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Relativistic dynamics of charges in electromagnetic fields: An eigenspinor approach
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Analytical solutions and fresh insights for the relativistic dynamics of charges in classical electromagnetic
fields are made possible by an eigenspinor approach. The Lorentz-force equation takes a simple spinorial form
when expressed in terms of an amplitude of the Lorentz transformation that describes the motion of the charge
in Clifford’'s geometric algebra of physical space. Algebraic projectors allow explicit analytical solutions to be
found for charges in arbitrary initial motion interacting with monochromatic plane waves, with directed plane-
wave pulses, and with pulses superimposed on static axial fields. The treatment tests the classical effective
mass of a dressed charge and leads to a refinement of the concept of ponderomotive momentum. Implications
for a pulsed autoresonance laser accelerator are briefly disciS4€%0-2947®9)07308-4

PACS numbseps): 12.20.Ds, 03.30:p, 03.50.De, 41.75.Lx

I. INTRODUCTION geometric algebra of physical spd@&3—25, is used to study
solutions to the Lorentz-force equation. As in Taub’s solu-
Matrix and Hamilton-Jacobi solutions for the motion of tion[1], we use the Lorentz transformation between the labo-
point charges in a linearly polarized monochromatic electroratory frame and the inertial frame instantaneously comoving
magnetic plane wave have been known for 50 y¢ars3].  with the charge to describe the motion. However, unlike
The advent of lasers and the possibility of particle acceleraTaub, we follow Hestenef?] in avoiding explicit matrices
tion in intense laser fields has renewed interest in such solwand in using the spinorial form of the Lorentz transformation
tions, and extensions to more general electromagnetic fieldbat arises in Clifford-algebra treatments. In the spinorial
[4] such as exponential pulsgS| and monochromatic plane form, Lorentz transformations are bilinear in the transforma-
waves of arbitrary polarizatiof6] have been published. tion elements. These elements, while closely associated with
Most of the known solutions are for charges initially at restrelativistic quantum amplitudg®1,26, are in fact a purely
or with vanishing average velocity, and many are indirect orclassical construction. Their use constitutes a classical ap-
restricted to interactions approximately described by a ponproach that is much closer than traditional trajectory-based
deromotive potential. A more direct derivation of the motion treatments to quantum formalism. Our approach differs from
of charges in monochromatic plane waves was given bydestenes’ in its use of the covariant paravector algebra of
Hestene$7], using the Clifford algebra of Minkowski space- physical space@/’;) rather than the larger space-time alge-
time [8]. Although all of these treatments are classical andora (C/; 3).
neglect radiation reaction, they give the behavior of quantum The study is restricted to the interaction of isolated
results at high field intensitieg3] and are of interest for charges with electromagnetic fields. We justify the neglect of
possible applications in high-energy particle acceleratorssadiation reaction for most cases considered by calculations
both for beam injectors and for high-gradient acceleratiorof the radiated power. The algebraic approach provides geo-
stage§9-12], for possible astrophysical mechanisms of par-metrical insight into previously known solutions and, in par-
ticle acceleration, and for the motion of electrons photoion4icular, explains the invariance of the space-time propagation
ized in strong laser fields. vector of the plane wave in the comoving inertial frame of
Solutions have established that in spite of the large electhe accelerated charge. It also extends previously known ex-
tric fields present in intense laser beams, the net energy thaticit solutions to the dynamics of charges in arbitrary initial
can be transferred to a charge in a long sinusoidal beam imotion in plane-wave pulses superimposed on a constant
negligible [13—15. However, it has recently been demon- axial electric or magnetic field. These analytical results help
strated theoreticallj/16] and experimentally17] that signifi-  explain numerical and experimental results, including energy
cant energy can be transferred by short laser pulses of widtiiansfer from finite beams, and shed light @gmd demon-
on the order of a cycle or less. Other solutions have sugstrate limitations of the approximations of the ponderomo-
gested accelerators driven by rectified laser pulged, tive energy and the mass shift for electron motion in a laser
looked at the acceleration of electrons driven outside the spditeam. They also contribute to the analysis of the autoreso-
radius of a Gaussian laser beh8], and demonstrated that nance laser acceleratGhALA) schemd 10] for accelerating
when a circularly polarized monochromatic plane wave ischarges by a pulsed circularly polarized laser beam superim-
superimposed on an axial magnetic field, a resonance can Ip@sed on an axial static magnetic field.
achieved that permits large energy transfd§,19,2Q. We begin with a brief review of the paravector approach
Here, the classical eigenspinor approfzh,22, utilizing in the Clifford algebra of Euclidean space and its use in a
projector techniques in the paravector space of Clifford’scovariant treatment of relativity. The role of bivectors as
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generators of rotations in Euclidean space is emphasized amary discussion of the vector concept and Clifford algebra.
generalized to that of biparavectors as generators of spac€lifford algebras also extend complex analysis to more than
time rotations(Lorentz transformations Next, the classical two dimensions.

eigenspinor is introduced, and the spinorial form of the An important application of bivectors is to rotations in an
Lorentz-force equation is shown to relate the coupling witharbitrary plane inn-dimensional space. Let;,e, be ortho-

the electromagnetic field to a spacetime rotation rate. Amormal basis vectors in the plane. Thee, is a bivector of
invariance of null-plane rotations is shown to lead to thethe plane. It may be considered an operator that rotates any
conservation of the spacetime propagation vector in the&ectorv in the plane by 90°, since by the basic relati@
frame of a charge accelerated by a directed plane wave, and

this is used to solve the Lorentz-force equation for such eev=ee(vie +vie)=—vie+vie. (4)
charges. The ponderomotive momentum, its relativistic cor-
rectlgns and I|Fn|tat|ons and the effective mass of a dresseﬁOtatlons in the plane by an arbitrary anglare obtained by
charge are briefly addressed. Finally, analytical solutions ar8 inéar combination oé e, and the unit operator 1:
derived for t.he relativistic motion of charges in .plane—wave (coSO+ e,e, Sin O)v=exp(e,e,0)V, (5)
pulses and in such pulses superimposed on axial fields.

where the exponential expression follows in the vector alge-

Il. THE APPROACH bra from the propertyd;e,)>= — 1. To rotate a vectau with
_ ’ _ components out of the;e, plane, one can use the fact that
A. Clifford’s geometric algebra e,e, anticommutes with vector components in the plane but

Our approach is based on an algebra of vectors, developg@mmutes with components perpendicular to it. These prop-
by Clifford as an extension of Grassmann’s exterior formserties lead to the so-callespinorial formof rotations:
and Hamilton’s quaternion24,27]. Since a thorough intro- _
duction is availa%le elsewr{he[§5§ only a brief sumgmary is U—RUR™Y,  R=exp(—e0/2). ©®
given here. The algebra assumes an associative product
vectors, distributive over addition, that satisfies the following
fundamental axiomthe square of any vectaris equal to its
length squared:

?ﬁis is the form for operator transformations in quantum
theory. The similarity to quantum formalism appears to be
more than coincidencf21,24. It is made stronger by the
wave-functionlike eigenspinor introduced below.

V2=V )
C. Higher-order products
(The existence of such a quadratic form is assujniéd: is Products of three or more vectors can also be important.
written as the sunv=u+w of vectorsu andw, the axiom  Thanks to axiom(1), the total number of linearly indepen-
implies dent elements in the algebra is finite. In eslimensional
space, the most general algebraic element is a linear combi-
uw-—+wu=2u-w. (2)  nation of 1 scalarn vectors,n(n—1)/2! bivectors,n(n

—1)(n—2)/3! trivectors, etc., up to theolume elemenof
In particular, orthonormal basis vectors of a Euclidean basithe spacegr=¢,6---e,. The algebraC/, as a vector

obey space is thus spanned bytatal of 2" basis elements. Many
significant subspaces exist.
€6t 686 =20. €©)] One defines th€lifford dual of any elemenk by
*x=xe L. 7)

For examplegf=e5=1 ande,e,= —e,e,. The vectors and
all their products are elements of the algebra. It is clear fro
Eq. (3) that elements of the algebra generally mat com-
mute. In fact, two vectors commute only if they are aligned.
If they are perpendicular, they anticommute.

M generalizes the Hodge dual that is generally defined only if
x is a homogeneousvector and is ther- the Clifford dual.
In C/ 3, er=e;6,6; commutes with all elements and squares

—1; it may be identified with the unit imaginaiy With

One may think of the elements as matrices and prOdUCtﬁs help, rotation element$) in E2 can be expressed in terms
as matrix products. There are many possible matrix represell o axis of rotation

tations of the algebra. The actual representation is immate-

rial; only thealgebraof the representation is important. The R=exp(—e,6,0/2) = exp( —ie;0/2). (8
Clifford algebra ofn-dimensional Euclidean spad® is de-
noted byC/,,. )

D. Paravector space as spacetime
Paravectorsare scalars plus vectors, where “plus” means

addition as in the sum of real and imaginary numbers or of
Vectors are easier to picture than tensor elements, but ﬂ}?erpendmular vector components. Paravectors of an

vector analysis common in physics uses ve¢oss prod-  n.dimensional Euclidean spadé’ are elements of ann(
ucts that are not useful in more than three dimensiBh&c- 4 1)-dimensional linear “vector” space. Thusifis a vec-

tors, namely, the nonscalar part of the algebraic product ofgy jn "
two vectors, provide an extension of the cross product to
spaces of any finite dimensio(See Ref[28] for an elemen- p=p°+p=p*e,, 9

B. Bivectors and rotations
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wherep® is a scalar, is @aravector The second form em- ; Wi 1 _
phasizes its role as am ¢ 1)-dimensional vector, where re- p—LpL’, L=e"“=ex ZW’”@MEJV
peated Greek letters are summed from Ontand e;=1.

What makes paravector space interesting is its metric. Wepg gix basisiparavectors(e, e, )y are generators of space-
look for a scalar-valued quadratic form on paravector Spacgjme rotations and span the linear space of spacetime bivec-

The square of a paravector can have both scalar and vect?orrS They come in commuting pairs, suc 66y, fep
. . . — . ’ |I@a 1 &1 l -
parts and is therefore not a candidate. We neeagugate p resentingorthogonalspace-time planes, one timelike;&)

of p such thatpa is a scalar. The obvious choice is the . .
Clifford conjugate and one spacelikee(e,). The two generators of any pair are
duals of each other and anticommute with the other four unit

. (18

E: p°—p, (10) biparav_ectorfs. Spacelike unit biparavec_tors squ_arelo are
purely imaginary, and generate spatial rotations as seen
with which the scalatS) and vector(V) parts of a paravector above. Timelike ones square to1, are purely real, and
can be isolated: generateboosts(rotations in hyperbolic plangsAs we see
o o below, linear combinations of timelike and spacelike bi-
(PYs=3(p+p), (Plv=3(p—p). (11)  paravectors can be found that amal. All unit biparavectors
are unitary and change sign under Cliffdtmhr conjugation.
The quadratic form is then They also obey characteristic commutation relations, and the
_ _ symmetry group that relates them to each other is the direct
pp=p“p’e,e,=p“p"n,,, (120 product of SW2) (spatial rotationsand U1) (duality rota-
) tions).
where the metric tensor of the paravector spacg,, SimpleLorentz transformations act in a single space-time
=(e,e,)s has theMinkowskiform plane. They mix paravector components in that plane but
leave all paravectors in the orthogonal plane invariant. The
1L w=vr=0 biparavectors both of the plane in which the transformation
Nur= =1, u=v=1,...n (13) acts and of its dual are invariant.

0, u#v. o
E. The electromagnetic field

Thus, the paravectors of three-dimensional Euclidean e electromagnetic fieldthe Faraday [29]) is the bi-
space are four-dimensional vectors in a Minkowski SPac&aravector[spacetime plar@)]

time. Clifford conjugation is extended to general elements by

the rulegp=pq. '_I'he symmetric_ scalar product that follows cm<o’iA>V=%C(aMAV_0’»VAM)<e‘MeV>V_ (17)
from the quadratic form op+q is
. L [Sytene International(Sl) units are used. We can generally
(pa)s=3(pg+qp)= P A" 1,y - (14 avoid the use of tensor components. The component expan-
sions are given only for comparison to other treatménts.
Another useful Conjugation i®versal which reverses the Expressior(]_?) is covariant, but we may wish to expaﬁd
order of vector prOdUCtS and can be identified with Hermitianinto the electric and magnetic field in a particu]ar frarke:
conjugation if we assume that the basis vectors are all real g+ jcB, wherei=e; is the volume element in physical
(equal to their Hermitian conjugatesThe reversa(Hermit-  gpace.

ian conjugatg of pq is (PQ)TZQTPT- The real (R) and Maxwell's equatiorrelates the source currento the field
imaginary(J) parts of an arbitrary elementare E:
Ox=3(x+x"),  (x);=3(x—x"). (15) F=7i. 19

Sincee; e,6;= — €58,€,= — (€16,65) ", the volume element in whereZ=puc=(ec) ! is the impedance of the medium. In

C/ 5 is purely imaginary. . : . . .
The appearance of the Minkowski spacetime metric forvacuym,z_o—47r><30 Q, 3._2'997 924 58. By isolating real
the paravector space 6, suggests the use of real paravec- and imaginary parts, the inhomogeneous and homogeneous

: . ; . equations are obtained, and by further breaking these down
tors to represent vectors in four-dimensional spacetime. Thg , .
Mto vector and scalar parts, Maxwell's four vector equations

scalar parts of such paravectors are the time components Qe retrieved, all from Eq18). Extensive applications of the

spacetime Yectors. Examples mclu_de) _dlmenélonless paravector algebra of (@) in electrodynamics are given
proper velocityu= y+u=y(1+v/c), with uu=1, (ii) vec- elsewherd 25].
tor potentialA= ¢/c+ A, (iii) charge curren{=pc+j, and

. . -1 _
(iv) gradient operatos=c™~6/dt—V. o Il. LORENTZ-FORCE EQUATION

Linear transformations that leave the quadratic fgrm ‘ ) )
invariant are homogeneourentz transformationsPhysi- In C/'3, we can combine the covariance of the tensor

cal (restricted Lorentz transformations are rotations in form b":eF’”uV of the Lorentz-force equation with the
spacetime planes. They comprise rotations, boosts, and the&iomponent-free simplicity of the common vector form:
products and can be written in a form analogous to rotations ]

(6) in k2. Any spacetime vectop transforms as p=(eFu)y, (19
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wherep is the space-time momentum of chamgmteracting . e
with the electromagnetic fiel&, and a dot indicates differ- A= FA. (26)
entiation with respect to the proper time

We look for solutionsA(7) in external fieldsF. Contribu-
A. Eigenspinors tions toF from the charge itself are omitted, and thus radia-
tion reaction is neglected. Note that gives orientation

vV, . ; .
its eigenspinorA, which is just the Lorentz transformatian (spiry information that is lost when the proper velocity or

of the algebra that relates the particle fraitleat is, the MomENtm s calculaied. —

inertial frame comoving with the charpgéo the laboratory According to the formQ2—L QL of the Lorentz transfor-
frame. Properties such as a spacetime vegtdnown in the ~mation for spacetime bivectorf)* and F*=(E*-c’B?)
particle frame are transformed by to the laboratory frame: +2iCE-B are Lorentz invariants. E-B=0, F is simpleand
q=Aq,A". In particular, the time axig,=1 in the particle the spinorial Lorentz-force equatiai26) has a straightfor-
frame is transformed to the proper velocity units ofc) of ~ ward geometrical interpretation: the electromagnetic fteld

The motion and orientation of a particle is determined b

the particle in the laboratory frame: induces aotation at the ratef) in the space-time plane &%
In any given frame, electric fields induce boosts, that is, ro-
u=AAT (200 tations in timelike(hyperbolig planes, and magnetic fields

induce rotations in spacelikelliptic) planes.
More generally, elements of the rest-frame tetfad} are

transformed to the particle paravectors IV. DIRECTED PLANE WAVES
u,= AeMAT (21 The paravector potential of directed plane wavénot
generally monochromaticcan be expressed as a function
in the laboratory frame, withiy=u. A(s) that depends on the spacetime positioonly through

As the amplitude of a particular Lorentz transformation,the Lorentz scalar
the eigenspinoA e SL(2,C) characterizes the motion of a _
particle in the laboratory. “Eigen” refers to the particle’s s=(kx)s= ot—k-x= o7, (27)
own (prope) Lorentz transformation, and “spinor” indicates

its behavior under a further Lorentz transformatlan where k=w/c+k=(w/c)(1+k) is a constant nul(light-
like) paravector whose vector part gives the propagation di-

A—LA. (22 rection of the plane wave, and

In particular, the eigenspinor changes sign under any 360° o= c(ku)s= yw(1-v-kic)=s. (28)
rotation. The proper time rate of change of the eigenspinor o o
can always be written For oscillating plane waves of fixed, k is usually taken to

be the average spacetime propagation vector, anddhes
1 the corresponding frequency in the particle frame moving
A= EQA’ (23)  with proper velocitycu=dx/dr. The fieldF has the form

L o F=c(aA)y=c(KA")y=(1+K)E, (29)
where Q=2AA is a biparavector identified with thBar-

boux bivectorin spacetimg30]. Physically €2 is the space- whereA’(s)=dA(s)/ds. The energy densit§ and Poynting
time rotation rate of the particle frame. If ER3) can be vectorS are given by
solved, the time evolution of any space-time vector or bivec-
tor that is fixed in the particle frame can be found. For ex- 80 __+ ) "
ample, the momenturp has the fixed valuenc in the rest &+Sle= 5 FF =&k (1+K). (30)
frame, and in the laboratory,
A number of important properties follow from theojec-
p=AmcAT+AmcAT=3(Qp+pQ")=(Qp)y. (24 tor factor Pi=3(1+Kk)=P; in such waves. Sincek

=(2w/c)Py is null, kKF=0. The scalar part of this gives the
B. Spinorial form of Lorentz-force equation orthogonality of the fields wittk, k- F=0, and the vector

A comparison of Eq(24) with the Lorentz-force equation partF= kF=i RXE relz;tes electric angl magnetic fields in the
(19) shows that the spacetime rotation r&eof a charged ~plane wave and implies th4€,B,k} is a right-handed or-
particle may be identified with the electromagnetic fieldt ~ thogonal vector basis of three-dimensional space. In terms of
the position of the charge the complementary projectoR; and Py=1— Py,

e _ —
Q= RF’ (25) F=PiF=FPy=PiFP;. (31)
It follows that F is a null biparavectorand hence simple,
and that the Lorentz-force equation itself follows from the F2=0, which implies thaE andcB are of equal magnitude
spinorial form and perpendicular to each other.
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The propagating plane-wave field=(1+k)E is what d 1d ekA (s) eA (s)—
Penrose and Rindlg¢B1] call aflag. It is tangent to the light —A=+—A= A(s)=— kA, (37)
o N ds sdr 2Mo, 2Mmo,
cone on the lightlike paravector {1k), known as thdlag-

pole. The flagpole is orthogonal to it:self and to every yhere the gauge conditiof83) was applied. Since by Eq.
paravechr in the flag plane spanned byK. andE. The flag (34) kA (s)=KA (o), Eq. (37) is immediately integrated to
F=(1+Kk)E is rotated in thek plane by multiplication by a  gjve the beautifully simplébut exact solution

scalar phase factoe™ ?F=e " ?K2Fel ?K2 Eyery vector in

the dual plane-iF, spanned by % k andkx E, is orthogo- A(S)=A(sg)—
nal to the flagF and is invariant under rotations in the flag 2Me;

plane. In particular, the flagpole itself is unchanged by rota-

tions in the flag plane. A further important property is that if (By superimposing solutions for various initial conditions,
ais any vector perpendicular one can express the family of solutions in terms okagen-

spinor fieldthat is closely associated with the Dirac wave
function[21].)
In terms of the conjugate momentupteA=mcAA"

Examples of directed plane waves include monochromatic™ €A 2lightlike change
circularly polarized waves withreal electric fields E(s)

=E(0)exp(+isk) and linearly polarized Gaussian pulses A(pteA=
with E(s) =E(0)exp( 1s%/0?)coss. Note that directed plane
waves are more general than monochromatic plane WaVeS: toind. whereAp= _ _ _

: o : : P=p(s) —P(So) and AA=A(s) —A(so).
They may be any linear combination of monochromaticy;,e that the last factqf- - - )g is a Lorentz-invariant scalar,

waves that share the same propagation diredtion and from the gauge condition33), AKAA=(AA-I§)2

—(AA)?= —AAf . For an oscillating paravector potentil
the squared dependence implies a second-harmonic contribu-
Although the Lorentz-force equatid@6) is easily solved tion in the motion of the charge, and the componentpf

for F=const,, solutions appear hopeless for figids) that  4ongk implies a frequency shift in scattered radiation. The
depend on the position of the charge and hence on the soli;qper velocitycu= p/m can be integrated to give the space-
tion itself. Nevertheless, solutions for directed plane wavegjme positionx(s) and hence parametric equations for the
can be found by virtue of a surprising invariance, noted by aiectory. Immediate consequences are the invariance of the

Hestenes for monochromatic waé&9]. N components o+ eA alongk [see alsd33)],
We assume the Lorenz-gauge condition

e[A(S)—A(So)]E\(S ) 39
e T A (o).

Fa=PiFaP;=F-a(1+k). (32

(eAA[2p(so)—eAA])s  (39)

2Mmo,

A. Charge motion in a plane wave

(R} o= (KA} =0, @3 (A(p+eAk)s=(Apk)s=0, (40

Then F=ckx’(s) andkA' = —A’k. The relationkF=0 for and along any directiob perpendicular tek:
directed plane waves, together with the spinorial Lorentz- ~
force equation(26) imply A(p+eA)-b=0. (41

The invariance opp=m?c? can also be confirmed.
Remember that the plane wa®eneed not be monochro-
matic; it can be a pulse or string of pulses. The change in
R i momentum depends only on the initial momentum and the

quency w, and the directiork,) in the instantaneous rest ot change irA. For a givenAA between the beginning and

kA=0=ATk. (34)

It follows that the propagation paravectky (both the fre-

frame of the accelerating chargedsnstant end of the interaction, the variation Afduring the pulse has
o no effect on the final momentum of the charge, although it
ki=ATKA, (39 can influence the particle trajectory. Laser pulses are usually

represented by vector potentials that vanish before and after
the pulse, and there is no transfer of energy or momentum to
the charge from such pulses. However, physical pulses can
create net changes il For example, the simple field pulse
This seems counterintuitive because first-order Doppler R
shifts cannot be avoided. However, the acceleration of the F(s)=(1+k)wAg/coslts (42
charge is so contrived to make ttegal Doppler shift vanish.
The result is understood in terms of our geometrical interpre
tation of the Lorentz-force equation: the fieldinduces a o N o
space-time rotation in the flag plane Bf and the flagpolé&  Velocity lies alongk, the proper velocity is
(in any inertial frame is invariant under such rotations.

The invariance ok, permits solutions to the equation of U= Ug+ a(1+tanhs) + 1 ﬁag(lﬁanhs)z' (43)
motion (26). In terms ofs= w, 7, 2 wy

d— . — .
gke= ATKA + ATkA=0. (36)

S—00
results from AA=—Ay(1+tanhs) — —2A,. If the initial
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where ag=eAy/mc is the dimensionless vector-potential tor w/w, is missing from most treatments, which assume
amplitude, ug= yo(1+vy/c) is the initial proper velocity, nonrelativistic average velocities, but it can be large for a
and kc=w(1+|§). The net energy gain charge moving at high velocity along the propagation direc-
tion. (The factor is included in Ref32], which is restricted,
20 , however, to interactions with monochromatic plane waves.
Aymc2=(Au>Smc2=w—a0mcz (44 (b) The ponderomotive potential is isotropic, but the surfing
' factor w/ w, implies thatAE,, depends strongly on the initial
can be large, particularly at high injection velocities wherevelocity of the charge relative to the propagation direction of
the surfing factore/w, = 5 :(1—k-vo/c) ! is large. Inte- the wave.(c) The oscillations may not average to zero, par-
. ; . . . ._ticularly for short pulses of radiation. If the pulse is a plane
gration with respect to proper time gives the spacetime dis- o !
wave, it is safer to use the more general re$88), with
placement, o
terms that depend on the polarization of the wave.
2 The significance of the effective mass is explored further
) below, by determining the proper acceleration of charges
dressed by plane waves in the presence of an axial electric
field.

c c
Ar=ugCA7+ akd In(1+e%5)+ k( il
Wy [OF

X | In(1+e?%)— . (45)

—2s
(1+e ) C. Axial electric field

To solve the eigenspinor equatid®6) for the case of a

plane wave plus a constant axial field, we employ the
If AA oscillates rapidly about an average of zero, the Y

; : complementary projectorBy=(1+ IQ)/Z andPy;=1—-Py to
momentump oscillates rapidly as well. Thaverageover — gonarate the equation into parts belonging to distinct ideals of
such oscillations, see E@38),

the algebra. The parts can be solved independently and re-

K combined. With this approach we find explicit solutions that
ApavEPaV—Po:gﬂzmcz (46)  have eluded more traditional methods. In particular, we

r know of no other method that has given analytical solutions
for charge motion in plane waves plus axial electric field,
and as far as we know the analytical solutions for plane
waves plus axial magnetic field, which led to proposals for
c[he autoresonance laser accelerafarA ), have been indi-
rect and limited to monochromatic plane wayé,19,20Q.

Consider the electric field

B. Ponderomotive potential

has been called thponderomotive momentuf32], where

w?=(e?/m?c?)((AA )%, is a dimensionless, Lorentz-
invariant measure of the intensity of the electromagneti
field. The scalar part gives the average change in energy

AEaV:%MZmCZBO, (47) ) o
r F=Eok+(1+k)wA'(s) (52)

and reduces at low initial velocities to th@onderomotive ] o )

potential[4,33 u?mc. of a plane wave plus a constant axial e_Iectrlc field of ampli-
The drift frame is defined[6] as the frame in whiclp,,  tudeEg. Applying the projector$®; and Py to the Lorentz-

=0. Itis the rest frame of theressecelectron. Lel.p be the  force equation(26) and noting thaﬂzplz: P and QE&:

transformation that boosts a particle from rest to the velocit oy btai

vp of the drift frame, k, We obtain

k .1 i ew - —
Pay=Po+ Z—wr,uzmczzLDm*chzm*CyD(lJer/c), Pid =5 aPih = — A'(S)PLA, (52)
(48)
. 1 —
where m* = \p,,pa/c=my1+u? is the effective mass. Pid=— 5 aPA, (53

The drift velocity is thus

A, wherea=eEy/(mc). The solution to Eq(53), namely,
_C<pav>V_ 2w, yoVolCt+kou

~ (Pav)s 2w, Yo+ wu?

Vp , (49

PiA(7)=exp — ar/2)PiA(0), (54)

and yp= (2w, o+ wu?)/(20,m*). The ratio of the rest- allows us to relates and . The frequency of the plane wave
frame frequencyo, to the frequencyop, in the drift frame is  in the charge frame,

o wl(lovokle) mt 50 o (7)=8(7) =c(ku(n)s

@D yy(1-vp-kic) M _
o = 20(AT(P)PEA(7))s=6 T, (0), (55)
Note important corrections to the usual applications of the
ponderomotive potential to plane wavéa) The surfing fac- is immediately integrated to give
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(0 where as abovey =(—aa)~?. Result(64) describes the uni-
r( )(l_efar), (56) QJ“ < >av ( )

a form acceleration of a dressed charge of initial momentum
_ _ i Pay(0) and massn* = \/pa\,pa\,/c=m\/l+,u2. The proper
where we have taken=0 at the intersection of the particle 5cceleration rate is neic becauser is the proper time of the
world line with the light cones=0. The Lorentz-invariant apidly oscillating frame rather than of the drift frame of the

phases of the oscillating field as sampled by the charge isgessed charge. The proper acceleration of the dressed
thus limited to G=s<w,(0)/a as 7 increases from O to in- charge,

finity.
Equation(52) becomes dr Yo

a’DCIEaCZVaC, (65)

s(7)=

.1 ew —
Pid=SaPiA—e 2 —A'(s)PiA(0).  (B7)
2 mc is less tharxc by the factoryp/y, where

To solve, we put

<pav>S m l; 1 2
- —_—  — aTl + — aT .
A(r)=e*™2K (7). (58) G L LAY )
(66)
Then
. The effective mass of the dressed charge in the drift frame is
PiA=e*"?P [ LaK (1) +K(7)], (590  defined operationally as the force exerted by the constant
field E, divided by the proper acceleration,
and by comparison with Eq57),
e
.  ew  — mo="22 - Y 67)
PiK(1)=—¢e ‘”RA’(s)PI;K(O). (60) apC  Yp

and after averaging over rapid oscillations this is identical

Sinceds=w,(0)e” *"dr, integration gives with m*, since

aw — *
PiK(7)=PiK(0)— ———P;K(0), (61) _(P)sav_M

w(0) Ya=me T m YD (69)

wherea=eAA/(mc). Adding P;A+E,;A and applying the

- . Note thatu is inversely proportional ten, so that in the limit
gauge conditior(33), we find

m—0, the effective massm*=my1+u“ approaches

— A\1/2
A(r)—[eaﬂzﬁwemp L, aw HA(O) e(~AAAA)c.
= . . _—
0
«r(0) D. Axial magnetic field
o aw ; -
=e¥*2 14+ p; A(0). 62) Consider the field
w(0)

F=icBok+ (1+Kk)wA’(S) (69)
When the plane-wave field vanishess 0, and the solution
reduces to the well-known case of hyperbolic motion. On theof a plane wave plus an axial magnetic field. Application of
other hand, |f the cc.)nstant.electnc field vanishes, tlaen Pi to both sides of Eq(26) yields
=0 and solution(38) is regained. More generally, the mo-

mentum is . T
Pid=—ZwcPiA, (70)
p(7)=mcAAT
. < aw > wherew.=eBy/m is the proper cyclotron frequency. Its so-
=e*¥2 p(0)+2( Pr——=p(0 lution is
P(0)+2 Pig67P(0) |
- ) PiA(7)=exp —iwer/2)PeA(0), (70)
Cme—2 pe | garkiz (63

o (0) * ' which we use to find

It may be verified thap(7)p(7) = m2c2. S(7)=c(AT()KA(7))s=Cc(AT(0)KA(0))s
If the plane wave oscillates rapidly compared to the ac- o

celeration by the axial fieldy,(0)> «, we can average over =c(ku(0))s= w, . (72

the oscillations to obtain
Thus s(7)=sy+ o, 7, Where s;=5(0). Although the rest-
e‘”‘z’z (64) frame pa(avectqk, is no Ionge'r invariant, the frequenay;
' is, and this suffices to determirs¢r).

(O]

o (0)

Py

pav<r>=emﬁ’2[p<0>+nzmc
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Applying Py to the Lorentz-force equatiof26) and using
Eq. (71) with the gauge conditioi33), we find

i _
PrA= EwCPIQA —wa'PpA(7)

i ) _
= - wPrA—e 'c™pa’ PLA(0),

5 73

wherea’(s)=eA'(s)/(mc). To find PgA, we transform to a
rotating frame and defink to be the eigenspinor
K(s(7))=exp —ikw.m2)A(7). (74)

In particular, atr=0, K(sg) = A(0), andwith the help of Eq.
(72),

PiK(s)=€'“c"Pi A (7)=PyK(sy). (75)
Applying Py to A and differentiating, we get
PiA = Pl;i(ei“’cf’zK) = i—wchA+ elveT2piK.
dr 2
Comparison with Eq(73) gives
PiK=exp —iw.r)wPia’A(0), (76)

and in terms of,

!

P,;K’(s)=exp[—iwc(s—so)/wr]Pl;%K(so). (77

Integrating Eq.(77) and addingE,;K(s)=Ei;K(so) we
obtain

K(s)=(1+0)K(sp) (78

and thus

A(7)=ekoc2(1 1 @)A(0), (79

u(r) =2 u(0) +2(OU(0))gle” ™2+ Ou(0) 0",
(80)

where® is the dimensionless null biparavector,
w S — ~
0= w—Pﬁf ds'exg —iw(s'—sp)/w,]a’(s")=Prad(s),
r So
(81)

with a, any real unit vector perpendicular tb and ¥, the
complex scalar-valued function

eF(s’) 2

mcw,

ﬁ(s)zfsds’exp[—iwc(s’—so)/wr] (82

So

Note that because of relatidi@2) and the projector proper-

ties of Ei; ,
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Ou(0)®'=OPU(0)P;®"=20(P;u(0))sPiO"
~ 2 @e'=21|9/2p; .

w w

(83

The energy gain of the chargerisc? times the change in
vy=(u)s. From Eq. (800 and the relation{®u(0))ns

=(0)x-u(0),
Ay= (1)~ HO)=2O)-u(0) + 5|02 (84

While all components ofi are given directly by Eq80), the
longitudinal component of the proper velocity is also related
by Eq.(72):

v %) K, 85)

and the magnitude of the transverse component is given by
unimodularityuu=1:

u||E(u-I2)I2=

2 2 @r
ul(r)=uL(O)+2;Ay. (86)
Large gains in energy give rise to velocities that are increas-
ingly collimated alongk. Note that if the initial velocity is
longitudinal, therf®u(0))y=(w,/v){(®)y, the scalar part
of which vanishes.

Consider the case of a circularly polarized monochro-
matic wave:
a(s)=e'(s7s)kg (87
with a=eA | (sg)/(mc), a constant vector perpendicularko
Integration gives

l-exgi(w,—w) 7]

Wr— W¢

9=\ (88

If the rest-frame frequency, is close to the cyclotron fre-
guencyw., then

d=—ilawr. (89
More generally,
sin (o, — we) 7/2]\?
2,272
[9°=w a( (o —awg)l2 (90)

There is a strong resonance in the interaction when the
proper cyclotron frequency of the relativistic charge matches
the Doppler-shifted frequency of the wave. Wher= o,
relation (84) reduces to

A7=w’r(|2><a)-u(0)+%wwrrzaz. (92
This is the basis of the ALA. Of course, the resonance con-
dition will be difficult to hold for more than, say, f@ycles,
because it is difficult to make a magnetic fidedg more ho-
mogeneous than about a part in*1@ver macroscopic dis-
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tances. On the other hand, short-range inhomogeneities, over 2wy 4w,

distances on the order ofc/w at relativistic velocities, are (ymc?) 1Pw—= 3 —lu,[’, E=0, (98

well tolerated. Nevertheless, with, 7 on the order of 19 ¢

and dimensionless amplitudeson the order of unity, large  with r.=|cu, /w| the orbital radius of the cyclotron. The

energy gains by factors on the order of Hppear plausible. cyclotron is a very efficient radiator at high transverse ve-
locities |u, |~ 1CP. The situation at first appears bad for the

E. Plane-wave pulse ALA because the cyclotron radius is quite small:

To investigate the ALA case further, consider a plane- ¢ o, |\
wave pulse centered a&=0, with the derivative of the real rc_w_c ZZAV ~01m (99
paravector fieldi(s) =e(mc) “*AA(s) taken to be the circu-
larly polarized Gaussian wave packet for w./w~10"2 and 1-TeV electrons with, (0)=0. What

- rescues the ALA is the high pitch of the spiral:
’ _ aisk—5S%62 1
a (S)_e ? a (O)’ (92) UH ’}/0Vo/C+A’y C

L L —:—1/22—~3><104 (100

which is related to the electric fielH of the pulse bya' = Ul (2wAylw) A

—eE/(mcw). After the pulse has passed, E§1) gives ] )
under the circumstances above. Thus, the transverse velocity

o2 component is nonrelativistic. Witbf=2A vo,lw [see Eq.

’ i w Wc ?
¥=|a’(0)|e Nemo—exp— | —=—1] |, (93  (8p)]and at 1 teslan;=1.8x10" s *~w,, one finds
r r
— C1p2TY —14

where the constant phase angkedepends on the initial (ymc®) 1P o —1.4x10 Ay, E=0. (100

values, (assumed< — o). If u(0) is longitudinal, the energy ¢

increasemc’A y is quadratic in the field strength: One can similarly investigate the radiation from the reaction
to the laser pulse in the case of vanishBgby putting o,

=0 in Eq.(97).

Of more interest, however, is the total power loss in an
ALA. In the presence of both an axial magnetic field and a
To maximize the energy transfer, the pulse widtltan be laser pulse, there can be interferenc®ifEg. (97)] between
set to|w./w,— 1|, which can be quite large when, and  the cyclotron motion and the term linear in the fi@df the
w, are well matched. The enhancement factor arising fromlaser. Consider a circularly polarized plane wave of the form
the resonance, = w. is limited only by the homogeneity of (87). The proper velocity is given by Eq80), and in the
the large magnetic field required. In the absence of the axialesonant case, = w., for which 9= —iwr,
magnetic fieldw.=0. The presence of the magnetic field is

2
Ay= %[a'(o)]zwazex%—az(%—l> } (94

r

seen to enhance the energy gain by a factasof 2(Ou)p=(ioTa(l-K)u)g=(iora(1—K)(y+u+u,))x.
Two practical concerns for the application of such a (102

scheme are the potential loss of energy to radiation and the

required length of the accelerator. Since

F. Larmor power o (1=k)=w(1-k)(y=u-k)=o(1-K)(y+u)
Loeb and Friedlanfl10] have established that the radiated and

energy by the ALA is negligible. We confirm this result with . .
simple analytical relations. The Larmor power lost to radia- (lora(1-k)u, )x=—w7axu, (1+k),
tion can be writterj 25]

_ Eq. (80) gives
P=—2Zmcr.uu, (95) . A
u, (r)=ek*cTu, (0) + w, raxk]. (103
where r,=e?/(4meomc?)=2.82<10 > m is the classical

electron radius. For a plane wave plus an axial magnetic fiel§ubstitution into Eq(97) with w,= w, yields the radiated
power

F=icBok+(1+K)E, 96 - -
ok+( ) (96) P:%mcrewg[u(O)Xk—wcTa-i-an]Z. (104

the Lorentz-force equatiofl19) of the charge leads to o A
In principle, one can choose, (0) to minimize energy
2 e e \2 loss and/or to maximize energy gain, but in practice it is
P=—mcry| wuxk+ L el (97) difficult to synchronize injection with the phase of the laser
3 w mc wave. If instead we choose axial injectian,(0)=0,

The fraction of particle energymc? radiated by the cy- P= gmcrew§a2(1+ w572), (105
clotron component per period®2y/w. in the laboratory
frame after the driving laser pulse has passed is The ratio of the total energy radiated,
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j Pdt=J P)/dT=J P[y(0)+Ay]dr, (106
to the energy gained ymc?= tww.r?a®mdc? is then

[ Pot 4,

=5 dr
Aymc&@ 3 crw

1
y(0)+ Ea)wcTzaz

[ a+ozm

Iew 3
=5 Cerwc (3+w§72)7(0)+(1+ ga)gTz Ay}
4 I‘ewgr
1 oo Avy, (107

where the last line is the limiting case when =1 and
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clal
re= ” \/l—l—(cocT)z (112
Cc
and the longitudinal distance traveled is
- ~ Ay
Ax-k=cr| U(0)~k+? . (113

It is advantageous to use high magnetic fields and modest
pulse widthsw.7 in order to limit the acceleration length

Ax-k. Of course, short pulses must be balanced by higher
laser intensities. For example, with a 10-T magnetic field and
a laser of wavelength 0.gm (Ti:sapphir¢ with a dimen-
sionless vector-potential amplitu@é@= 10, one could boost
342 MeV electrons to 1 TeV in under 1.9 km with a 17-rad

Ay>y(0)=3(w/wc+ w./w). The restriction that this ratio pulse, and to 10 TeV in 59 km with a 54-rad pulse. Although
be small places an upper limit on the energy gain that can bgytensities of 4.% 10 W/cn? corresponding toa’= 10

realized from an ALA for a resonance pulsewfr radians:

Cw

rewgf

Ay= (108

[see Eq(30) and recall use of circular polarizatibare fea-
sible in focused beams from tabletop lasers, much more mas-
sive devices are required to produce such intensities over a
spot that encompasses the cyclotron orbit of radigsl cm
at 1 TeV along the length of the accelerator. To achieve a

The limit can be quite large: for an electron in an axial mag-given energy change, if the amplitude of the plane wave is
netic field of 10 T w.=1.8X 10'? s 1) and a pulse length of scaled by a factof, the required pulse length and hence the

w.7=10° from a Ti:sapphire laser=2.4x 10" s 1), itis
Ay=10'

G. Size of accelerator

The acceleration is limited by practical considerations o

size. Particles moving at constant proper veloaityfor
proper time intervalr travel a longitudinal distance
AX-RZCTU-R, (109

so that 1-TeV electronsy=2x 10°) stretch a 1xS proper-

time interval (5< 10° rad of cyclotron motion in a magnetic

field of 1 T) into 2 s and cover a distance ofx&.0° km,

almost a round trip to the moon and rather large for an ac;
celerator! Of course, the electrons do not enter the accelera-
tor with 1 TeV of energy, so the actual size requirements ar

less severe.

To determine the conditions more precisely, consider
square-wave pulse of a circularly polarized plane wave tun
to resonance with the cyclotron frequency in the frame of th
charge moving in an axial magnetic field, with coaxial injec-
tion. Label the beginning of the pulse at the particle by
proper timer=0. During the interaction of the charge in the

pulse, Eqs(80), (81), and(89) give
u(r)zu(0)+[wcre“z“’cflz><a+waTZaZPQ] (110

in the resonance limiv,— w. . Integration yields

cl - .
Ax=u(O)C7-+w— ek’ (kX a—aw,7)
C

+

w
(wc7)3a2PI;

Tor (111

Thus, the cyclotron radius is

length of the accelerator are scaled by’

V. DISCUSSION

With the help of projectors in an eigenspinor approach to
fthe classical Lorentz-force equation, we have obtained rela-
tively simple analytical solutions for the motion of charges in
some electromagnetic fields. The covariant approach, which
employs Clifford’s geometric algebra of physical space, is
valuable in identifying and explaining conserved quantities,
and although basically classical, it bears an intriguing resem-
blance to quantum methods. We have concentrated here on
simple cases of plane-wave fields, both monochromatic and
pulsed, plus constant axial electric or magnetic fields. Al-
though we have used plane waves rather than focused Gauss-
ian beams that would more realistically describe practical
?asers, it is only important that the field at the charge be well

arepresented by a plane wave, and the simplicity of the results

nay provide useful insights in situations of more complex
e .
egeometry. Since the plane wave can be a pulse, the approach

may even simulate qualitative results from charges entering
finite laser beams. We have looked at applications to the
ALA scheme, in which electrons are accelerated to TeV en-
ergies by circularly polarized lasers resonant with the cyclo-
tron motion in a constant magnetic field. One could similarly
use microwaves to accelerate ions or protons in axial mag-
netic fields. The results may also be useful in analyzing pos-
sible astrophysical acceleration mechanisms.

The applications made here demonstrate the potential of
the eigenspinor approach as a powerful tool of analysis in
problems of relativistic dynamics.

ACKNOWLEDGMENT

The authors thank the Natural Sciences and Engineering
Research Council of Canada for support of this work.



PRA 60

[1] A. H. Taub, Phys. ReVv73, 786 (1948.

[2] L. D. Landau and E. M. LifshitzElectrodynamics of Continu-
ous Media(Addison-Wesley, Reading, MA, 19860

[3] J. Eberly, inProgress in Opticsedited by E. Wolf(North-
Holland, Amsterdam, 1968Vol. VII.

[4] T. W. B. Kibble, Phys. Rev. Lettl6, 1504(1966.

[5] J. H. Eberly and A. Sleeper, Phys. Ra¥6 1570(1968.

[6] E. S. Sarachik and G. T. Schappert, Phys. Revl,[2738
(1970.

[7] D. Hestenes, J. Math. Phys5, 1778(1974).

[8] D. HestenesSpacetime AlgebrdaGordon and Breach, New
York, 1966.

[9] S. Eliezer and A. Loeb, iddvances in Accelerator Concepts
edited by F. E. Mills, AIP Conf. Proc. No. 15&\IP, Wood-
bury, NY, 1987.

[10] A. Loeb and L. Friedland, Phys. Rev. 38, 1828(1986.

[11] L. Cicchitelli, H. Hora, and W. Scheid, iAdvances in Accel-
erator Conceptsedited by C. Joshi, AIP Conf. Proc. No. 193
(AIP, Woodbury, NY, 1989 pp. 17-36.

[12] G. Malka and J. L. Miquel, Phys. Rev. Le#t7, 75(1996.

[13] P. M. Woodward, J. Inst. Electr. Eng., Part 3 98, 1554
(1947.

[14] J. D. Lawson, IEEE Trans. Nucl. S¢ilS-26 4217(1979.

[15] E. Esarey, P. Sprangle, and J. Krall, Phys. Re\6Z=5443
(1995.

[16] B. Rau, T. Tajima, and H. Hojo, Phys. Rev. Lef8, 3310
(1997.

[17] G. Malka, E. Lefebvre, and J. L. Miquel, Phys. Rev. L&8,
3314(1997.

[18] F. V. Hartemann, S. N. Fochs, G. P. Le Sage, N. C. Luhmann,

RELATIVISTIC DYNAMICS OF CHARGES IN . ..

795

Jr., J. G. Woodworth, M. D. Perry, Y. J. Chen, and A. K.
Kerman, Phys. Rev. B1, 4833(1995. ;

[19] A. A. Kolomenskii and A. N. Lebedev, Zh.K8p. Teor. Fiz.
44, 261(1963 [Sov. Phys. JETR7, 179(1963].

[20] C. S. Roberts and S. J. Buchsbaum, Phys. R&5 A381
(1964).

[21] W. E. Baylis, Phys. Rev. A5, 4293(1992.

[22] W. E. Baylis, J. Bonenfant, J. Derbyshire, and J. Huschilt, Am.
J. Phys62, 899 (1994).

[23] W. E. Baylis and G. Jones, J. Phys.2& 17 (1989.

[24] W. E. Baylis,Clifford (Geometric) Algebras with Applications
in Physics, Mathematics, and Engineerit@irkhauser, Bos-
ton, 1996, Chaps. 17-20.

[25] W. E. Baylis, Electrodynamics, a Modern Geometric Ap-
proach (Birkhauser, Boston, 1998

[26] D. Hestenes, J. Math. Phys6, 556 (1975.

[27] P. LounestoClifford Algebras and SpinoréCambridge Uni-
versity, Cambridge, 1997

[28] W. E. Baylis, Phys. Canada4 (1), 24 (1998.

[29] C. W. Misner, K. S. Thorne, and J. A. Wheel&ravitation
(Freeman, San Francisco, 197B. 73.

[30] D. Hestenes, J. Math. Phys5, 1768(1974).

[31] R. Penrose and W. RindleSpinors and Space-TimgEam-
bridge University Press, Cambridge, 198¥ol. I.

[32] J. Gao, D. Bagayoko, and D.-S. Guo, Can. J. PMg;.87
(1998.

[33] D. D. Meyerhofer, inAtomic Physics 15edited by H. B. van

Linden van den Heuvell, J. T. M. Walraven, and M. W. Rey-

nolds(World Scientific, Singapore, 1997p. 431.



