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Counterfactual entanglement and nonlocal correlations in separable states
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It is shown that the outcomes of measurements on systems in separable mixed states can be partitioned, via
subsequent measurements on a disentangled extraneous system, into subensembles that display the statistics of
entangled states. This motivates the introduction of the concept of ‘‘counterfactual’’ entanglement, which can
be associated with all separable mixed states, including those that are factorable. This type of entanglement
gives rise to a kind of postselection-induced Bell inequality violation. The significance of counterfactual
entanglement, and its physical implications, are assessed.@S1050-2947~99!00507-7#
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It is well known that all entangled pure quantum sta
imply the presence of nonlocal correlations, because
such state must violate some Bell inequality@1#. For pure
product states, however, no Bell inequality violation is po
sible, and so for these states there is no implication of n
local correlations. As far asmixedstates are concerned, w
can draw a distinction between ‘‘separable’’ states, each
which has a density matrix that can be represented a
weighted sum of projections on product states, and th
mixed states for which such a representation is imposs
and from which entanglement can be distilled@2#. It is im-
possible to distill entanglement from separable mixed sta
nor can such states directly violate any Bell inequality, an
is customary to think of the correlations in these states
involving only classical statistics and being devoid of non
cality.

Recently, however, it was pointed out@3# that any sepa-
rable density matrix may contain ‘‘hidden’’ entanglement
that it can always be rewritten as a sum of projections
entangled states. Thus an ensemble that, considered
whole, displays the statistics associated with a separable
sity matrix, may in fact have been prepared with entang
states. Hidden entanglement can be analyzed and man
lated by considering measurements on an ancilla sys
which, together with the subsystems to which the separa
density matrix refers, constitutes an entangled pure state.
closely related notion of ‘‘entanglement of assistance’’ h
been developed independently@4#. In this paper we introduce
a property that we call ‘‘counterfactual’’ entanglemen
which again can be associated with separable mixtures
which is distinct from hidden entanglement. Counterfact
entanglement can be associated with separable mixed s
where there is no explicit or hidden entanglement, but wh
measurements on an ancilla system, which, at the time t
measurements are performed, is completely disentan
from the subsystems to which the separable mixed state
fers, can facilitate a partitioning of the ensemble describ
by the separable mixed state into subensembles, eac
which displays the statistics of an entangled state. It is p
sible to argue counterfactually that, had we carried out a B
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operator basis@5# type measurement at an earlier time on a
one of these subensembles, we would with certainty h
found the subensemble to be in a specific entangled s
Remarkably, this analysis can be applied with equal valid
to factorable states, with density matrices of the formr12
5r1r2 , where the constituent subsystems do not share
entanglement with an extraneous system and need n
have interacted with each other. These processes can be
to give rise to a kind of postselection-induced Bell inequal
violation. Our results also suggest that nonlocal correlati
in quantum systems may be rather more widespread tha
generally thought.

Before we can introduce the idea of counterfactual
tanglement, we must first make clear exactly what is me
physically, by the term ‘‘mixed state’’ in quantum mecha
ics. The interpretation of mixed states has been the sourc
much confusion and debate amongst physicists~see, for ex-
ample,@6,7#!. Mathematically, of course, we can unambig
ously identify a necessary condition for a state to be mix
by referring to its density matrixr and using the condition
r2Þr. Physically, however, we must distinguish betwe
the ‘‘ignorance’’ interpretation, according to which a mixe
state simply represents a statistical mixture of individual s
tems each of which is in a definite pure state, and the ‘‘
cilla’’ interpretation, according to which a given mixed sta
is seen as originating in entanglement with an ancilla syst
where we ignore, i.e., trace out, the ancilla. Here we take
view that the ignorance interpretation for mixed states is
satisfactory, and that consequently the only viable interp
tation for a ‘‘genuine’’ mixed state is based on the assum
existence of an extraneous ancilla, with which the syst
referred to in the mixed state is entangled.

There are several reasons for rejecting the ignorance
terpretation. First of all, we can see that this interpretation
incompatible with the standard definition of a quantum st
as ‘‘the most complete possible description of the state o
system.’’ Clearly, adopting the ignorance interpretation fo
particular mixed state would imply that that state wasnot the
most complete possible description of the system or
semble to which it referred. By implication, there exists
such a caseclassical information~of which we happen to be
perhaps temporarily, ignorant!, which would enable us to
refine our description to one that refers to a specific coll
80 ©1999 The American Physical Society
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tion of pure states. It is, in our view, essential that when
assign a quantum state, which we take to be a fundame
description of reality, to a system, we assume thatall exist-
ing classical information~which we take to be a higher-leve
and not a fundamental property! may at some point becom
available to us. In other words, a formulation of quantu
mechanics that purports to represent it as a fundame
theory should not conflate two different interpretations o
quantum state where one of these implicitly refers to a s
ondary higher-level property such as classical informat
and the other does not.

Another reason for calling into question the validity of th
ignorance interpretation is that in some cases different st
tical mixtures of pure states may appear to be represent
by the same density matrix but may nevertheless be exp
mentally distinguishable. For example, a large ensemble
spin-12 particles of which exactly half are prepared spin up
the z direction and half are prepared spin down in thez
direction can be experimentally distinguished from a sim
ensemble in which half the particles are prepared spin u
the x direction and half spin down in thex direction, even
though these enembles are ostensibly describable by
same density matrix. They can be distinguished by takin
long series of measurements of spin components for e
ensemble in, say, thez direction, and then comparing stan
dard deviations. Similarly, genuine mixed states can in so
cases be experimentally distinguished from ‘‘ignoranc
mixtures@8# with the same density matrix.

It is also clear that, if we accept the validity of Bell’
theorem, the ignorance and ancilla interpretations are
compatible with each other. For example, given an E
spin-singlet pair, each separate particle can be described
mixed state, with the other particle then taking the role
ancilla. But if we then assume that this mixed state can a
be given an ignorance interpretation, inconsistencies im
diately arise, because this would imply that each sepa
particle had a definite spin-component value, thus permit
a local realistic interpretation for the EPR state, which co
not be consistent with the Bell inequality violations obta
able from this state@9#. Given that the ignorance and ancil
interpretations are incompatible with each other and that
ancilla interpretation is ‘‘democratic’’ in the sense that
encompasses all possible decompositions, whereas the
rance interpretation necessarily singles out one particular
composition, the ancilla interpretation seems preferable
grounds of generality alone.

Furthermore, it has recently been argued@6# that the den-
sity matrix can be associated with eachindividual system in
an ensemble, because of the theoretical feasibility of ver
ing the state of an individual system by means of a ‘‘prot
tive’’ measurement. This would indicate another method
which mixed states derived from entanglement with an
cilla can in principle be experimentally distinguished fro
ignorance mixtures with the same density matrix. This e
phasizes the distinction between, on the one hand, ensem
in genuine mixed states, i.e., those derived from entan
ment with an ancilla, and, on the other, ensembles co
sponding to the ignorance case where each individual sys
is in a definite pure state.

To bring out this distinction, ensembles of the latter ty
have been described variously as ‘‘compounds’’@10#,
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‘‘proper mixtures’’ @8#, and ‘‘pseudomixed states’’@3#. We
conclude that genuine mixed states should always be as
ated with entanglement with an extraneous system. Th
any separable mixed state of two subsystems is in fact
rived from an entangled three-subsystem pure state.
though the third subsystem can be thought of as fictitious
the purposes of deriving new decompositions of a given tw
subsystem mixed state@3#, it is also the case that, given tha
they are in a mixed state, there must physically exist so
extraneous system with which the two subsystems are
tangled.

Having established what is meant physically by a mix
state, we are now in a position to illustrate the notion
counterfactual entanglement. We consider first a system
two spin-12 particles that is in the separable mixed stater12,
where

r125
1
2 ~ u↑1z↑2z!^↑1z↑2zu1u↓1z↓2z&^↓1z↓2zu!, ~1!

which we suppose is derived from an entangled ‘‘GHZ
type @11# pure stateuc123& of three spin-12 particles given by

uc123&5
1

&
~ u↑1z↑2z↑3z&1u↓1z↓2z↓3z&). ~2!

If we carry out a spin-component measurement on particl
with respect to any direction except thez direction @12#, we
can prepare particles 1 and 2 in a pseudomixed state co
sponding to a specific decomposition of entangled sta
This is an example of the sort of process described in@3# and
@4#.

However, suppose now that, before performing any m
surement on particle 3, we perform a set of spin-compon
measurements on particles 1 and 2 with respect to the d
tionsu1 andu2 , respectively. There cannot then be any h
den entanglement or entanglement of assistance assoc
with particles 1 and 2; these particles remain in a genu
separable mixed state until the measurements ofs1u1

and

s2u2
are carried out, after which each individual pair of pa

ticles will be in a definite pure product state. Now suppo
that, at a time subsequent to thes1u1

and s2u2
measure-

ments, when the state of particle 3 is completely dis
tangled from that of particles 1 and 2, we measures3u3

. We
can then separate the ensemble of particles 1 and 2 into
subensembles, according to the results of eachs3u3

measure-
ment; that is, we postselect each pair of particles 1 and 2
one of two subensembles, according to whether we ob
the result11 or 21 for the correspondings3u3

measure-
ment. What can we then say about the statistics of the ea
s1u1

ands2u2
measurement results for each of these sub

sembles?
In fact, the distribution of results in each of these post

lected subensembles will be indistinguishable from the d
tributions in the correspondingpreselected subensemble
that could have been prepared by measurings3u3

beforethe

measurements ofs1u1
and s2u2

are carried out and then
subsequent to these measurements, separating the outc
of the s1u1

and s2u2
measurements into two subensemb

contingent on the outcomes of the earliers3u3
measurement.
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In the latter case, it is evident that, as we have already m
tioned, each subensemble will display the statistics of
entangled state. For example, suppose thatu↑z&5au↑u3

&
1bu↓u3

&. Then, in the period in between thes3u3
measure-

ment and thes1u1
and s2u2

measurements the whole e
semble of particles 1 and 2 will be in a pseudomixed sta
and the two preselected subensembles will@3# be in the en-
tangled pure states 1/&(au↑1z↑2z&1b* u↓1z↓2z&) and
1/&(bu↑1z↑2z&2a* u↓1z↓2z&) according to whether we ob
tain 11 or 21, respectively, for thes3u3

measurement. This

can be seen by rewritinguc123& as
as
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uc123&5
1

&
$u↑3u3

&~au↑1z↑2z&1b* u↓1z↓2z&)

1u↓3u3
&~bu↑1z↑2z&2a* u↓1z↓2z&)%. ~3!

That the statistics of thes1u1
ands2u2

measurement re
sults for the respective postselected subensembles shou
identical to those of the preselected ones is perhaps not
mediately obvious, but can easily be seen by considering
Bayesian relation:
Probuc123&
~s1u1

^ s2u2
5 j us3u3

5 i !5
Probuc123&

~s1u1
^ s2u2

5 j !Probuc123&
~s3u3

5 i us1u1
^ s2u2

5 j !

Probuc123&
~s3u3

5 i !
. ~4!
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In Eq. ~4! the left-hand side represents the preselected c
i.e., the probability for obtaining the results1u1

^ s2u2
5 j

given that the outcomes3u3
5 i has already been obtaine

whilst the right-hand side represents the postselected
where the order of thes1u1

^ s2u2
ands3u3

measurements is
reversed. Similar relations hold with regard to the probab
ties for the outcomes of thes1e1

and s2u2
measurements

considered separately.
The equivalence of the statistics of the preselected

postselected subensembles can also be seen by consid
the case where thes3u3

measurement is spacelike separa

from the measurements ofs1u1
ands2u2

. In this case differ-
ent Lorentz observers could interpret the contingent sub
sembles of particles 1 and 2 as preselected or postselecte
the s3u3

measurement, depending on their state of moti
There would thus be a serious violation of Lorentz inva
ance, at the observable level, if the preselected and po
lected subensembles did not yield identical statistics.

The foregoing analysis shows that the postselected su
sembles of particles 1 and 2 must display the statistics
entangled states, even though they are at all times actual
separable states. We can, therefore, say that each po
lected subensemble hascounterfactualentanglement assoc
ated with it. Counterfactual entanglement, like actual
tanglement, implies that a Bell inequality violation
possible. For example, if we carry out a Bell inequality te
ing experiment by performing a series of measurement
s1u1

, s2u2
, s1f1

, ands2f2
in the usual way, then we wil

not be able to obtain any Bell inequality violation for th
whole ensemble described by the initial stateuc123&. But if at
a later stage we measures3u3

and segregate the earlier r

sults of thes1u1
, s2u2

, s1f1
, ands2f2

measurements into

two subensembles according to whethers3u3
561, each

subensemble will be able to yield a Bell inequality violatio
for suitable choices ofu1,2 andf1,2.

This analysis can straightforwardly be extended to a
separable mixed state: hence, all separable mixed states
incorporate counterfactual entanglement. Thus it could
e,
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argued that all separable mixed states must be nonloc
correlated. Even if we do not have access to the extrane
‘‘traced out’’ system associated with a given separa
mixed state, the fact that this extraneous system must e
means that it will always be possiblein principle to partition
the outcomes of individual measurements on any separ
mixed state into sets corresponding to counterfactually
tangled subensembles, by measuring a suitable observab
the extraneous system at some later stage. Although this
titioning may be very difficult to implement in practice, th
fact that it is, in principle, always possible is sufficient
imply the presence of nonlocal correlations within all sy
tems described by separable mixed states. It should be
phasized that such a partitioning will, in principle, always
feasible. There is no fundamental reason why the neces
measurements on the ancilla could not be carried out, e
though they may be extremely difficult to implement.

Remarkably, the above analysis applies with equal va
ity to the special case offactorablemixed states, i.e., thos
states with density matrices of the formr125r1r2 , where
the constituent subsystems do not jointly share any entan
ment with an extraneous system and need never have i
acted with each other. Suppose, for example, two spin-1

2 par-
ticles are described by the factorable mixed stater12 given
by

r125r1r2

5 1
2 ~ u↑1z&^↑1zu1u↓1z&^↓1zu!

1
2 ~ u↑2z&^↑2zu1u↓2z&^↓2zu!.

~5!

We assume thatr1 is derived from an entangled pur
state involving a third spin-1

2 particle so that r1
5Tr3(uc13&^c13u), where uc13&51/&(u↑1z↑3z&1u↓1z↓3z&),
and that similarlyr2 is derived from the pure stateuc24& so
that r25Tr4(uc24&^c24u) where uc24&51/&(u↑2z↑4z&
1u↓2z↓4z&). Thus particles 1 and 2 do not jointly share a
entanglement with either of the ancilla particles 3 and 4, a
the four-particle pure state from whichr12 is derived can be
written as
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uc1234&5 1
2 ~ u↑1z↑2z↑3z↑4z&1u↑1z↓2z↑3z↓4z&

1u↓1z↑2z↓3z↑4z&1u↓1z↓2z↓3z↓4z&). ~6!

Now, if we carried out a Bell operator basis measurem
on particles 3 and 4, it would be possible to prepare partic
1 and 2 in one of the entangled Bell operator eigenstates;
would be an elementary example of ‘‘entanglement sw
ping’’ @13#. However, suppose instead that we perform lo
measurements ofs1u1

ands2u2
before any measurement o

particles 3 and 4 is carried out. Then, when particles 3 an
are fully disentangled from particles 1 and 2, we can ca
out a Bell operator basis measurement on particles 3 an
the outcome of which will enable us to postselect Bell
equality violating subensembles of particles 1 and 2, as in
previous example. What is striking about the current
ample is the implication of nonlocal correlations in the po
selected subensembles of particles 1 and 2, even tho
these particles remain in a factorable state throughout
process. In the previous~GHZ! example one might attemp
to explain the apparent nonlocal correlations between
ticles 1 and 2 as arising from their shared entanglement w
a third system; but in the factorable case this explanation
not get off the ground.

In assessing the significance of counterfactual entan
ment, it is worth bearing in mind that standard quantum m
chanics does not allow one to make counterfactual inferen
about the earlier states of quantum systems, based on
outcomes of subsequent measurements. Thus, accordin
standard quantum mechanics, we cannot, for example, a
that a system prepared at timet0 in the stateuc123& given by
Eq. ~2!, subjected to measurements ofs1u1

ands2u2
at time

t1 , and then postselected by the outcomes3x51 at timet2
~wheret0,t1,t2) would, if it had been subjected to a Be
operator basis measurement at timet1/2 ~where t0,t1/2
,t1), have necessarily yielded the eigenstate 1/&(u↑1z↑2z&
1u↓1z↓2z&), even though the postselected subensem
yields identical statistics to those that would have been
tained for this eigenstate, for any choice ofu1 ,u2 . In this
sense standard quantum mechanics is predictive but no
rodictive.

However, there has recently been a good deal of inte
in the possibility of making retrodictive inferences of th
kind, particularly within the context of the consistent hist
ries @14# interpretation of quantum mechanics and rela
time-symmetric interpretations~see, for example,@15#!. The
consistent histories interpretation requires that consiste
conditions be satisfied in any given example before class
probabilities can be assigned to quantum events, and it
been suggested@16# that similar conditions must be satisfie
by related interpretations in order to preclude the possib
of a direct contradiction with standard quantum mechan
predictions@17#. In general, these conditions can be writt
as

Re Tr~ÊnÊn21•••Êk
a
•••Ê1D̂Ê1•••Êk

b
•••Ên21ÊnF̂ !50,

~7!

for every paira,b, where the projection operatorsÊi refer
t
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to a series of events occurring in between the initial and fi
eventsD̂ and F̂, respectively. Provided these conditions a
satisfied, the expression

Tr~ÊnÊn21•••Ê2Ê1D̂Ê1Ê2•••Ên21ÊnF̂ !

Tr~D̂F̂ !
~8!

can be understood as the classical probabi
Prob(E1∧E2∧•••∧EnuD∧F). The related idea of a ‘‘consis
tent framework’’ has also been proposed@18#.

Although it has given rise to a number of conceptual d
ficulties @8#, the consistent histories approach can be app
to assess the validity of counterfactual retrodictive interf
ences@19# of the type we have considered. In fact, we fin
that, for the counterfactual entanglement examples we h
looked at, the consistency conditions given by Eq.~7! are
satisfied and the probability associated with the projection
the relevant entangled state prior to thes1u1

,s2u2
measure-

ments, as given by Eq.~8!, is unity in each case. For ex
ample, in the case of the state given by Eqs.~1! and~2!, if we
postselect bys3x51 after earlier measurements ofs1u1

and

s2u2
, we can write D̂5uc123&^c123u, F̂5us3x51,s1u1

5 i ,s2u2
5 j &^s3x51,s1u1

5 i ,s2u2
5 j u, and then consider a

set of possible Bell operator basis projections at timet in
between the initial time associated withD̂ and the time of the
s1u1

,s2u2
measurements. We find that the conditions giv

by Eq. ~7! are satisfied and the expression~8! yields prob-
ability 1 for the projection on the counterfactual entangl
state 1/&(u↑1z↑2z&1u↓1z↓2z&) at time t. A similar result is
obtained in the factorable case@Eqs.~5! and ~6!#, where we
postselect by a Bell operator measurement yielding the s
1/&(u↑3z↑4z&1u↓3z↓4z&) for particles 3 and 4.

The fact that the postselected subensembles we h
looked at can give maximal violation of Bell inequalitie
strengthens the case for attributing counterfactual proper
in a retrodictive sense, to quantum systems. If we do
accept that the relevant postselected subensemble w
have yielded a specific maximally entangled eigenstate ha
been subjected to a Bell operator basis type measureme
an earlier time, how can we explain the maximal Bell i
equality violation displayed by that subensemble?

It is interesting to compare the role of postselection in
processes we have described with previous examples o
riving Bell inequality violations via postselection@20–23#. It
is well known that, if we disallow certain ranges of measu
ment outcomes, which are then discarded, even class
physics can produce Bell inequality violations. An examp
of this type~which does not, of course, imply the presence
any kind of nonlocal correlation! is described in@20#. This
type of process can be described asmeasurement-depende
postselection, since the subensembles selected may de
on the measurement carried out; that is, the discarded
comes may be biased toward a particular measurement o
of measurements. Similarly, Bell inequality violations v
measurement-dependent postselection can be demons
for separable mixed states in quantum mechanics@21,22#.

A different kind of postselection-induced Bell inequali
violation can be demonstrated for the Werner states@24#,
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84 PRA 60OLIVER COHEN
which do not violate any Bell inequality for single ideal me
surements but can nevertheless violate Bell inequalities
subensemble is postselected according to the results of
measurement and this subensemble is then subjected t
other measurement@23#. This type of postselection could b
described as anonlocalselection process, in that the posts
lection involves comparing and combining two sets of resu
that occur at spatially separated locations. Examples inv
ing this type of postselection are interesting even though
states they refer to, such as the Werner states, are not
rable; the Bell inequality violations generated are nevert
less postselection-induced.

The role of postselection in the examples we have a
lyzed in this paper is different again. In the counterfact
entanglement examples no results are disallowed, and
there is no measurement-dependent selection. Also,
single ideal measurements are performed on the relevant
ensembles, and the postselection is local; that is, it does
involve any nonlocal selection process. The postselectio
carried out, as we have seen, via local measurements o
extraneous system.

An analysis of possible applications of the counterfact
entanglement concept would be beyond the scope of
paper. It is clear, however, that any quantum informat
processing application that uses entanglement as a reso
can, in principle, be carried out with separable states. Bu
such a method is used, measurements on the disentan
extraneous system, in an appropriate basis, will have to
performed in order to partition the counterfactually entang
subensembles correctly. In this way ultimate control of ea
application could be channeled to a remote location and
final decision to implement the application could be delay
until any chosen time subsequent to the main processin
self.

In view of the arguments we have presented, it is wo
considering whether it is appropriate to label weighted su
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of projections on product states as ‘‘separable’’ mixed sta
as is the current convention. The usual rationale for s
labeling is that mixtures of this kind can, it is claimed, b
prepared by separated experimenters receiving instruct
from a central source@25# or exchanging information with
each other@26#. However, it is evident that, as far as genui
mixed states are concerned, only those separable m
states that are factorable can, in fact, be prepared by su
method. Factorable states apart, onlypseudomixed states,
which are really collections of pure states and as such ar
some cases experimentally distinguishable from the co
sponding genuine mixed states@6,8#, can be prepared in this
way. Since, as we have seen, all separable mixed states
cluding the factorable ones, incorporate counterfactual
tanglement implying the presence of nonlocal correlatio
the conventional labeling is perhaps a source of poten
confusion.

In closing, we can see that it is only the pure produ
states that are devoid of actual or counterfactual entan
ment, and hence, by implication, of nonlocal correlatio
However, it could be argued that in practice pure states
almost always unrealistic idealizations, because of the
possibility of completely screening off environmental inte
actions. Assuming that Bell inequality violations of the typ
we have described constitute definite evidence of nonlo
ity, one would then be led to the conclusion that nonlo
correlations are ubiquitous in the physical world. Altern
tively, one could question the validity of Bell inequality vio
lations as genuine evidence of nonlocality@27#; our results
could then be seen as emphasizing the dangers of acce
too readily the view that Bell inequality violations can b
interpreted in that way.

The author is grateful for support from the Leverhulm
Trust.
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