY-POTENTIAL TERM

The many-potential term is given by expression~13!, with
the integration contour shown in Fig. 2. The integrand is
analytic function ofv, except for the poles of the Gree
function (v5«a2«n1 i0, where indexn runs over all bound
states and«a is the energy of the initial state!, its branch
points@v5«a6(12 i0)#, and the branch points of the pho
ton propagator (v56A2 id). The singularities and the
branch cuts of the Green function and the photon propag
are shown in Fig. 2.

For the numerical evaluation of the integral overv, we
deform the integration contourCF in a way shown in Fig. 4,
and divide the integral into two parts which correspond
integrations over two partsCL and CH of the new contour.
We refer to these parts as thelow-energyand thehigh-energy
terms, respectively. The contourCL is chosen in a way to
avoid singularities which come from the bound states w
the energy«n,«a . This choice allows the procedure to b
applicable to an arbitrary initial bound state. The contourCH
extends from2 i`1«0 to «0 and from«0 to i`1«0 . It is
chosen in a way to eliminate strong oscillations arising in
high-energy region of the contourCF in favor of exponen-
tially decaying integrands. One can see that the integran
Eq. ~13! falls off so rapidly that the contribution of the bi
quarter circles of the deformed contour in Fig. 4 vanishes
their radius goes to infinity.

This choice of the integration contour is similar to the o
used by Mohr@3#. It differs by the fact that the contourCL
extends in the complex plane rather than along the real a
and by the choice of the parameter«0 . However, one should
stress the difference between the approach described
and the method of Mohr. In Ref.@3# the self-energy correc
tion was divided into low- and high-energy parts first, a
then the subtraction of ultraviolet divergences was perform
in the high-energy part. We divide only the many-potent
term into low- and high-energy parts. As a result, we obt
a partial-wave expansion which converges faster than the
in Ref. @3#.

An advantage of the bending of the integration conto
CL into the complex plane is clear for highly-excited state
If the contourCL extends along the real axis, as in Refs.@3,
5#, one has to evaluate numerically the principal value of
integral containing as many singularities as the number
the bound statesn with the energy«n,«a .

The contourCL consists of two parts: one extends alo
the upper bank of the cut of the photon propagator, and
other extends along the lower bank. Each part of the con
is chosen to be a half of an ellipse,
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v5
«0

2 S 11
De2 iw

AD2 cos2 w1sin2 w
D , ~19!

wherew50, . . . ,p corresponds to the lower part of the co
tour andw5p, . . . ,0 to theupper part. One should note th
the integrand in Eq.~13! on the upper and lower banks of th
cut differs only by the sign of the argument of the expon
in the photon propagator. The variables«0 and D are free
parameters which were adjusted empirically to achieve
best numerical efficiency of the algorithm. The value ofD
should not be large, because the photon propagator on
upper bank of the cut is an exponentially growing function
the lower half of the complexv plane which can cause nu
merical difficulties. For practical calculations we use«0
5«a20.9«1s , D5«a /(5n1/3), where n is the principal
quantum number of the initial state, and«1s is the energy of
the ground state.

Let us consider the evaluation of the angular integrals
Eq. ~13!. For this purpose we use the spectral representa
of the Green functionG21(v,x1 ,x2),

G21~v,x1 ,x2!5(
i

f i
(1)~v,x1!@f i

(2)~v,x2!#†

v2« i~12 i0!
, ~20!

wheref i
(6)(v,x) is given by

f i
(6)~v,x!5„v2H0~17 i0!…21V~x!c i~x!, ~21!

and i runs over all solutionsc i(x) of the Dirac-Coulomb
equation:Hc i(x)5« ic i(x). One can easily see that the a
gular dependence ofG21(v,x1 ,x2) is the same as for the
Dirac-Coulomb Green functionG(v,x1 ,x2).

After substitution of Eq.~20! into Eq. ~13! and the defor-
mation of the integration contour, we have

DEmany52ia(
i
E

CL1CH

dv

3
^af i

(2)uamanDmn~v!uf i
(1)a&

«a2v2« i
. ~22!

To perform the angular integration, we introduce t
function RL(v,abcd) in the following way@16#:

FIG. 3. Decomposition of the bound-state self-energy into ze
potential, one-potential, and many-potential terms. Single lines
resent free-electron propagators, double lines bound-electron p
gators, and dashed lines the binding potential. The cross repre
the mass counterterm.
t

e

he

n
n

4p^abuamanDmn~v!ucd&

5 (
J50

`

I J~abcd!RJ~v,abcd!, ~23!

where the functionI J(abcd) contains the whole dependenc
on the moment projections:

I J~abcd!5(
mJ

~21! j a2ma1J2mJ1 j b2mb

3S j a J jc

2ma mJ mc
D S j b J jd

2mb 2mJ md
D .

~24!

The expression for the radial integralRJ(v,abcd) is given
in Appendix C.

After summing over the moment projections of the inte
mediate states, one can obtain

DEmany5
ia

2p (
k i ,ni

~21! j i2 j a

2 j a11

3E
CL1CH

dv

(
J

~21!JRJ~v,af i
(2)f i

(1)a!

«a2v2« i
,

~25!

wherek i is the Dirac angular quantum number of the inte
mediate statesf i , ni is the principal quantum number,j i
5uk i u2

1
2 , and the summing overJ extends from J

5u j i2 j au up to J5 j i1 j a .
Expressing Eq.~25! in terms of the Green function, it is

easy to obtain

-
p-
pa-
nts

FIG. 4. Deformed contour in the complexv plane, the singu-
larities, and the branch cuts of the Green function and the pho
propagator. The new contour is divided into two partsCL andCH ,
which correspond to the low- and high-energy parts, respective
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TABLE I. First-order self-energy correction for the hydrogenlike point-nucleus tungsten, bismuth, and uranium expressed in term
function F(aZ) defined by Eq.~32!.

d5/2 f 5/2 f 7/2 g7/2 g9/2

Z n53 n54 n55 n54 n55 n54 n55 n55 n55

74 0.0550~0! 0.0598~4! 0.0628~6! 20.0198(4) 20.0184(7) 0.0231~4! 0.0247~7! 20.0121(9) 0.0135~9!

83 0.0583~0! 0.0639~3! 0.0671~5! 20.0194(3) 20.0180(5) 0.0238~3! 0.0254~6! 20.0121(8) 0.0136~8!

92 0.0620~0! 0.0684~2! 0.0719~5! 20.0189(2) 20.0175(5) 0.0245~2! 0.0262~5! 20.0121(5) 0.0136~6!
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DEmany5
ia

2p

1

2 j a11 (
uk i u51

` E
CL1CH

dv

3E
0

`

x1
2dx1E

0

`

x2
2dx2 (

sign(k i )
J

~2J11!

3H @CJ~k i ,ka!#2gJ~v!$Gk i

21%aa
I 2 (

L5J21

J11

gL~v!

3$Gk i

21%k ik i ,JL
II ,aa J , ~26!

where gL(v)5gL(v,x, ,x.) is defined by Eq.~C6!, and
Gk

215Gk
21(«a2v,x1 ,x2) is the radial part of the

G21(«a2v,x1 ,x2) function defined in Appendix D. Othe
notations used in Eq.~26! are as follows:

$A%ab
I 5ga~x1!A11gb~x2!1ga~x1!A12f b~x2!

1 f a~x1!A21gb~x2!1 f a~x1!A22f b~x2!, ~27!

$A%k1k2 ,JL
II ,ab 5 f a~x1!A11f b~x2!SJL~2ka ,k1!SJL~2kb ,k2!

2 f a~x1!A12gb~x2!SJL~2ka ,k1!SJL~kb ,2k2!

2ga~x1!A21f b~x2!SJL~ka ,2k1!SJL~2kb ,k2!

1ga~x1!A22gb~x2!SJL~ka ,2k1!SJL~kb ,2k2!,

~28!

where the angular coefficientsCJ and SJL are defined by
Eqs.~C7!–~C10!.

IV. NUMERICAL DETAILS

For the numerical evaluation of all the integrals, we u
the Gauss-Legendre quadratures. Computation of the bo
state wave functions in the coordinate and in the momen
space was performed following Ref.@17#. While the integra-
tion of the zero-potential term is straightforward, the on
potential term requires some care. For its calculation one
to evaluate a four-dimensional integral numerically@a three-
dimensional integration in Eq.~18! and an additional integra
tion over the Feynman parameter in Eqs.~B12!–~B15!#. One
can see that the integrand in Eq.~18! has an integrable sin
gularity whenq50. To handle the singularity, it is conve
nient to make the change of variables$pp8j%˜$xyq%,
where

x5p1p8, ~29!
e
d-

m

-
as

y5p2p8, ~30!

q5Ap21p8222pp8j. ~31!

The many-potential term was evaluated dividing the co
tour of the integration into two piecesCL and CH corre-
sponding to the low- and high-energy terms, as discusse
Sec. III. The numerical evaluation of the integrals overx1,2
in the both terms was performed in the same way using
change of the variables@3# $x1x2%˜$ry%, where r
5x, /x. , y52aZx. . The numerical evaluation of the in
tegrand is based on the computation of theGk

21(v,x1 ,x2)
function described in detail in Appendix D.

In contrast to the method of Mohr, we perform all th
integrations before the summing overuku is evaluated. As a
result, after all the integrations are completed, we hav
smoothuku series which can be easily extrapolated. The
pansion of the low-energy part usually converges very w
~faster thanuku23), and it can be summed up to a desirab
precision without any extrapolation. The maximal value
uku used in the most difficult case considered here (n55) is
35, while for the ground state the sum can be termina
already atuku55. The high-energy term is usually smaller b
an order of magnitude than the low-energy part, but its c
vergency is slower (uku23 for high uku!. The summation was
terminated atuku550 or less, and the remainder of the ser
was estimated using a polynomial fitting in 1/uku.

The results of the calculations of the first-order se
energy corrections for the hydrogenlike point-nucleus tu
sten, bismuth, and uranium are presented in Table I for st
with 3<uku<5 andn<5. We express our results in terms
the functionF(aZ):

DEa5
a

p

~aZ!4

n3 F~aZ!mc2. ~32!

In Table II we compare our calculations with the most p
cise results obtained by Mohr and Kim@5# and Indelicato
and Mohr@18#.

One should note that a numerical cancellation betw
different contributions to the self-energy correction aris
which appears to be much stronger for highly excited sta
than for low-lying ones. To illustrate this, in Table III w
give a breakdown for the different terms of the self-ener
correction for 1s1/2 and 5g9/2 states of the hydrogenlike ura
nium.
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TABLE II. Comparison of the present results with the previous calculations forZ590 in terms of the functionF(aZ) defined by Eq.
~32!.

p3/2 d3/2

Ref. n52 n53 n54 n55 n53 n54 n55

This work 0.29066~3! 0.33500~5! 0.3507~3! 0.3578~7! 20.02249(5) 20.0149(2) 20.0105(5)
@5# 0.3350~1! 0.3507~1! 0.3574~1! 20.0225(1) 20.0149(1) 20.0108(1)
@18# 0.29066783~1! 0.33496587~8! 20.02248223(3)
h
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CONCLUSION

What we have presented in this paper is a practical hig
efficient procedure for the numerical evaluation of the fir
order self-energy correction for an arbitrary excited state
this paper we discuss only the point-nucleus problem. T
procedure can be immediately extended to the finite-nuc
case. We performed calculations of the self-energy cor
tion for low-lying excited states employing the hollow-she
nuclear model, and obtained a good agreement with the
sults of Mohr and Soff@6#.

At present there are different methods developed for
calculation of the first-order self-energy correction; some
them were mentioned in the Introduction. Most of the
methods can be adopted for the calculation of the self-ene
in an arbitrary spherically symmetric potential. Howev
some problems may arise in the extension of a method foab
initio higher-order self-energy calculations. For instance,
method of the partial-wave renormalization applied to
two-electron self-energy correction gives a small spurio
term due to a noncovariant renormalization procedure~see
Ref. @11# and references therein!. In this paper we have pre
sented a covariant procedure for the calculation of the fi
order self-energy which has been proven to be a very e
cient basis for calculations of higher-order self-ener
corrections@11,12#.
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APPENDIX A: FREE ELECTRON SELF-ENERGY
OPERATOR

The free-electron self-energy operator in the Feynm
gauge is given by the integral

TABLE III. Various contributions to the self-energy correctio
for 1s1/2 and 5g9/2 states of the hydrogenlike uranium (Z592) in
atomic units.

Contribution 1s1/2 5g9/2

Zero-potential term 219.1010 22.67403
One-potential term 17.5809 1.94711
Low-energy term 2.7815 0.71305
High-energy term 11.9500~2! 0.01484~4!

Total self-energy 13.2114~2! 0.00097~4!
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S (0)~p!524p iaE d4k

~2p!4

1

k2 gs

p”2k”1m

~p2k!22m2 gs.

~A1!

This expression is infrared finite, and we can use the pho
propagator with the zero photon mass already from the
ginning. Expression~A1! is obviously ultraviolet divergent.
It can be shown that this divergency is only logarithmical,
the covariant regularization is used. In our calculation we
the dimensional regularization

d4k

~2p!4
˜

dDk

~2p!D
, ~A2!

with D5422e.
To separate the ultraviolet divergency, we write the se

energy operator in the form

S (0)~p!5dm2
a

4p
De~p”2m!1SR

(0)~p!, ~A3!

where dm53a/(4p)m(De1 4
3 ) is the counterterm of the

mass renormalization,De5(1/e)2gE1 ln 4p2ln m2, andgE
is the Euler constant. We prefer to write the self-energy
erator in form~A3! rather than in the more usual one:

S (0)~p!5dm1~Z221!~p”2m!1S ren
(0)~p!. ~A4!

The reason for this is that the wave-function renormalizat
constantZ2 is infrared divergent in the Feynman gauge, a
its separation causes infrared divergences inS ren

(0)(p). In Eq.
~A3! we separate only the ultraviolet divergent part ofZ2 ,
andSR

(0)(p) does not contain any divergences.
TheSR

(0)(p) operator in the Feynman gauge can be ea
calculated to be

SR
(0)~p!5

a

4p
„a~r!1p”b~r!…, ~A5!

a~r!52mS 11
2r

12r
ln r D , ~A6!

b~r!52
22r

12r S 11
r

12r
ln r D , ~A7!

wherer5(m22p2)/m2.

APPENDIX B: FREE-ELECTRON VERTEX OPERATOR

The free-electron vertex operator in the Feynman gaug
given by
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Gm~p8,p!524p iaE d4k

~2p!4

1

k2 gs

p”82k”1m

~p82k!22m2

3gm
p”2k”1m

~p2k!22m2 gs. ~B1!

Expression~B1! is infrared finite. It contains the logarithmi
ultraviolet divergency which is handled using the dime
sional regularization withD5422e as in the case of the
free self-energy operator. The evaluation of the free-elec
vertex operator can be found in Ref.@7#. Here we presen
only the final expressions suitable for the numerical eval
tion, correcting a number of misprints in Ref.@7#.

We separate the ultraviolet divergency inGm(p8,p) in the
following way:

Gm~p8,p!5
a

4p
Deg

m1GR
m~p8,p!, ~B2!

whereDe5(1/e)2gE1 ln 4p2ln m2. Again, we remark that
in Eq. ~B2! we separate only the ultraviolet divergent part
the renormalization constantZ1 .

TheGR
m(p8,p) function is finite, and can be evaluated to

GR
m~p8,p!5

a

4p
$Agm1p”8~B1p8m1B2pm!

1p”~C1p8m1C2pm!1D~p”8gmp”!1H1p8m

1H2pm%, ~B3!

A5C24221p82C111p2C1214~p8•p!~C01C111C12!

1m2~22C01C111C12!, ~B4!

B1524~C111C21!, ~B5!

B2524~C01C111C121C23!, ~B6!

C1524~C01C111C121C23!, ~B7!

C2524~C121C22!, ~B8!

D52~C01C111C12!, ~B9!

H154m~C012C11!, ~B10!

H254m~C012C12!, ~B11!

where

C05E
0

1 dy

„yp81~12y!p…2
~2 ln X!, ~B12!

S C11

C12
D5E

0

1 dy

„yp81~12y!p…2
S y
12yD ~12Y ln X!,

~B13!
-

n

-

f

S C21

C22

C23

D 5E
0

1 dy

„yp81~12y!p…2
S y2

~12y!2

y~12y!
D

3S 2
1

2
1Y2Y2 ln XD , ~B14!

C2452E
0

1

dy ln~y2q2/m22yq2/m211!, ~B15!

and

X511
1

Y
, ~B16!

Y5
m22yp822~12y!p2

„yp81~12y!p…2
, ~B17!

q5p82p. The coefficientsCi j can be expressed in terms o
C0 , as it was done in Ref.@7#, and the coefficientC0 can be
evaluated in terms of the Spence function~dilogarithm! @19#.
However, we found that safer to perform the integration o
the Feynman parametery numerically.

Evaluating the integral overy in Eqs. ~B12!–~B15!, one
should remember that the denominator„yp81(12y)p…2 can
have zeros on the interval of the integration. It does
cause any singularities because of corresponding zeros o
numerator. However, one should take care of numerical c
cellations arising in the vicinity of these points. This w
handled by dividing the integration interval into two or thre
pieces according to the number of the zeros.

For the calculation of the one-potential term, only t
time component of the vertex functionGR

m(p8,p) is needed.
To perform the angular integration in the one-potential ter
it is convenient to writec̄(p8)GR

0(p8,p)c(p) in the form

c̄a~p8!GR
0~p8,p!ca~p!5

a

4p
$F 1xkama

† ~ p̂8!xkama
~ p̂!

1F 2x2kama

† ~ p̂8!x2kama
~ p̂!%.

~B18!

One can see that the functionsF1,2 can be expressed as fo
lows:

F1~p8,p,j!5Ag̃8g̃1«a~B11B2!~«ag̃81p8 f̃ 8!g̃

1«a~C11C2!g̃8~«ag̃1p f̃ !1D~«ag̃81p8 f̃ 8!

3~«ag̃1p f̃ !1«a~H11H2!g̃8g̃, ~B19!

F2~p8,p,j!5A f̃8 f̃ 1«a~B11B2!~«af̃ 81p8g̃8! f̃ 1«a~C1

1C2! f̃ 8~«af̃ 1pg̃!1D~«af̃ 81p8g̃8!

3~«af̃ 1pg̃!2«a~H11H2! f̃ 8 f̃ , ~B20!
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where p5upu, p85up8u, j5cos(pp8̂), g̃ and f̃ denote the
components of the wave function in the momentum rep
sentation ~6!: g̃5g̃a(p), f̃ 5 f̃ a(p), g̃85g̃a(p8), and f̃ 8
5 f̃ a(p8); «a5p05p08 is the energy of the initial state.

APPENDIX C: RADIAL INTEGRAL RJ„v,ABCD…

The evaluation of the integralRJ(v,abcd) defined by Eq.
~23! can be found in Ref.@16#. For our purposes it is conve
nient to write it in the forms

RJ~v,abcd!5~2J11!E
0

`

x2
2dx2x1

2dx1

3H ~21!JCJ~ka ,kc!CJ~kb ,kd!

3gJ~v,x, ,x.!Wac~x1!Wbd~x2!

2(
L

~21!LgL~v,x, ,x.!Xac~x1!Xbd~x2!J ,

~C1!

Wab~x!5ga~x!gb~x!1 f a~x! f b~x!, ~C2!

Xab~x!5ga~x! f b~x!SJL~2kb ,ka!2 f a~x!gb~x!

3SJL~kb ,2ka!, ~C3!

wheregn and f n are the upper and lower radial componen
of the Dirac wave function, respectively,x.5max(x1,x2),
andx,5min(x1,x2). The functiongl(v,x, ,x.) is the radial
part of the partial wave expansion of the photon propaga

eivx12

x12
5(

l
~2l 11!gl~v,x,x.!Pl„cos~x1x2̂!…, ~C4!

gl~0,x,x.!5
1

2l 11

x,
l

x.
l 11

, ~C5!

gl~v,x,x.!5 iv j l~vx,!hl
(1)~vx.!, ~C6!
c
in
-

r:

where Pl(z) is the Legendre polynomial, andj l(z) and
hl

(1)(z) are the spherical Bessel functions.
The angular coefficientsSJL(ka ,kb) differ from the zero

only for L5J21,J, J11, and can be written forJÞ0 as
follows:

SJ J11~ka ,kb!5A J11

2J11 S 11
ka1kb

J11 DCJ~2kb ,ka!,

~C7!

SJ J~ka ,kb!5
ka2kb

AJ~J11!
CJ~kb ,ka!, ~C8!

SJ J21~ka ,kb!5A J

2J11 S 211
ka1kb

J DCJ~2kb ,ka!.

~C9!

In the case whenJ50 there is only one nonvanishing coe
ficient S01(ka ,kb)5C0(2kb ,ka). The coefficients
CJ(kb ,ka) are given by the expression

CJ~kb ,ka!5~21! j b11/2A~2 j a11!~2 j b11!

3S j a J jb

1

2
0 2

1

2
D P~ l a ,l b ,J!, ~C10!

the symbolP( l a ,l b ,J) is unity if l a1 l b1J is even, and zero
otherwise.

APPENDIX D: COMPUTATION OF THE G k
„21… FUNCTION

For the calculation of the many-potential term~26! it is
necessary to compute a part of the electron propagator
two or more Coulomb interactions inserted:

G21~v!5
1

v2H0
V

1

v2HV
1

v2H0
. ~D1!

The function G21(v,x1 ,x2) has the same angular depe
dence as the Dirac-Coulomb Green function and can be w
ten in the form
G21~v,x1 ,x2!5(
km

S ~Gk
21!11xkm~ x̂1!xkm

† ~ x̂2! 2 i ~Gk
21!12xkm~ x̂1!x2km

† ~ x̂2!

i ~Gk
21!21x2km~ x̂1!xkm

† ~ x̂2! ~Gk
21!22x2km~ x̂1!x2km

† ~ x̂2!
D . ~D2!
n

We refer to the radial part of the term of thek expansion of
G21(v,x1 ,x2) asGk

21(v,x1 ,x2):

Gk
21~v,x1 ,x2!5S ~Gk

21!11 ~Gk
21!12

~Gk
21!21 ~Gk

21!22
D . ~D3!

For the numerical evaluation of theGk
21(v,x1 ,x2) func-

tion we subtract from the radial Dirac-Coulomb Green fun
tion the two first terms of the Taylor expansion at the po
Z50 (Z is the nuclear charge number!:
-
t

Gk
(21)~v,x1 ,x2!5Gk~v,x1 ,x2!2Gk

(0)~v,x1 ,x2!

2Gk
(1)~v,x1 ,x2!, ~D4!

where Gk(v,x1 ,x2) is the radial Dirac-Coulomb Gree
function:

Gk
(0)~v,x1 ,x2!5Gk~v,x1 ,x2!uZ50 , ~D5!

Gk
(1)~v,x1 ,x2!5ZF d

dZ
Gk~v,x1 ,x2!GU

Z50

. ~D6!
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The computation of theGk
(21) function was performed in

a wide range of real values ofx1 andx2 , complex values of
v „R(v)<1…, and uku<50. The achieved numerical prec
sion is estimated to be better than 1028 in most cases.

1. Dirac-Coulomb Green function

The radial Green function of the Dirac equation can
written in the form:

Gk~v,x1 ,x2!52
1

Dk~v!
@fk

`~v,x1!fk
0T

~v,x2!

3u~x12x2!1fk
0~v,x1!fk

`T
~v,x2!

3u~x22x1!#, ~D7!

wherefk
0 andfk

` are the solutions of the radial Dirac equ
tion, bounded at the origin and at the infinity, respective
Dk(v) is the Wronskian:

Dk~v!5x2fk
0T

~v,x!S 0 21

1 0 D fk
`~v,x!. ~D8!

For the pure Coulomb potential the radial Dirac equat
can be solved analytically in the form@15#

fk
0~v,x!5S fk

0,1~v,x!

fk
0,2~v,x! D , ~D9!

fk
`~v,x!5S fk

`,1~v,x!

fk
`,2~v,x! D , ~D10!
n

e

.

n

fk
0,6~v,x!5

A16v

x3/2 F ~l2n!M n2~1/2!,l~2cx!

7S k2
aZ

c D M n1~1/2!,l~2cx!G , ~D11!

fk
`,6~v,x!5

A16v

x3/2 F S k1
aZ

c DWn2~1/2!,l~2cx!

6Wn1~1/2!,l~2cx!G , ~D12!

Dk~v!54c2
G~112l!

G~l2n!
, ~D13!

where c5A12v2
„R(c).0…, l5Ak22(aZ)2, n

5aZv/c, and Ma,b and Wa,b are the Whittaker functions
of the first and second kind, respectively. Their computat
is described in Appendix E.

Often in atomic structure calculations it is necessary
take into account the effect of the finite nuclear size. In t
case one should calculate the Green function of the D
equation with the potential of an extended nucleus. Num
cal algorithms for the computation of the Dirac Green fun
tion in the case of a homogeneously charged sphere a
hollow shell nuclear models were developed by Mohr a
co-workers and are described in@17#.

2. Calculation of the Gk
„1… function

The direct differentiation of the expressions~D7!–~D13!
according to the definition of theGk

(1) function ~D6! yields,
for x2.x1 ,
Gk
(1)~v,x1 ,x2!52

aZ

Dk
(0)

v

c
$@dfk

0~v,x1!#0@fk
`~v,x2!#0

T1@fk
0~v,x1!#0@dfk

`~v,x2!#0
T2c~ uku!

3@fk
0~v,x1!#0@fk

`~v,x2!#0
T%. ~D14!
For x2,x1 theGk
(1)(v,x1 ,x2) function can be obtained from

Eq. ~D14! together with the symmetry conditio

Gk
(1)(v,x1 ,x2)5Gk

(1)T(v,x2 ,x1).
The components of thefk , dfk functions are

@fk
0,6~v,x!#05

A16v

x3/2
@ ukuM 27kM 1#, ~D15!

@fk
`,6~v,x!#05

A16v

x3/2
@kW26W1#, ~D16!

@dfk
0,6~v,x!#05

A16v

x3/2 F ~2M 21ukuM 28 !7S 2
1

v
M 1

1kM 18 D G , ~D17!
@dfk
`,6~v,x!#05

A16v

x3/2 F S 1

v
W21kW28 D6W18 G ,

~D18!

Dk
(0)~v!54c2

~2uku!!
~ uku21!!

, ~D19!

where

M 65M 61/2,uku~2cx!, W65W61/2,uku~2cx!,

M 68 5~d/dn!M n61/2,uku~2cx!un50 ,

W68 5~d/dn!Wn61/2,uku~2cx!un50 ,
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andc(x) is the logarithmic derivative of theG function. The
numerical algorithms for the evaluation of theM 68 andW68
functions are described in Appendix F.

APPENDIX E: NUMERICAL EVALUATION
OF THE WHITTAKER FUNCTIONS

The computation of the Whittaker functions was d
cussed previously in detail by Mohr@3#. The present numeri
cal evaluation is similar in some aspects to that one. T
important difference is that in Ref.@3# the 128-bit arithmetic
was used in a certain range of the variation of the argum
for the computation of the Whittaker function of the seco
kind. This makes its numerical evaluation very time consu
ing. Our method of the numerical evaluation employes o
the double precision~64-bit! arithmetic.

1. Computation of the Whittaker function of the first kind

The first solution of Whittaker’s differential equation
given by the expression@20#

Ml,m~z!5zm1~1/2!e2z/2
1F1~m2l1 1

2 ,2m11;z!, ~E1!

where 1F1(a,b;z) is the confluent hypergeometric functio
Ml,m(z) can be computed comparatively easily via its de
nition by summing the hypergeometric series@20#:

Ml,m~z!5zm1~1/2!e2z/2(
n50

` S m2l1
1

2D
n

~2m11!n

zn

n!
, ~E2!

where (a)n5G(a1n)/G(a) is the Pochhammer symbo
The summation in Eq.~E2! can be evaluated up to a des
able precision for small and moderately large argume
while for large z the numerical overflow arises due to th
exponential behavior ofMl,m(z).

Another method for the computation of the Whittak
function of the first kind was proposed in Ref.@3#. This
method is based on the series expansion of the integral
resentation forMl,m(z), and yields the following expression

Ml2~1/2!,m~z!6Ml1~1/2!,m~z!5zm1~1/2! (
n50

`

I 6~n!
~z/2!n

n!
,

~E3!

whereI 6(n) are calculated recursively:

I 1~n11!5I 2~n!2
2l

n1112m
I 1~n!, ~E4!

I 2~n11!5
n11

n1112m
I 1~n!, ~E5!

with I 1(0)52, I 2(0)50. This algorithm is stable for no
very largez as well as the first method.

In the region where u@G(2m11)/G(m1l
11/2)#zle2z/2u,d ~d is a desired numerical precision!, for
the computation ofMl,m(z) one can use the asymptotic e
pansion in the form@21#
e

nt

-
y

-

s,

p-

Ml,m~z!5
G~2m11!

GSm2l1
1

2D
z2lez/2

3 (
n50

N S 1

2
1m1l D

n
S 1

2
2m1l D

n

n!
z2n

1O~ uz2(l1N11)ez/2u!. ~E6!

In Eq. ~E6! the exponentially growing factorez/2 can be
separated and compensated for by a correspondingly s
factor from the asymptotic expansion of the functionW. In
this way the numerical overflow in the computation of t
product of two Whittaker functionsMW can be avoided for
large values of the argument.

2. Computation of the Whittaker function of the second kind

The second solution of Whittaker’s differential equatio
is defined as follows@20#:

Wl,m~z!5
G~22m!

GS 1

2
2m2l D Ml,m~z!

1
G~2m!

GS 1

2
1m2l D Ml,2m~z!. ~E7!

When the absolute value of the argument is relatively sm
the computation ofWl,m(z) can be performed directly via its
definition. However, large numerical cancellations arise
large arguments. The reason for this is that, as one can
from the asymptotic behavior of the Whittaker functions, t
exponentially decreasing functionWl,m(z) is defined as a
sum of two exponentially growing functions.

For large values of the argument the asymptotic exp
sion can be used@21#:

Wl,m~z!5zle2z/2(
n50

N S 1

2
1m2l D

n
S 1

2
2m2l D

n

n!
~2z!2n

1O~ uzl2N21e2z/2u!. ~E8!

In the region of moderate values ofuzu andm<15, neither
method described above can provide a desirable precisio
this case we use a more sophisticated algorithm propose
Luke @22# for the computing of the second solution of th
confluent hypergeometric differential equationU(a,c;z).
The Whittaker function of the second kind can be written
terms of theU(a,c;z) function as follows:

Wl,m~z!5zm1~1/2!e2z/2U~m2l1 1
2 ,2m11;z!. ~E9!

The U(a,c;z) function can be expressed as an expans
over the Chebyschev polynomials:
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U~a,c;vz!5~vz!2a(
n50

`

Cn~z!Tn* S 1

v D , ~E10!

a,11a2cÞ0,21,22, . . . ;zÞ0, uarg(z)u,3p/2, v is a free
parameter (v>1), Tn* (x)5Tn(2x21), and Tn(x) are the
Chebyschev polynomials. The coefficientsCn(z) satisfy the
recurrent equation

2Cn~z!

en
5zn~z!Cn11~z!1hn~z!Cn12~z!1§nCn13~z!,

~E11!

zn~z!52~n11!S 12
~2n13!~n1a11!~n1b11!

2~n12!~n1a!~n1b!

2
2z

~n1a!~n1b! D , ~E12!

hn~z!512
2~n11!~2n1322z!

~n1a!~n1b!
, ~E13!

§n52
~n11!~n132a!~n132b!

~n12!~n1a!~n1b!
, ~E14!

where b511a2c, e051,en52 for n>1. Expressions
~E11!–~E14!, together with the normalization relation for th
coefficientsCn(z),
er

va
:

e

(
n50

`

~21!nCn~z!51, ~E15!

provide a convenient method for the numerical evaluation
expansion~E10! assuming the sum converges; therefo
limn˜` Cn(z)50. To evaluate the sum, the naturalN was
chosen to be large enough for one to assumeCN11(z)50
and CN12(z)50. We start withCN(z)51 and employ the
recurrence equation~E11! downwards. Then we normaliz
the coefficientsCn(z) using expression~E15!, and perform
the summing of the Chebyschev polynomials. The sum
the Chebyschev polynomials can be easily evaluated u
the well-known recurrent relations~see, e.g., Ref.@22#!. To
estimate the uncertainty of the numerical evaluation, one
enlargeN and repeat the procedure until the difference b
tween the results of the evaluation becomes smaller than
desirable numerical uncertainty.

Recently a method for the computation of theWl,m(z)
function was reported based on a nonlinear sequence tr
formation of the asymptotic series expansion ofWl,m(z)
@23#. The region of the application of the algorithm is foun
to be close to the previous one, thus this method was
used in the actual numerical calculations.

For the computation of theGk
(1)(v,x1 ,x2) function~D14!,

one should calculateWl,m(z) with 2l andm are integer. In
this case the following expression can be used@21#:
Wl,m~z!5zm11/2e2z/2H ~2m21!!

G~1/21m2l! (
m50

2m21
~1/22m2l!m

~122m!m

zm22m

m!
1

~21!2m

~2m!!G~1/22m2l! (
m50

`
~1/21m2l!m

~2m11!m

zm

m!

3@c~11m!1c~2m111m!2c~1/21m2l1m!2 ln z#J , ~E16!
e

ric
which is valid when 2m11 is an integer.
We are interested only in certain values of the paramet

l56 1
2 , and m is an integer. In this case expression~E16!

simplifies greatly:

W1/22n,k~z!5z2k1 1/2e2z/2
1

G~k1n! (
m50

k2n
G~2k2m!

~k2n11!2m

zm

m!
,

~E17!

heren50,1.

APPENDIX F: COMPUTATION OF THE DERIVATIVES
OF THE WHITTAKER FUNCTIONS

In this section we discuss the computation of the deri
tives of Whittaker functions of the special kind
(d/dh)Mh61/2,k(z)uh50 and (d/dh)Wh61/2,k(z)uh50 . We
use the notationsM 61/2,k8 (z) and W61/2,k8 (z), respectively,
for these derivatives.

The computation of these derivatives of the Whittak
functions was studied previously in Ref.@24#. The present
s:

-

r

numerical evaluation is similar to that one with som
changes in computation ofW61/2,k8 (z). For the sake of com-
pleteness we reproduce formulas from Ref.@24# below with
some misprints corrected.

1. Computation of the derivatives of the Whittaker function of
the first kind

The term-by-term differentiation of the hypergeomet
series~E2! yields

M1/22n,k8 ~z!5e2z/2(
m51

`
~n1k!m

~2k11!m

zm1k11/2

m!
„c~n1k!

2c~n1k1m!…. ~F1!

In the region where u@G(2k11)/G(k2n
11)#z1/22ne2z/2 ln zu,d ~d is a desired numerical precision!,
the asymptotic expansion forM1/22n,k8 (z) was used in the
form



ovided

between

oy the
is
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M1/22n,k8 ~z!5ez/2H G~2k11!

G~k1n! (
m50

k1n21

~21!m
~k2n11!m

~k1n!2m

z2m1n21/2

m!
„c~k2n1m11!2c~k2n11!1c~k1n2m!2 ln z…

2
@~2k!! #2~21!k1n

~k2n!! ~k1n!! (
m50

`
~2k11!m

~k1n11!m

m!

zk1m11/2J . ~F2!

As series~F2! is an asymptotic row, it is divergent. Despite this fact, it can be used for the numerical computation pr
the summation is properly terminated.

2. Computation of the derivatives of the Whittaker function of the second kind

The term-by-term differentiation of expression~E16! yields

W1/22n,k8 ~z!5e2z/2H ~21!k1n~k2n!!

~2k!! (
m50

`
~k1n!m

~2k11!m

zm1k11/2

m!
„ln z2c~m11!1c~k1n1m!2c~2k1m11!…

1 (
m50

k2n
~k1n!m~k2n2m11!m

m!zn1m21/2 „c~k1n!1c~k2n11!2c~m11!…

1 (
m50

k1n22
~21!mm!zm2n13/2

~k2n11!m11~k1n2m21!m11
J . ~F3!

This expression becomes numerically unsafe for large values of the argument due to large numerical cancellations
terms of the sum.

For large arguments one can use the asymptotic expansion ofW1/22n,k8 (z):

W1/22n,k8 ~z!5e2z/2H (
m50

k2n
~k1n!m~k2n2m11!m

m!zn1m21/2

3F (
l 50

m21 S 1

k2n2 l
2

1

k1n1 l D1 ln zG2 (
m5k2n11

`
~21!m1k2n~k1n!m~k2n!!

~m1n2k!k2n11zm1n21/2 J , ~F4!

where the second sum should be properly terminated due to the asymptotic nature of the expansion.
For moderate arguments andk<15, the accuracy of these methods becomes quite poor. Thus we have to empl

numerical differentiation of theWl,m(z) function obtained with formulas~E9!–~E15! to achieve a desirable precision in th
region.
o

s.
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