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First-order self-energy correction in hydrogenlike systems
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We present a detailed description of a procedure for the numerical evaluation of the first-order self-energy
correction for an arbitrary excited state. An efficient schema of the numerical treatment of the many-potential
part of the Dirac-Coulomb Green function improves the speed of the computation considerably. This feature is
extremely important for higher-order self-energy calculations. We apply this method to the evaluation of the
self-energy correction for the excited states wWith<5 andn<5 for some highZ ions.
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INTRODUCTION dure is developed for a numerical evaluation of the many-
potential part of the Coulomb-Dirac Green function which is
The self-energy is the dominant QED effect in atomicexpressed in terms of the Whittaker functions and their de-
structure calculations. While the formula for the bound-statgivatives. The usage of this procedure and the good conver-
self-energy and the general renormalization scheme hawgence efficiency of the resulting partial-wave decomposition
long been understood, the numerical evaluation of this corsimplify the numerical evaluation considerably. The calcula-
rection for highZ ions (Z is the nuclear charge numbavas  tion of the self-energy correction for the ground state of hy-
a hard problem for a long time. All the calculations madedrogenlike uranium up to a relative precision of 2takes

within the Z expansior(« is the fine-structure constariail only 1% h on a Pentium with a 100-MHz processor. This
for these systems, asZ is valid as an expansion parameter feature makes the approach a good basis for higher-order
no longer. self-energy calculations. The method was successfully ap-

The numerical evaluation of the self-energy correction topjied to calculations of the self-energy screening corrections

all orders inaZ has a long history. It is beyond the task of [11] and the self-energy corrections to the hyperfine splitting
this paper to recite all the authors who contributed to thig12].

problem. We mention only a few results here, which are the
most important ones in our opinion. The first correct self-
energy calculation to all orders inZ was performed by
Desiderio and Johnsofi] for some highZ ions using a The energy shift of an electron in a bound statedue to
method suggested by Brown, Langer, and Schdfélet.ater  the first-order self-energy correction is given by the real part
a method was developed by MoJ#,4] and a high-precision of the expressioch

calculation of the self-energy correction was performed for

I. BASIC FORMALISM

states in point-nucleus hydrogenic ions with principal quan- . 3 30t

tum numbersn=1 and 2. This work was extended to AEa—2|aJCFde d le XXy ey

=3-5 for |k|<2 by Mohr and Kim[5] (« is the Dirac

angular quantum number The effect of the extended XG(ga—w,X1,X2) @, Pa(X2) D*"(@,X1)
nucleus on the self-energy correction was studied by Mohr

and Soff[6]. The method of the potential expansion of the — 5mJ d3xJa(x) Pa(X), )

bound-electron propagator for the calculation of the self-
energy correction was developed by Snyderrfiidrand nu-
merically realized by Blundell and Snydermgs]. Recently ) ) = +
the method of the partial-wave renormalization was develWave function denotes the Dirac adjoittt,(x) = /a(X) vo,
oped for the self-energy calculations by Persson, LindgrendM is the mass counterterm®(w,x;,X;) = 1/(w—H) is the
and Salomonsof9] and by Quiney and Graft.0]. Dirac-Coulomb  Green function, andH=(a-p)+Am
In this work we present a procedure for the numericalt V(X) is the Dirac-Coulomb Hamiltonian. The function
evaluation of the first-order self-energy correction which is#a(X) is the bound solution of the Dirac equatipf(i/,(X)
closely related to the methods of Snydermj@hand Mohr ~ =&at/a(X)] written in the form
[3], and is applicable for an arbitrary excited state. The
present schema differs from the method of Snyderman inthe
treatment of the many-potential part which is the most time- 1geativistic units are used in this papdr€c=m=1). We use
consuming part of the calculation. A highly efficient proce- roman style(p) for four vectors, bold facép) for three vectors, and
italic style (p) for scalars. Four vectors have the form (pg,p)-
The scalar product of two four vectors is-kp= poko— (p-K). We
*Electronic address: yerokhin@pcqntl.phys.spbu.ru use the notationg-pp, y*, p=p/|p|.

wherea, = (1,@), « are the Dirac matrices, the bar over the
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where Hy=(a-p) + Bm is the free Dirac Hamiltoniany

denotes the interaction with the nucleus. This expansion is
FIG. 1. First-order self-energy correction. The double line de-widely used in atomic QED calculations. It was used first by
notes the bound-electron propagator, and the cross indicates tf®aranger, Bethe, and Feynmah4] to extract the physical

mass counterterm. self-energy shift through ordew(«Z)°. Whichmann and
Kroll [15] employed this method for an evaluation of the
Ja(X) X e.m.(X) vacuum-polarization correction. For the calculation of the

'/’a(x):(ifa(x)x i ; (;()), 2 self-energy correction in all orders afZ, this method was

developed by Snydermaiv] and numerically realized by

o . . , Blundell and Snydermaf8].

th(;:‘rex,w(x) is the spin-angular spindd3]. The functlon The three terms in Ed4) inserted into Eq(1) correspond
D**(w,xy,) denotes the photon propagator. In this paper W&, ;1 notential, one-potential, and many-potential terms,

work in the Feynman gauge, thus the photon propagator cglugpectively. The resulting expansion is graphically repre-
be written as sented in Fig. 3. It can be expressed with the first two terms
converted into the momentum space as follows:

eXF[i \/(1)2+ | 5|X12|:|

Am|xq9

Duv(wlxlﬁzguv ’ (3) d3p .
AEaZJW¢a(p)(2(°)(p)—5m)lﬂa(p)

wherex;,= X1 —X,, and the branch of the square root is fixed

with the conditionJ(y/w?+i8)>0, where s is small and . d°p’ f d’p — NTp' p)
positive. 2m)° ) (27)3 Ya(P)T(P"P
The self-energy correctiofl) is graphically represented ,
in Fig. 1. The integration contou® is shown in Fig. 2. To XV(lp" = pl) #a(p)
make expressiofil) meaningful one should regularize both
parts of it in the same covariant way, separate divergent +2iaf dwf d3x1f d3x2¢;(x1)aM
terms, and then pass to the limit which removes the regular- Cr
'zation. X Gt (82— 0,%1 %) @, a(X) D" (@, X12),  (5)

To isolate the ultraviolet divergences in Ed), we ex-

and the Dirac-Coulomb Green function in terms of the free / .
Birac Green function using the operator identity where &,=po=po, 2%(p) is the free-electron self-energy

operator defined in Appendix A;°(p’,p) is the time com-
ponent of the free-electron vertex operator defined in Appen-
dix B, and¢,(p) is the Fourier transform of the coordinate-
space wave functiof):

() - A
) J’d3 ~ipx ) - ga(p)XKama(p)
= xe X)=i"'a| ~ .

Va(P Val Fo(P)X e, (P)

, (6)
—14¢, - Cr
I | ,=|ka+1/2—1/2. TheG?* function denotes a part of the
... electron propagator containing two or more Coulomb inter-
— actions with the nucleus

o G*"(w)= ! \Y ! Y ! 7
@)= Vo H o Hy "

It can be easily shown that the many-potential term does not
contain any divergences. After the isolation of ultraviolet
divergences in the zero- and one-potential te(see Appen-
dixes A and B, one can obtain

FIG. 2. ContourC in the complexw plane, the singularities,
and the branch cuts of the Green function and the photon propaga- 2(0)(p)= Sm— iA (p— m)+E(R0)(p),
tor. ¢, denotes the energy of the initial state. 4= €

®
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T#(p' p):iA YA+ TE(p',p) AE :_a_zzjxdprjxdpjl dgp'zpz
’ Aq € R W~ one 32775 o o -1 q2
Using the Fourier transformed Dirac equation X{F1(p",p,E)P (&) + Fo(p',p, &) P&},
d’p’ (18)
(vﬁ—m)dfa(p)=f am3? Vip=p'Dea(ph), 9
where p=|p|,p’=|p'|,1=2j—1, and @?’=p?+p’?

one can see the explicit cancellation of the ultraviolet diver- / : :
gences between the zero- and one-potential terms itgEq. (leg)pai’d?ggo)the functions?, and 7, are given by Egs.

As a result, we express the self-energy correctid), as
the sum of the three finite terms:

AEa:AEzero+AEone+AEmanyr (10) . MANY-POTENTIAL TERM
& The many-potential term is given by expressi@8), with
_ — 0 the integration contour shown in Fig. 2. The integrand is an
AEze’O_f (2m)3 Va(PIER (P Ya(P), (1) analyticgfunction ofw, except for tﬁe poles of tﬁe Green
function (w=e,—&,+1i0, where index runs over all bound
AE - d3p’ J' d*p — | [0y states and, is the energy of the initial stakeits branch
one™ | (27m)3 W‘/’a(p )TR(P".P) points[w=g,*+(1—i0)], and the branch points of the pho-
ton propagator ¢ ==*+—1i8). The singularities and the
XV(|p"=pl) ¢a(p), (120 pranch cuts of the Green function and the photon propagator
are shown in Fig. 2.
o 3 3, 1t For the numerical evaluation of the integral ower we
ABmany=2i achdwf d le dea(X)a, deform the integration conto@g in a way shown in Fig. 4,

-, , and divide the integral into two parts which correspond to
X G (8q— W, X1, %) @, ha(X2) D**(@,X12). integrations over two part§, andC, of the new contour.
(13 We refer to these parts as tlosv-energyand thehigh-energy
terms, respectively. The conto@; is chosen in a way to
avoid singularities which come from the bound states with
the energys,<e,. This choice allows the procedure to be
The angular integration in Eq11) can be easily per- applicable to an arbitrary initial bound state. The contGyr
formed using the expression for the free self-energy operataxtends from—i®+gq t0 €5 and fromeg to i +gq. It is

Il. ZERO- AND ONE-POTENTIAL TERMS

(A5) and the relation chosen in a way to eliminate strong oscillations arising in the
. . . high-energy region of the conto@g in favor of exponen-
(0 P) Xicu(P) = = X = cu(P)- (14 tially decaying integrands. One can see that the integrand in

Eq. (13 falls off so rapidly that the contribution of the big
quarter circles of the deformed contour in Fig. 4 vanishes as
a (= p2dp their radius goes to infinity.
AE =_J —{a(p)[’gz(p)—~fz(p)]+ b(p) This choice of the integration contour is similar to the one
0 4w Jo (2m)° 2 2 used by Mohr3]. It differs by the fact that the conto@,
’ ~> o~ extends in the complex plane rather than along the real axis,
X[ea(@a(P)+1a(P))+2pTa(P)fa(P)]} (159 and by the choice of the parametsy. However, one should
. . stress the difference between the approach described here
Herep=p], the functionsa(p) andb(p) are defined by Ed. 4 the method of Mohr. In Ref3] the self-energy correc-

(AB) and (A7), andg,(p) andT,(p) are the components of tion was divided into low- and high-energy parts first, and

The result of the angular integration is

the momentum-space wave functic). _ then the subtraction of ultraviolet divergences was performed
The one-potential term is given by expressid@). The  in the high-energy part. We divide only the many-potential
Coulomb potential in the momentum space is term into low- and high-energy parts. As a result, we obtain

a partial-wave expansion which converges faster than the one
An advantage of the bending of the integration contour
C, into the complex plane is clear for highly-excited states.
The angular integration can be easily performed using ex the contourC, extends along the real axis, as in R¢f.

V(|p—p'|):—477(pfw-

pression(B18) and the following relation: 5], one has to evaluate numerically the principal value of an
1 1 integral containing as many singularities as the number of
t o ar Ay the bound states with the energye,<e,.
. (D)= —P(&), 1 | n<%a
2j+1 zu: Xl P)Xu(P)= 22 P E) 7 The contourC, consists of two parts: one extends along

L the upper bank of the cut of the photon propagator, and the
whereé=cospp’), j=|x|—1/2,1=|«x+3|—3, andP,(¢) is  other extends along the lower bank. Each part of the contour
a Legendre polynomial. As a result, we have is chosen to be a half of an ellipse,
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€0 Ae i® 4m{ab| aMa,,D"“’(w)|Cd>
w=—|1+ , 19
2 JAZ cog p+sirf ¢ (9 >
=2, I (abcdRy(w,abcd), (23
J=o
whereep=0, ... 7 corresponds to the lower part of the con-
tour ande=r, . .. ,0 to theupper part. One should note that

the integrand in Eq(13) on the upper and lower banks of the where the function ;(abcd) contains the whole dependence

cut differs only by the sign of the argument of the exponent®” the moment projections:
in the photon propagator. The variableg and A are free
parameters which were adjusted empirically to achieve the

best numerical efficiency of the algorithm. The value/of |J(ade)=§ (—1)Ja"MatI=Mtip=My

should not be large, because the photon propagator on the )

upper bank of the cut is an exponentially.growing function in ja J e ib J ia

the lower half of the complex plane which can cause nu- X .
My My Mg/\—m, —MmMy My

merical difficulties. For practical calculations we usg
=g,—0.9%,5, A=¢,/(5n"®), where n is the principal (24
guantum number of the initial state, ang is the energy of
the ground state. . - o
) . . . The expression for the radial integi}(w,abcd) is given
Let us consider the evaluation of the angular integrals in, Appepndix C. 9id(ew disg

Eq. (13). For this p_urpozs+e we use the spectral representation After summing over the moment projections of the inter-
of the Green functior™" (,X; ,Xa), mediate states, one can obtain

. B0, x)[ ¢ (@,%)]" e o (—D)iia
Cloxx)=E T T A @0 Emetan 2 T
where ¢{*)(w,x) is given by 2 (—1)'Ry(w,a¢ ¢ Va)
Xf dw ,
CL+CH Eq— W—Ej
¢ (@)= (0= Ho(1710) V) #i(x), (2D (25

andi runs over all solutionss;(x) of the Dirac-Coulomb
equation:Hy;(X) =¢;¢;(X). One can easily see that the an-
gular dependence dB%*(w,X;,x,) is the same as for the
Dirac-Coulomb Green functio®(w,Xy,X5).

After substitution of Eq(20) into Eq.(13) and the defor-
mation of the integration contour, we have

wherek; is the Dirac angular quantum number of the inter-
mediate stategh;, n; is the principal quantum numbey;
=|kj|—3%, and the summing overd extends from J
:|ji_ja| up toJ=ji+ja.

Expressing Eq(25) in terms of the Green function, it is
easy to obtain

AEmany=2i @, dw

T Jci+cy

X<a¢>f*’|oz,iayDW(wn ISRE |

Ea— W—Ej

(22

—l+e, s — €1
. . .

To perform the angular integration, we introduce the
function R, (w,abcd) in the following way[16]: _— )

N

1+ &,
¢.--
- X = - X - + €
¢.--

FIG. 3. Decomposition of the bound-state self-energy into zero-
potential, one-potential, and many-potential terms. Single lines rep- FIG. 4. Deformed contour in the complex plane, the singu-
resent free-electron propagators, double lines bound-electron propkarities, and the branch cuts of the Green function and the photon
gators, and dashed lines the binding potential. The cross represemispagator. The new contour is divided into two pa{sandCy,
the mass counterterm. which correspond to the low- and high-energy parts, respectively.
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TABLE |. First-order self-energy correction for the hydrogenlike point-nucleus tungsten, bismuth, and uranium expressed in terms of the
function F(aZ) defined by Eq(32).

dsp, fsp o 9712 Yor2
Z n=3 n=4 n=5 n=4 n=>5 n=4 n=5 n=5 n=5

74 0.05500) 0.05984) 0.06286) —0.0198(4) —0.0184(7) 0.023¥) 0.02477) —0.0121(9) 0.0139)
83 0.058%0) 0.06393) 0.06715) —0.0194(3) —0.0180(5) 0.023@) 0.02546) —0.0121(8) 0.013®)
92  0.062000 0.06842) 0.07195) —0.0189(2) —0.0175(5) 0.024®) 0.02625 —0.0121(5) 0.0136)

ia y=p—p’, (30)
AE j
CL+cH

many” 3 0 2]a+1 \K?

o o _ \/ﬁ
xf xfdxlf xadx, >, (2J+1) G=Np+pT-2ppé (31)
0 0 sign(x;)
J
341 The many-potential term was evaluated dividing the con-

_ 2 240 _ tour of the integration into two piece§, and C, corre-
X[[CJ(K' )" 95(0){Giq Jaa 2 9w sponding to the low- and high-energy terms, as discussed in
Sec. Ill. The numerical evaluation of the integrals oxep
in the both terms was performed in the same way using the
change of the variabled3] {x;x,}—{ry}, where r
=X-IX~ ,y=2aZXx- . The numerical evaluation of the in-
where g, (w) =9, (w,X- ,X-) is defined by Eq.(C6), and tegrand is based on the computation of tBE(w,xl,xz)
Gi+:Gi+(8a_wiX1aX2) is the radial part of the function described in detail in Appendix D.

X{Gir lKIi':ia,JL]y (26)

G?*(e4— w,X1,%,) function defined in Appendix D. Other In contrast to the method of Mohr, we perform all the
notations used in Eq26) are as follows: integrations before the summing oVt is evaluated. As a
result, after all the integrations are completed, we have a
(A} =0a(Xx1)A119(X2) + Ga(X1) Asof p(X2) smooth|«| series which can be easily extrapolated. The ex-

pansion of the low-energy part usually converges very well
HHa(X0)A2196(X2) + Fa(X0) Azafn(X2),  (27)  (faster than x| ~3), and it can be summed up to a desirable
b precision without any extrapolation. The maximal value of
{At %y o= Ta(X) Aafp(X2) SyL( = Ka k1) SyL(— Kb, k2) |«| used in the most difficult case considered hete=B) is
35, while for the ground state the sum can be terminated
— Fa(X1)A1286(X2) SyL( = ko, k1) SyL(Kp = K2) already at k| =5. The high-energy term is usually smaller by
. _ _ an order of magnitude than the low-energy part, but its con-
Ga(X1) Aoafp(X2) Sy (K, = K1) Sy~ Kp 1 c2) vergency is slower|| 2 for high |«]). The summation was
+ ga(X1) A2Ob(X2) Sy (Ka, — k1) Sy Ky, — k), terminated atx| =50 or less, and the remainder of the series
28 was estimated using a polynomial fitting in 4/.

The results of the calculations of the first-order self-
energy corrections for the hydrogenlike point-nucleus tung-
sten, bismuth, and uranium are presented in Table | for states
with 3<|k|<5 andn=<5. We express our results in terms of
the functionF («Z):

where the angular coefficients; and S;, are defined by
Egs.(C7)—(C10.

IV. NUMERICAL DETAILS

For the numerical evaluation of all the integrals, we use
the Gauss-Legendre _quadratures_. Computa_\tion of the bound- AEazg (“ ) F(aZ)mc. 32
state wave functions in the coordinate and in the momentum
space was performed following R¢f.7]. While the integra-
tion of the zero-potential term is straightforward, the one-
potential term requires some care. For its calculation one hds Table || we compare our calculations with the most pre-
to evaluate a four-dimensional integral numericaflythree-  cise results obtained by Mohr and Kifd] and Indelicato
dimensional integration in E¢18) and an additional integra- and Mohr[18].
tion over the Feynman parameter in E€312)—(B15)]. One One should note that a numerical cancellation between
can see that the integrand in EG8) has an integrable sin- different contributions to the self-energy correction arises
gularity wheng=0. To handle the singularity, it is conve- which appears to be much stronger for highly excited states
nient to make the change of variablgpp’ ¢&—{xyq}, than for low-lying ones. To illustrate this, in Table Ill we
where give a breakdown for the different terms of the self-energy

correction for k,,, and g/, states of the hydrogenlike ura-
X=p+p’, (29 nium.
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TABLE Il. Comparison of the present results with the previous calculationZ 080 in terms of the functiofr(«Z) defined by Eq.
(32.

P32 dap
Ref. n=2 n=3 n=4 n=5 n=3 n=4 n=5
This work 0.290663) 0.335005) 0.350713) 0.35787) —0.02249(5) —0.0149(2) —0.0105(5)
[5] 0.335@1) 0.35071) 0.35741) —0.0225(1) —0.0149(1) —0.0108(1)
[18] 0.290667881) 0.33496587) —0.02248223(3)
CONCLUSION d*k 1 p—k+m
3O (p)=—4rmia 5y’

What we have presented in this paper is a practical highly (2m)* K? y"(p—k)z— m
efficient procedure for the numerical evaluation of the first- (A1)
order self-energy correction for an arbitrary excited state. In_ o o
this paper we discuss only the point-nucleus problem. Thd his expression is infrared finite, and we can use the photon
procedure can be immediately extended to the finite-nucleugroPagator with the zero photon mass already from the be-
case. We performed calculations of the self-energy correcd/nning. Expressior{Al) is obviously ultraviolet divergent.
tion for low-lying excited states employing the hollow-shell It can be shown that this divergency is only logarithmical, if
nuclear model, and obtained a good agreement with the rdhe C(_)varlar_wt regularlzat_lon is used. In our calculation we use
sults of Mohr and Soff6]. the dimensional regularization

At present there are different methods developed for the 4 b
calculation of the first-order self-energy correction; some of dk N d”k
them were mentioned in the Introduction. Most of these (2m)*  (2m)P’
methods can be adopted for the calculation of the self-energy
in an arbitrary spherically symmetric potential. However,with D=4-—2e.
some problems may arise in the extension of a methoelor To separate the ultraviolet divergency, we write the self-
initio higher-order self-energy calculations. For instance, thenergy operator in the form
method of the partial-wave renormalization applied to the
two-electron self-energy_ correction gi_ves_ a small spurious 3 (0)(p)= 6m— iAE([b— m)+2(RO)(p)' (A3)
term due to a noncovariant renormalization procedisee 4
Ref.[11] and references therginn this paper we have pre- s
sented a covariant procedure for the calculation of the firstvhere sm=3a/(4m)m(A+3) is the counterterm of the
order self-energy which has been proven to be a very effiass renormalization .= (1/€) - yg+In 47—In n?, andye

cient basis for calculations of higher-order self-energy!S the Euler constant. We prefer to write the self-energy op-
correctiong11,12. erator in form(A3) rather than in the more usual one:

(A2)

©)(p)= — — (0)
ACKNOWLEDGMENTS 2P (p)=m+(Z,—1)(p—m)+ 2 4(p). (A4)

Valuable conversations with Thomas Beier are gratefuIIyThe reason for this is that the wave-function renormalization

acknowledged. This work was supported by the RussiaﬁonStamZZ_ is infrared inergent .in the Feynman gauge, and
Foundation for Basic Researdi®rant No. 98-02-18350 its separation causes infrared dl\{ergenpegﬁﬂ,(p). In Eq.
and by the program “Russian Universities Basic Research’{A3) We separate only the ultraviolet divergent partZof,

(Project No. 393D and=©)(p) does not contain any divergences.
TheE&o)(p) operator in the Feynman gauge can be easily
APPENDIX A: FREE ELECTRON SELF-ENERGY calculated to be
OPERATOR o
. 0)m) =
The free-electron self-energy operator in the Feynman 2R'(p) 4W(a(P)+V5b(P))’ (AS)
gauge is given by the integral
2
TABLE lll. Various contributions to the self-energy correction a(p)=2m| 1+ —p|n p> , (AB)
for 1s;, and 5gg, states of the hydrogenlike uraniurd€92) in 1-p
atomic units.
b(p)=— L[ 14 L in (A7)
Contribution 515 509/ P 1-p 1-p Pl
Zero-potential term —19.1010 —2.67403 wherep= (m2— p2)/m2.
One-potential term 17.5809 1.94711
Low-energy term 2.7815 0.71305 APPENDIX B: FREE-ELECTRON VERTEX OPERATOR
High-energy term 11.9500) 0.014844)
Total self-energy 13.2112) 0.000974) The free-electron vertex operator in the Feynman gauge is

given by
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dk 1 p—K+m Cat\ -, y?
P A I A d
I‘/—L(p 1p)_ Amia (27T)4 k2 ‘y{T(p/_k)Z_mZ (Cz ) :f /—yz< (1_y)2)
. Cos) 0P T(1=Y)P"\ y(1—y)
(B1)

Xy 7
" (pk2—m?” X (B14)

! +Y-Y2InX
2 2
ExpressionB1) is infrared finite. It contains the logarithmic
ultraviolet divergency which is handled using the dimen-
sional regularization wittD=4—2¢ as in the case of the

free self-energy operator. The evaluation of the free-electron
vertex operator can be found in R¢¥]. Here we present q
only the final expressions suitable for the numerical evalua®"

1
C24=—J dyIn(y??/m?>—yg?/m?+1),  (B15)
0

tion, correcting a number of misprints in RET)].

We separate the ultraviolet divergencylitt(p’,p) in the

following way:

o

PH(p D)= 1Ay + DA D), (B2)

whereA .= (1/€) — yg+In 47—In mP. Again, we remark that

X=1+ (B16)

v Moyp - (1-y)p?
(yp'+(1-y)p)?

(B17)

in Eq. (B2) we separate only the ultraviolet divergent part ofg=p’—p. The coefficient<;; can be expressed in terms of

the renormalization constait, .

Cy, as it was done in Ref7], and the coefficien€, can be

TheI'g(p’,p) function is finite, and can be evaluated to beevaluated in terms of the Spence functidilogarithm [19].

o
TR P = s _{AY*+P'(B1p'#+B2p")

TB(C1p"#+Cop*) + D(B' y#p) +Hp'*
+Hap#}, (B3)

A=Cyy=2+p'?Cyy+p?Cpp+4(p'-p)(Co+ Cy3+C1)

+m?(—2Co+Cy1+Cyy), (B4)
Byi=—4(Cy1+Cypy), (B5)
B,=—4(Cq+Cy1+CyptCpa), (B6)
C1=—4(Cy+Cy1+Cqpt+Cyy), (B7)
Co=—4(C2t Cp), (B8)
D=2(Cy+Cy;+Cy), (B9)
H,=4m(Co+2C1y), (B10)
H,=4m(Co+2C1y), (B11)
where

1 y

C‘Ffo opra—ypr 0 B2
1
i gy Lyl

(B13)

However, we found that safer to perform the integration over
the Feynman parametgrnumerically.

Evaluating the integral ovey in Egs.(B12)—(B15), one
should remember that the denominatgp’ +(1—y)p)? can
have zeros on the interval of the integration. It does not
cause any singularities because of corresponding zeros of the
numerator. However, one should take care of numerical can-
cellations arising in the vicinity of these points. This was
handled by dividing the integration interval into two or three
pieces according to the number of the zeros.

For the calculation of the one-potential term, only the
time component of the vertex functidig(p’,p) is needed.

To perform the angular integration in the one-potential term,

it is convenient to write,z/(p’)l"g(p’,p)z,b(p) in the form

V(D TED D (D)= 5 AF (B Xy (D)

(P}
(B19)

+ FoxD e (D)X«

aMa

One can see that the functioif3 , can be expressed as fol-

lows:

Fi(p' &) =AT'G+ea(B1+By) (28 +p'T')G
+ea(C1+C2)T' (29 +PF)+D(e3' +p'F')

X(e0+pT)+ea(Hi+H2)T'G, (B19)

Fo(p',p,&)=AT T+e4(B1+By)(eal +p'G )T +e4(Cy

+C) T (eaf +pT) +D(eaf ' +p'T’)

X (ef+pg)—ea(Hi+H)T'T, (B20)
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where p=|p|, p’=|p'|, &= cos(op) g and T denote the where P|(2) is the Legendre polynomial, angi(z) and
components of the wave function in the momentum reprehi*(2) are the spherical Bessel functions.

/ The angular coefficientS; («,,«;) differ from the zero
sentation (6): 9= =T ,9'= , and T JLLA%a s Bh i
= . (®): 93.“’) a(P). 0° ga.(P.) only for L=J—1,J,J+1, and can be written fod+#0 as
=f.(p'); ea=Po=pg is the energy of the initial state. follows:
APPENDIX C: RADIAL INTEGRAL R;(w,ABCD) ( ) J+1 Kat Kp ( )
S Ka,Kp)=\/ 1+ Ci(—Kp,K4),
The evaluation of the integr&,;(»,abcd) defined by Eq. T fa T 2J+1 ES T
(23) can be found in Ref.16]. For our purposes it is conve- (C7)
nient to write it in the forms
Ka™ Kp
% Sy s(ka,kp) = ——==——==Cy(Kp,Ka), (C9
RJ(w,ade)=(2J+l)f x2dxx2dx; JJ+1)
0
S _ J 1 Ka+ Kp C
><[(—1)JCJ(Ka,KC)CJ(Kb,Kd) 29-1(Ka k)= Vg |~ 5 | Col = ko).
(C9
X g, X<, X ) Wac(X1) Wa(X2) In the case whed=0 there is only one nonvanishing coef-
ficient  Spi(ka.kp)=Co(—kp,xa). The  coefficients
—EL: (—Drgp(,X< X=)Xae(X1) Xpd(X2) f, Cy(kp,k,) are given by the expression
(C1 Cy(kp,ka)=(—1) 0" 2(2),+1)(2],+1)
Wab(X) = Ga(X)@p(X) + fa(X) Fu(), (c2) Ja
x{ 1, _1|Tdaly9), (€10
Xab(X) =ga(X) Fp(X) Sy~ kp, ka) = Fa(X)Gp(X) > )
XSy (Kp,—Ka), (C3

the symbollI(l,,l,,J) is unity if | ;+1,+J is even, and zero

whereg,, andf, are the upper and lower radial componentsOther""'Se-

of the Dirac wave function, respectively..=max; ,x,), _ (24)
andx_=min(x; ,X,). The functiong;(w,x- ,X-) is the radial APPENDIX D: COMPUTATION OF THE G ,* FUNCTION

part of the partial wave expansion of the photon propagator: gqr the calculation of the many-potential te(@6) it is
necessary to compute a part of the electron propagator with

i wX
ex 12:2 (21+1)g;(w,X-X=)P;(cog%;X,)), (C4)  two or more Coulomb interactions inserted:
12 I
- 1 1 1
1 X G (w):w—Hovw—HVa)—’Ho' (B1)
g|(OX<X>) 2|+1 |f11 (CS)
The function G?*(w,X;,%,) has the same angular depen-
o W dence as the Dirac-Coulomb Green function and can be writ-
9i(@,X<X>) =ioj(0X<)h~(wX-), (CO  ten in the form
|
& (s ) =S ( (GEN1XuFDX () —H(GE ) 12X x | u(%2) 02
G G X wFX (%) (GE ) oo eu R, (%)
|
W2e+refer to the radziel part of the term of tlkeexpansion of G (@,%1,%2) =G (@,X1,%7) — GO (w,x7,%,)
G (w,X1,X) asGL (w,Xq,Xo):
v v ~GW(w, X1 %), (D4)

(D3) where G, (w,X1,X,) is the radial Dirac-Coulomb Green

(G211 (G2,
function:

G2" (w,%q,X )=( .
VR (GE )y (GE)p,

(0) —
For the numerical evaluation of th@%" (w,x;,x,) func- Gl(@,X1,X2) =G (@,X1,X2) [ 20, (D5)

tion we subtract from the radial Dirac-Coulomb Green func-
tion the two first terms of the Taylor expansion at the point G( (o, X1,Xp) = z[
Z=0 (Z is the nuclear charge number

Gu(w,X1,X3) (D6)

dz

Z=0
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The computation of th&?*) function was performed in ) N
a wide range of real values a&f andx,, complex values of ¢2”(w,x)=
o (R(w)<1), and|k|<50. The achieved numerical preci-
sion is estimated to be better than £0n most cases.

(A=v)M,_ (119 1 (2CX)

(D11)

. al
S K M, (2 (2CX) |,
1. Dirac-Coulomb Green function

The radial Green function of the Dirac equation can be - V1Fe aZ
written in the form: ¢, (0,X)= 32 K+ —— Wy £ (2CX)
1 » T =W,i g (20X) |, (D12
Gl @.X1,%9) == 7~ [ Pl X1) g (w,%)
Aw)
o T ,T(1+2))
X O(X1=X2) + @ (@,X1) P, (w,X7) A (w)=4c"—~——-, (D13)
« K I'\—v)
X 0(Xo—Xq) ], D7
(X2~ x1)] 7 where c= 11— w? (R(c)>0), \= Jk’— (aZ)% v

where¢? and ¢~ are the solutions of the radial Dirac equa- = @Zw/c, andM, 5 andW,, 4 are the Whittaker functions
tion, bounded at the origin and at the infinity, respectively.of the first and second kind, respec’uvely Their computation

A, (w) is the Wronskian: is described in Appendix E.
Often in atomic structure calculations it is necessary to

take into account the effect of the finite nuclear size. In this

5 o7 0 . case one should calculate the Green function of the Dirac

Ado)=x"¢ (0 X)| ; |d(wx). (D8  equation with the potential of an extended nucleus. Numeri-

cal algorithms for the computation of the Dirac Green func-

For the pure Coulomb potential the radial Dirac equationtion in the case of a homogeneously charged sphere and a

can be solved analytically in the ford5] hollow shell nuclear models were developed by Mohr and
co-workers and are described|[ih7].

¢°+< X)
Pe(wx)= % (w,x))" (D9) 2. Calculation of the G function
- The direct differentiation of the expressio(37)—(D13)
& (0.X)= ( ¢£ _(“”X))’ (D10)  @according to the definition of the!) function (D6) yields,
¢ (w,X) for X,>X;,
) . ar o 0 o T 0 o T
G (@.X1,%2) = = 170y cLod (@ %) ol ¢ (@, X2) JoF [b( @, X1)Jol 6b (@, X2) Jo— P(|x])
X[ (@, x1) ol Bre@,X2) o} (D14)
|
Forx,<x; the G'"(w,x; ,x,) function can be obtained from . NI
Eq. (D14) together with the symmetry condition [5¢K'—(w,x)]o=w[(5W+ KW'-) =W, |,
G (,x1,%) = GH (@,%,,%). (D18)
The components of the, , ¢, functions are
J1+ , (2]x|)!
0 —
[0 (00Jo="g5~[[K[M_FxM.], (D19 A ) =4 T (B19

. \/17 where
[¢. (0,X)]o= N —, LKW_EW, ], (D16)
Mo=M_yp),(2¢X), We=W.p5),((2CX),

. s 1
[0 (0. X)]o=——5— [ (=M_+[«[M_)F| - =M, M~ =(d/dv)M . 1/50,(26X)] 0,

, (Dl?) WL::(d/dv)wvil/&\;d(zcxﬂv:Oa

+K|\/|Lr>
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and¢(x) is the logarithmic derivative of thE function. The I'(2u+1) N
numerical algorithms for the evaluation of thé, and W', Myu(2=—F——57 &
functions are described in Appendix F. P(M—)\+§
APPENDIX E: NUMERICAL EVALUATION 1 1
OF THE WHITTAKER FUNCTIONS N | TRTA STt
n n__n
The computation of the Whittaker functions was dis- Xngo n! z

cussed previously in detail by Moh8]. The present numeri-

cal evaluation is similar in some aspects to that one. The +0(|z7 N he??). (E6)

important difference is that in Reff3] the 128-bit arithmetic

was used in a certain range of the variation of the argumerin Eq. (E6) the exponentially growing factoe?? can be

for the computation of the Whittaker function of the secondseparated and compensated for by a correspondingly small

kind. This makes its numerical evaluation very time consum+{actor from the asymptotic expansion of the functidh In

ing. Our method of the numerical evaluation employes onlythis way the numerical overflow in the computation of the

the double precisio64-bit) arithmetic. product of two Whittaker functionMW can be avoided for
large values of the argument.

1. Computation of the Whittaker function of the first kind

The first solution of Whittaker's differential equation is 2. Computation of the Whittaker function of the second kind
given by the expressiof20] The second solution of Whittaker's differential equation

is defined as follow$20]:
MN#(Z):ZM+(1/2)972/21F1(M—)\+%,Z,Uri-l;z), (E1) is defined as follow$20]

I'(=2p)

where ;F(a,b;2) is the confluent hypergeometric function. Wy u(2)=—7—— M u(2)
M, .(2) can be computed comparatively easily via its defi- r(__,u_)\)
nition by summing the hypergeometric serj@§]: 2

I'(2u)

(M_HE M@ (ED)
* 2 z" F(— +,u,—)\)
M)\’M(Z) :Z,qu(l/Z)e*Z/ZE n , (EZ) 2

&0 (2p+1), n!

When the absolute value of the argument is relatively small,

where @),=I'(a+n)/T'(a) is the Pochhammer symbol. ¢ ¢omnytation oWV, ,(z) can be performed directly via its

The summation in E(E2) can be evaluated up to0 a desir- yofinition, However, large numerical cancellations arise for
able precision for small and moderately large argumentsg e arguments. The reason for this is that, as one can see
while for largez the numerical overflow arises due to the o e asymptotic behavior of the Whittaker functions, the

exponential behavior o1, ,,(2). exponentially decreasing functiow, ,(z) is defined as a
Another method for the computation of the Whittakersufn of two gxponentialls growing ?ﬁlﬁ(c:t?ons.

function of the first kind was proposed in RgB]. This For large values of the argument the asymptotic expan-
method is based on the series expansion of the integral re;yn can be usef1]:

resentation foM, ,(z), and yields the following expression:

(o] o

n ’ — a2
W =
(E3) }\"M(Z) ze n§=:0

My~ (12,2 EMy 1 (172, u(2) = Z+T (A2 1 (n) .
n=0 (_Z)fn

wherel . (n) are calculated recursively: +0(|2A Nt ). (E8)

In the region of moderate values|af andu <15, neither

L(n+)=1_(n)——— 1+2u L+ (n), (B4 method described above can provide a desirable precision. In
this case we use a more sophisticated algorithm proposed by
Luke [22] for the computing of the second solution of the
I_(n+1)= ml +(n), (E5) confluent hypergeometric differential equatidn(a,c;z).

The Whittaker function of the second kind can be written in

with 1, (0)=2.1_(0)=0. This algorithm is stable for not ©'m® Of theU(a.c:2) function as follows:

very largez as well as the first method. Ty L _

In the region where |[[T(2u+21)/T(m+\ Wy w(2)=2""e U (u—A+3,2u+1;2). (B9
+1/2)]2"e"??|< 6 (S is a desired numerical precisigrfor
the computation oM, ,(z) one can use the asymptotic ex- The U(a,c;z) function can be expressed as an expansion
pansion in the fornj21] over the Chebyschev polynomials:
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o0 1 oo

U(a,cioz)=(w2) 23 cn(zm*(;), (E10 2 (-1"Cy(2)=1, (E15
n=0 n=0

a,1+a—c#0,—1,—-2,...;z#0,|arg@)|<37/2, w is a free

parameter ¢=1), T} (x)=T,(2x—1), andT,(x) are the provide a convenient method for the numerical evaluation of

Chebyschev polynomials. The coefficiel@g(z) satisfy the expansion(E10 assuming the sum converges; therefore,

recurrent equation lim,_. Cy(z)=0. To evaluate the sum, the natutdlwas
chosen to be large enough for one to assupg 1(z) =0
2Cn(2) and Cy.-(z)=0. We start withCy(z)=1 and employ the

= n(2)Cn11(2) + 7n(2)Cni2(2) T 50Cni5(2), recurrence equatiofE11) downwards. Then we normalize
(E11)  the coefficientsC,(z) using expressioE15), and perform
the summing of the Chebyschev polynomials. The sum of
(2n+3)(n+a+1)(n+b+1) the Chebyschev polynomials can be easily evaluated using
2(n+2)(n+a)(n+b) the well-known recurrent relationsee, e.g., Ref.22]). To
estimate the uncertainty of the numerical evaluation, one can
(E12) enlargeN and repeat the procedure until the difference be-
tween the results of the evaluation becomes smaller than the
desirable numerical uncertainty.
Recently a method for the computation of tidg ,(z)

n

{(2)=2(n+1)| 1—-

2z
(n+a)(n+hb)

B 2(n+1)(2n+3—-22)

m(2)=1 (n+a)(n+b) ’ (E13 function was reported based on a nonlinear sequence trans-
formation of the asymptotic series expansion Wf ,(z)
(n+1)(n+3—-a)(n+3—h) [23]. The region of the application of the algorithm is found
SnT (n+2)(n+a)(n+b) ’ (E14 1o be'close to the previqus one, thu; this method was not
used in the actual numerical calculations.
where b=1+a-c, eg=1,6,=2 for n=1. Expressions For the computation of th@(Kl)(w,xl,xz) function(D14),
(E1D)—(E14), together with the normalization relation for the one should calculat&, ,(z) with 2\ and u are integer. In
coefficientsC,(z), this case the following expression can be ugzd:
|
u-1)! (12— =Ny, 22 (—1)2~ 5 (24 =N 27

W)\Y#(Z) — ZM+1/267Z12

T2+ N i (1-2m)m M 2uIT(W2—p—N) i  (2u+D)y m

X[g(L+m)+p(2u+1+m)— f(1/2+ u—N+m)—Inz], (E16)

which is valid when Z+1 is an integer. numerical evaluation is similar to that one with some
We are interested only in certain values of the parametershanges in computation 8. ,/,,(z). For the sake of com-
A==*3, andu is an integer. In this case expressi#L6)  pleteness we reproduce formulas from He#] below with

simplifies greatly: some misprints corrected.
Oy < I'(2k—m) 2"

Wi i(2)=2 € T(k+n) i (k—=n+1) . m’ 1. Computation of the derivaFives _of the Whittaker function of

the first kind

(E17
The term-by-term differentiation of the hypergeometric

heren=0,1. series(E2) yields

o (n+ k) Zm+k+1/2

APPENDIX F: COMPUTATION OF THE DERIVATIVES My o (2)=e 22> m (p(n+k)
OF THE WHITTAKER FUNCTIONS ’ m=1 (2k+ 1)y~ m!
In this section we discuss the computation of the deriva- —(n+k+m)). (FD

tives of Whittaker functions of the special kind:
(d/d W)Mntl/zk(z)|7,:o and (d/d 77)W7,:1/2,k(2)|77:0- We .
use the notation’. ;/,,(z) and W’ 1,,,(z), respectively, In the region  where |[[T'(2k+1)/T(k—n
for these derivatives. +1)]z4? "e”#?InZ <5 (5is a desired numerical precisipn

The computation of these derivatives of the Whittakerthe asymptotic expansion fdvlj, . (z) was used in the
functions was studied previously in R¢R4]. The present form
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, L TR+ L (k—n+ 1),z ™12
Mip ni(2)=€ mmﬁzo D" gy ket mE D) —g(k=n+ 1)+ gkt n—m)—In2)

oo

[(2KH-DK " S (2k+1)y
B (k—n)!(k+n)! m=o (k+n+1)m Zk+m+1/2 .

(F2)

As series(F2) is an asymptotic row, it is divergent. Despite this fact, it can be used for the numerical computation provided
the summation is properly terminated.

2. Computation of the derivatives of the Whittaker function of the second kind

The term-by-term differentiation of expressi@a16) yields

8

(_1)k+n(k_n)! (k+n)m Zm+k+1/2

—z/2

Wi (2)=e (Inz—y(m+1)+ y(k+n+m)— y(2k+m+1))

200 o (2k+D), m
k—n o
by B D et )+ gk n+ 1) p(m+ 1)

m=0 m!z

k+n-2 (_1)mm|szn+3/2

+ . F3
&y ket Dpoa(kfn—m—Dme; 39

This expression becomes numerically unsafe for large values of the argument due to large numerical cancellations between
terms of the sum.

For large arguments one can use the asymptotic expansiaf{of,, (2):

k—n
, _ (k+n)(k=n—m+1)
Wiz-ni(2)=e 2/2[ mZ:O r:.'n! T m—112 =
m—1 1 e (_1)m+kfn(k+n) (k—n)l
m !
| 2 (k—n—l_k+n+l N D Y T e € (F4

where the second sum should be properly terminated due to the asymptotic nature of the expansion.

For moderate arguments ahe<15, the accuracy of these methods becomes quite poor. Thus we have to employ the
numerical differentiation of th&V, ,(z) function obtained with formulaéE9)—(E15) to achieve a desirable precision in this
region.
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