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Relativistic dynamics of charges in electromagnetic fields: An eigenspinor approach

W. E. Baylis and Y. Yao
Department of Physics, University of Windsor, Windsor, Ontario, Canada N9B 3P4

~Received 30 October 1998!

Analytical solutions and fresh insights for the relativistic dynamics of charges in classical electromagnetic
fields are made possible by an eigenspinor approach. The Lorentz-force equation takes a simple spinorial form
when expressed in terms of an amplitude of the Lorentz transformation that describes the motion of the charge
in Clifford’s geometric algebra of physical space. Algebraic projectors allow explicit analytical solutions to be
found for charges in arbitrary initial motion interacting with monochromatic plane waves, with directed plane-
wave pulses, and with pulses superimposed on static axial fields. The treatment tests the classical effective
mass of a dressed charge and leads to a refinement of the concept of ponderomotive momentum. Implications
for a pulsed autoresonance laser accelerator are briefly discussed.@S1050-2947~99!07308-4#

PACS number~s!: 12.20.Ds, 03.30.1p, 03.50.De, 41.75.Lx
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I. INTRODUCTION

Matrix and Hamilton-Jacobi solutions for the motion
point charges in a linearly polarized monochromatic elec
magnetic plane wave have been known for 50 years@1–3#.
The advent of lasers and the possibility of particle accele
tion in intense laser fields has renewed interest in such s
tions, and extensions to more general electromagnetic fi
@4# such as exponential pulses@5# and monochromatic plan
waves of arbitrary polarization@6# have been published
Most of the known solutions are for charges initially at re
or with vanishing average velocity, and many are indirect
restricted to interactions approximately described by a p
deromotive potential. A more direct derivation of the moti
of charges in monochromatic plane waves was given
Hestenes@7#, using the Clifford algebra of Minkowski space
time @8#. Although all of these treatments are classical a
neglect radiation reaction, they give the behavior of quant
results at high field intensities@3# and are of interest for
possible applications in high-energy particle accelerat
both for beam injectors and for high-gradient accelerat
stages@9–12#, for possible astrophysical mechanisms of p
ticle acceleration, and for the motion of electrons photoio
ized in strong laser fields.

Solutions have established that in spite of the large e
tric fields present in intense laser beams, the net energy
can be transferred to a charge in a long sinusoidal bea
negligible @13–15#. However, it has recently been demo
strated theoretically@16# and experimentally@17# that signifi-
cant energy can be transferred by short laser pulses of w
on the order of a cycle or less. Other solutions have s
gested accelerators driven by rectified laser pulses@11#,
looked at the acceleration of electrons driven outside the
radius of a Gaussian laser beam@18#, and demonstrated tha
when a circularly polarized monochromatic plane wave
superimposed on an axial magnetic field, a resonance ca
achieved that permits large energy transfers@10,19,20#.

Here, the classical eigenspinor approach@21,22#, utilizing
projector techniques in the paravector space of Cliffor
PRA 601050-2947/99/60~2!/785~11!/$15.00
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geometric algebra of physical space@23–25#, is used to study
solutions to the Lorentz-force equation. As in Taub’s so
tion @1#, we use the Lorentz transformation between the la
ratory frame and the inertial frame instantaneously comov
with the charge to describe the motion. However, unl
Taub, we follow Hestenes@7# in avoiding explicit matrices
and in using the spinorial form of the Lorentz transformati
that arises in Clifford-algebra treatments. In the spinor
form, Lorentz transformations are bilinear in the transform
tion elements. These elements, while closely associated
relativistic quantum amplitudes@21,26#, are in fact a purely
classical construction. Their use constitutes a classical
proach that is much closer than traditional trajectory-ba
treatments to quantum formalism. Our approach differs fr
Hestenes’ in its use of the covariant paravector algebra
physical space (Cl 3) rather than the larger space-time alg
bra (Cl 1,3).

The study is restricted to the interaction of isolat
charges with electromagnetic fields. We justify the neglec
radiation reaction for most cases considered by calculat
of the radiated power. The algebraic approach provides g
metrical insight into previously known solutions and, in pa
ticular, explains the invariance of the space-time propaga
vector of the plane wave in the comoving inertial frame
the accelerated charge. It also extends previously known
plicit solutions to the dynamics of charges in arbitrary init
motion in plane-wave pulses superimposed on a cons
axial electric or magnetic field. These analytical results h
explain numerical and experimental results, including ene
transfer from finite beams, and shed light on~and demon-
strate limitations of! the approximations of the ponderomo
tive energy and the mass shift for electron motion in a la
beam. They also contribute to the analysis of the autore
nance laser accelerator~ALA ! scheme@10# for accelerating
charges by a pulsed circularly polarized laser beam supe
posed on an axial static magnetic field.

We begin with a brief review of the paravector approa
in the Clifford algebra of Euclidean space and its use in
covariant treatment of relativity. The role of bivectors
785 ©1999 The American Physical Society
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786 PRA 60W. E. BAYLIS AND Y. YAO
generators of rotations in Euclidean space is emphasized
generalized to that of biparavectors as generators of sp
time rotations~Lorentz transformations!. Next, the classica
eigenspinor is introduced, and the spinorial form of t
Lorentz-force equation is shown to relate the coupling w
the electromagnetic field to a spacetime rotation rate.
invariance of null-plane rotations is shown to lead to t
conservation of the spacetime propagation vector in
frame of a charge accelerated by a directed plane wave,
this is used to solve the Lorentz-force equation for su
charges. The ponderomotive momentum, its relativistic c
rections and limitations, and the effective mass of a dres
charge are briefly addressed. Finally, analytical solutions
derived for the relativistic motion of charges in plane-wa
pulses and in such pulses superimposed on axial fields.

II. THE APPROACH

A. Clifford’s geometric algebra

Our approach is based on an algebra of vectors, develo
by Clifford as an extension of Grassmann’s exterior for
and Hamilton’s quaternions@24,27#. Since a thorough intro-
duction is available elsewhere@25#, only a brief summary is
given here. The algebra assumes an associative produ
vectors, distributive over addition, that satisfies the followi
fundamental axiom:the square of any vectorv is equal to its
length squared:

v25v–v. ~1!

~The existence of such a quadratic form is assumed.! If v is
written as the sumv5u1w of vectorsu and w, the axiom
implies

uw1wu52u–w. ~2!

In particular, orthonormal basis vectors of a Euclidean ba
obey

ejek1ekej52d jk . ~3!

For example,e1
25e2

251 ande1e252e2e1. The vectors and
all their products are elements of the algebra. It is clear fr
Eq. ~3! that elements of the algebra generally donot com-
mute. In fact, two vectors commute only if they are aligne
If they are perpendicular, they anticommute.

One may think of the elements as matrices and prod
as matrix products. There are many possible matrix repre
tations of the algebra. The actual representation is imm
rial; only thealgebraof the representation is important. Th
Clifford algebra ofn-dimensional Euclidean spaceEn is de-
noted byCl n .

B. Bivectors and rotations

Vectors are easier to picture than tensor elements, bu
vector analysis common in physics uses vector~cross! prod-
ucts that are not useful in more than three dimensions.Bivec-
tors, namely, the nonscalar part of the algebraic produc
two vectors, provide an extension of the cross produc
spaces of any finite dimension.~See Ref.@28# for an elemen-
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Clifford algebras also extend complex analysis to more th
two dimensions.

An important application of bivectors is to rotations in a
arbitrary plane inn-dimensional space. Lete1 ,e2 be ortho-
normal basis vectors in the plane. Thene1e2 is a bivector of
the plane. It may be considered an operator that rotates
vectorv in the plane by 90°, since by the basic relation~3!,

e1e2v5e1e2~v1e11v2e2!52v1e21v2e1 . ~4!

Rotations in the plane by an arbitrary angleu are obtained by
a linear combination ofe1e2 and the unit operator 1:

~cosu1e1e2 sinu!v5exp~e1e2u!v, ~5!

where the exponential expression follows in the vector al
bra from the property (e1e2)2521. To rotate a vectoru with
components out of thee1e2 plane, one can use the fact th
e1e2 anticommutes with vector components in the plane
commutes with components perpendicular to it. These pr
erties lead to the so-calledspinorial formof rotations:

u˜RuR21, R5exp~2e1e2u/2!. ~6!

This is the form for operator transformations in quantu
theory. The similarity to quantum formalism appears to
more than coincidence@21,24#. It is made stronger by the
wave-functionlike eigenspinor introduced below.

C. Higher-order products

Products of three or more vectors can also be import
Thanks to axiom~1!, the total number of linearly indepen
dent elements in the algebra is finite. In ann-dimensional
space, the most general algebraic element is a linear co
nation of 1 scalar,n vectors, n(n21)/2! bivectors,n(n
21)(n22)/3! trivectors, etc., up to thevolume elementof
the space,eT5e1e2•••en . The algebraCl n as a vector
space is thus spanned by atotal of 2n basis elements. Many
significant subspaces exist.

One defines theClifford dual of any elementx by

* x5xeT
21 . ~7!

It generalizes the Hodge dual that is generally defined onl
x is a homogeneousk-vector and is then6 the Clifford dual.
In Cl 3 , eT5e1e2e3 commutes with all elements and squar
to 21; it may be identified with the unit imaginaryi. With
its help, rotation elements~6! in E3 can be expressed in term
of the axis of rotation

R5exp~2e1e2u/2!5exp~2 ie3u/2!. ~8!

D. Paravector space as spacetime

Paravectorsare scalars plus vectors, where ‘‘plus’’ mea
addition as in the sum of real and imaginary numbers or
perpendicular vector components. Paravectors of
n-dimensional Euclidean spaceEn are elements of an (n
11)-dimensional linear ‘‘vector’’ space. Thus ifp is a vec-
tor in En,

p5p01p5pmem, ~9!
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PRA 60 787RELATIVISTIC DYNAMICS OF CHARGES IN . . .
wherep0 is a scalar, is aparavector. The second form em
phasizes its role as an (n11)-dimensional vector, where re
peated Greek letters are summed from 0 ton and e051.
What makes paravector space interesting is its metric.
look for a scalar-valued quadratic form on paravector spa
The square of a paravector can have both scalar and ve
parts and is therefore not a candidate. We need aconjugate p̄

of p such thatpp̄ is a scalar. The obvious choice is th
Clifford conjugate

p̄5p02p, ~10!

with which the scalar~S! and vector~V! parts of a paravecto
can be isolated:

^p&S5 1
2 ~p1 p̄!, ^p&V5 1

2 ~p2 p̄!. ~11!

The quadratic form is then

pp̄5pmpnemēn5pmpnhmn , ~12!

where the metric tensor of the paravector spacehmn

[^emēn&S has theMinkowskiform

hmn5H 1, m5n50

21, m5n51, . . . ,n

0, mÞn.

~13!

Thus, the paravectors of three-dimensional Euclide
space are four-dimensional vectors in a Minkowski spa
time.Clifford conjugation is extended to general elements
the ruleqp5 p̄q̄. The symmetric scalar product that follow
from the quadratic form ofp1q is

^pq̄&S5 1
2 ~pq̄1qp̄!5pmqnhmn . ~14!

Another useful conjugation isreversal, which reverses the
order of vector products and can be identified with Hermit
conjugation if we assume that the basis vectors are all
~equal to their Hermitian conjugates!. The reversal~Hermit-
ian conjugate! of pq is (pq)†5q†p†. The real ~R! and
imaginary~I! parts of an arbitrary elementx are

^x&R5 1
2 ~x1x†!, ^x&I5 1

2 ~x2x†!. ~15!

Sincee1e2e352e3e2e152(e1e2e3)†, the volume element in
Cl 3 is purely imaginary.

The appearance of the Minkowski spacetime metric
the paravector space ofCl 3 suggests the use of real parave
tors to represent vectors in four-dimensional spacetime.
scalar parts of such paravectors are the time componen
spacetime vectors. Examples include~i! dimensionless
proper velocityu5g1u5g(11v/c), with uū51, ~ii ! vec-
tor potentialA5f/c1A, ~iii ! charge currentj 5rc1 j , and
~iv! gradient operator]5c21]/dt2¹.

Linear transformations that leave the quadratic formpp̄
invariant are homogeneousLorentz transformations.Physi-
cal ~restricted! Lorentz transformations are rotations
spacetime planes. They comprise rotations, boosts, and
products and can be written in a form analogous to rotati
~6! in E3. Any spacetime vectorp transforms as
e
e.
tor
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p˜LpL†, L5eW/25expS 1

4
Wmn^emēn&VD . ~16!

The six basisbiparavectorŝ emēn&V are generators of space
time rotations and span the linear space of spacetime bi
tors. They come in commuting pairs, such ase3ē0 ,e1ē2 , rep-
resentingorthogonalspace-time planes, one timelike (e3ē0)
and one spacelike (e1ē2). The two generators of any pair ar
duals of each other and anticommute with the other four u
biparavectors. Spacelike unit biparavectors square to21, are
purely imaginary, and generate spatial rotations as s
above. Timelike ones square to11, are purely real, and
generateboosts~rotations in hyperbolic planes!. As we see
below, linear combinations of timelike and spacelike b
paravectors can be found that arenull. All unit biparavectors
are unitary and change sign under Clifford~bar! conjugation.
They also obey characteristic commutation relations, and
symmetry group that relates them to each other is the di
product of SU~2! ~spatial rotations! and U~1! ~duality rota-
tions!.

SimpleLorentz transformations act in a single space-tim
plane. They mix paravector components in that plane
leave all paravectors in the orthogonal plane invariant. T
biparavectors both of the plane in which the transformat
acts and of its dual are invariant.

E. The electromagnetic field

The electromagnetic field~the Faraday @29#! is the bi-
paravector@spacetime plane~s!#,

F5c^]Ā&V51
2 c~]mAn2]nAm!^emēn&V . ~17!

@Sytème International~SI! units are used. We can general
avoid the use of tensor components. The component ex
sions are given only for comparison to other treatmen#
Expression~17! is covariant, but we may wish to expandF
into the electric and magnetic field in a particular frame:F
5E1 icB, where i 5eT is the volume element in physica
space.

Maxwell’s equationrelates the source currentj to the field
F:

]̄F5Z j̄ , ~18!

whereZ5mc5(«c)21 is the impedance of the medium. I
vacuum,Z054p33̇0 V, 3̇52.997 924 58. By isolating rea
and imaginary parts, the inhomogeneous and homogen
equations are obtained, and by further breaking these d
into vector and scalar parts, Maxwell’s four vector equatio
are retrieved, all from Eq.~18!. Extensive applications of the
paravector algebra of Cl~3! in electrodynamics are given
elsewhere@25#.

III. LORENTZ-FORCE EQUATION

In Cl 3 , we can combine the covariance of the tens
form ṗm5eFmnun of the Lorentz-force equation with th
component-free simplicity of the common vector form:

ṗ5^eFu&R , ~19!
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788 PRA 60W. E. BAYLIS AND Y. YAO
wherep is the space-time momentum of chargee interacting
with the electromagnetic fieldF, and a dot indicates differ
entiation with respect to the proper timet.

A. Eigenspinors

The motion and orientation of a particle is determined
its eigenspinorL, which is just the Lorentz transformationL
of the algebra that relates the particle frame~that is, the
inertial frame comoving with the charge! to the laboratory
frame. Properties such as a spacetime vectorqr known in the
particle frame are transformed byL to the laboratory frame
q5LqrL

†. In particular, the time axise051 in the particle
frame is transformed to the proper velocity~in units ofc) of
the particle in the laboratory frame:

u5LL†. ~20!

More generally, elements of the rest-frame tetrad$em% are
transformed to the particle paravectors

um5LemL† ~21!

in the laboratory frame, withu0[u.
As the amplitude of a particular Lorentz transformatio

the eigenspinorLPSL(2,C) characterizes the motion of
particle in the laboratory. ‘‘Eigen’’ refers to the particle
own~proper! Lorentz transformation, and ‘‘spinor’’ indicate
its behavior under a further Lorentz transformationL:

L˜LL. ~22!

In particular, the eigenspinor changes sign under any 3
rotation. The proper time rate of change of the eigenspi
can always be written

L̇5
1

2
VL, ~23!

where V[2L̇L̄ is a biparavector identified with theDar-
boux bivectorin spacetime@30#. Physically,V is the space-
time rotation rate of the particle frame. If Eq.~23! can be
solved, the time evolution of any space-time vector or biv
tor that is fixed in the particle frame can be found. For e
ample, the momentump has the fixed valuemc in the rest
frame, and in the laboratory,

ṗ5L̇mcL†1LmcL̇†5 1
2 ~Vp1pV†!5^Vp&R . ~24!

B. Spinorial form of Lorentz-force equation

A comparison of Eq.~24! with the Lorentz-force equation
~19! shows that the spacetime rotation rateV of a charged
particle may be identified with the electromagnetic fieldF at
the position of the charge

V5
e

mc
F, ~25!

and that the Lorentz-force equation itself follows from t
spinorial form
y

,

°
r

-
-

L̇5
e

2mc
FL. ~26!

We look for solutionsL(t) in external fieldsF. Contribu-
tions toF from the charge itself are omitted, and thus rad
tion reaction is neglected. Note thatL gives orientation
~spin! information that is lost when the proper velocity o
momentum is calculated.

According to the formV˜LVL̄ of the Lorentz transfor-
mation for spacetime bivectors,V2 and F25(E22c2B2)
12icE–B are Lorentz invariants. IfE–B50, F is simpleand
the spinorial Lorentz-force equation~26! has a straightfor-
ward geometrical interpretation: the electromagnetic fieldF
induces arotation at the rateV in the space-time plane ofF.
In any given frame, electric fields induce boosts, that is,
tations in timelike~hyperbolic! planes, and magnetic field
induce rotations in spacelike~elliptic! planes.

IV. DIRECTED PLANE WAVES

The paravector potential of adirected plane wave~not
generally monochromatic! can be expressed as a functio
A(s) that depends on the spacetime positionx only through
the Lorentz scalar

s5^kx̄&S5vt2k–x5v rt, ~27!

where k5v/c1k5(v/c)(11 k̂) is a constant null~light-
like! paravector whose vector part gives the propagation
rection of the plane wave, and

v r5c^kū&S5gv~12v–k̂/c!5 ṡ. ~28!

For oscillating plane waves of fixedk̂, k is usually taken to
be the average spacetime propagation vector, and thenv r is
the corresponding frequency in the particle frame mov
with proper velocitycu5dx/dt. The fieldF has the form

F5c^]Ā&V5c^kĀ8&V5~11 k̂!E, ~29!

whereA8(s)5dA(s)/ds. The energy densityE and Poynting
vectorS are given by

E1S/c5
«0

2
FF†5«0E2~11 k̂!. ~30!

A number of important properties follow from theprojec-

tor factor Pk̂5 1
2 (11 k̂)5Pk̂

2 in such waves. Sincek

5(2v/c)Pk̂ is null, k̄F50. The scalar part of this gives th
orthogonality of the fields withk, k•F50, and the vector
partF5 k̂F5 i k̂3F relates electric and magnetic fields in th
plane wave and implies that$E,B,k% is a right-handed or-
thogonal vector basis of three-dimensional space. In term

the complementary projectorsPk̂ and P̄k̂512Pk̂ ,

F5Pk̂F5FP̄k̂5Pk̂FP̄k̂ . ~31!

It follows that F is a null biparavectorand hence simple
F250, which implies thatE andcB are of equal magnitude
and perpendicular to each other.
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The propagating plane-wave fieldF5(11 k̂)E is what
Penrose and Rindler@31# call aflag. It is tangent to the light
cone on the lightlike paravector (11 k̂), known as theflag-
pole. The flagpole is orthogonal to itself and to eve
paravector in the flag plane spanned by 11 k̂ andE. The flag
F5(11 k̂)E is rotated in theik plane by multiplication by a
scalar phase factor:e2 ifF5e2 if k̂/2Feif k̂/2. Every vector in
the dual plane2 iF, spanned by 11 k̂ and k̂3E, is orthogo-
nal to the flagF and is invariant under rotations in the fla
plane. In particular, the flagpole itself is unchanged by ro
tions in the flag plane. A further important property is that
a is any vector perpendicular tok̂,

Fa5Pk̂FaPk̂5F–a~11 k̂!. ~32!

Examples of directed plane waves include monochrom
circularly polarized waves withreal electric fields E(s)
5E(0)exp(6isk̂) and linearly polarized Gaussian puls
with E(s)5E(0)exp(21

2s
2/s2)coss. Note that directed plane

waves are more general than monochromatic plane wa
They may be any linear combination of monochroma
waves that share the same propagation directionk̂.

A. Charge motion in a plane wave

Although the Lorentz-force equation~26! is easily solved
for F5const., solutions appear hopeless for fieldsF(s) that
depend on the position of the charge and hence on the s
tion itself. Nevertheless, solutions for directed plane wa
can be found by virtue of a surprising invariance, noted
Hestenes for monochromatic waves@30#.

We assume the Lorenz-gauge condition

^]Ā&S5^kĀ8&S50. ~33!

ThenF5ckĀ8(s) andkĀ852A8k̄. The relationk̄F50 for
directed plane waves, together with the spinorial Loren
force equation~26! imply

k̄L̇505L̇†k̄. ~34!

It follows that the propagation paravectorkr ~both the fre-

quencyv r and the directionk̂r) in the instantaneous res
frame of the accelerating charge isconstant:

k̄r5L†k̄L, ~35!

d

dt
k̄r5L̇†k̄L1L†k̄L̇50. ~36!

This seems counterintuitive because first-order Dopp
shifts cannot be avoided. However, the acceleration of
charge is so contrived to make thetotal Doppler shift vanish.
The result is understood in terms of our geometrical interp
tation of the Lorentz-force equation: the fieldF induces a
space-time rotation in the flag plane ofF, and the flagpolek
~in any inertial frame! is invariant under such rotations.

The invariance ofkr permits solutions to the equation o
motion ~26!. In terms ofs5v rt,
-

ic

s.

lu-
s
y

-

r
e

-

d

ds
L5

1

ṡ

d

dt
L5

ekĀ8~s!

2mv r
L~s!52

eA8~s!

2mv r
k̄L, ~37!

where the gauge condition~33! was applied. Since by Eq

~34! k̄L(s)5 k̄L(s0), Eq. ~37! is immediately integrated to
give the beautifully simple~but exact! solution

L~s!5L~s0!2
e@A~s!2A~s0!#

2mv r
k̄L~s0!. ~38!

~By superimposing solutions for various initial condition
one can express the family of solutions in terms of aneigen-
spinor field that is closely associated with the Dirac wa
function @21#.!

In terms of the conjugate momentump1eA5mcLL†

1eA, a lightlike change

D~p1eA!5
k

2mv r
^eDĀ@2p~s0!2eDA#&S ~39!

is found, whereDp5p(s)2p(s0) and DA5A(s)2A(s0).
Note that the last factor̂•••&S is a Lorentz-invariant scalar

and from the gauge condition~33!, DĀDA5(DA–k̂)2

2(DA)2[2DA'
2 . For an oscillating paravector potentialA,

the squared dependence implies a second-harmonic cont
tion in the motion of the charge, and the component ofDp

along k̂ implies a frequency shift in scattered radiation. T
proper velocitycu5p/m can be integrated to give the spac
time positionx(s) and hence parametric equations for t
trajectory. Immediate consequences are the invariance o
components ofp1eA alongk @see also~33!#,

^D~p1eA!k̄&S5^Dpk̄&S50, ~40!

and along any directionb̂ perpendicular tok̂:

D~p1eA!•b̂50. ~41!

The invariance ofpp̄5m2c2 can also be confirmed.
Remember that the plane waveA need not be monochro

matic; it can be a pulse or string of pulses. The change
momentum depends only on the initial momentum and
net change inA. For a givenDA between the beginning an
end of the interaction, the variation ofA during the pulse has
no effect on the final momentum of the charge, although
can influence the particle trajectory. Laser pulses are usu
represented by vector potentials that vanish before and a
the pulse, and there is no transfer of energy or momentum
the charge from such pulses. However, physical pulses
create net changes inA. For example, the simple field puls

F~s!5~11 k̂!vA0 /cosh2 s ~42!

results from DA52A0(11tanhs) ˜
s̃ `

22A0. If the initial

velocity lies alongk̂, the proper velocity is

u5u01a0~11tanhs!1
1

2

kc

v r
a0

2~11tanhs!2, ~43!
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790 PRA 60W. E. BAYLIS AND Y. YAO
where a05eA0 /mc is the dimensionless vector-potenti
amplitude,u05g0(11v0 /c) is the initial proper velocity,

andkc5v(11 k̂). The net energy gain

Dgmc25^Du&Smc25
2v

v r
a0

2mc2 ~44!

can be large, particularly at high injection velocities whe

the surfing factorv/v r5g0
21(12 k̂–v0 /c)21 is large. Inte-

gration with respect to proper time gives the spacetime
placement,

Dr 5u0cDt1
a0c

v r
ln~11e2s!1kS a0c

v r
D 2

3F ln~11e2s!2
1

~11e22s!
G . ~45!

B. Ponderomotive potential

If DA oscillates rapidly about an average of zero, t
momentump oscillates rapidly as well. Theaverageover
such oscillations, see Eq.~38!,

Dpav[pav2p05
k

2v r
m2mc2 ~46!

has been called theponderomotive momentum@32#, where
m2[(e2/m2c2)^(DA')2&av is a dimensionless, Lorentz
invariant measure of the intensity of the electromagne
field. The scalar part gives the average change in energ

DEav5
v

2v r
m2mc2>0, ~47!

and reduces at low initial velocities to theponderomotive
potential @4,33# 1

2 m2mc2.
The drift frame is defined@6# as the frame in whichpav

50. It is the rest frame of thedressedelectron. LetLD be the
transformation that boosts a particle from rest to the velo
vD of the drift frame,

pav5p01
k

2v r
m2mc25LDm* cLD

† 5m* cgD~11vD /c!,

~48!

where m* 5Apavp̄av/c5mA11m2 is the effective mass
The drift velocity is thus

vD5c
^pav&V

^pav&S
5c

2v rg0v0 /c1 k̂vm2

2v rg01vm2
, ~49!

and gD5(2v rg01vm2)/(2v rm* ). The ratio of the rest-
frame frequencyv r to the frequencyvD in the drift frame is

v r

vD
5

g0~12v0• k̂/c!

gD~12vD• k̂/c!
5

m*

m
. ~50!

Note important corrections to the usual applications of
ponderomotive potential to plane waves:~a! The surfing fac-
s-

e

c

y

e

tor v/v r is missing from most treatments, which assum
nonrelativistic average velocities, but it can be large fo
charge moving at high velocity along the propagation dir
tion. ~The factor is included in Ref.@32#, which is restricted,
however, to interactions with monochromatic plane wave!
~b! The ponderomotive potential is isotropic, but the surfi
factorv/v r implies thatDEav depends strongly on the initia
velocity of the charge relative to the propagation direction
the wave.~c! The oscillations may not average to zero, pa
ticularly for short pulses of radiation. If the pulse is a pla
wave, it is safer to use the more general result~39!, with
terms that depend on the polarization of the wave.

The significance of the effective mass is explored furth
below, by determining the proper acceleration of charg
dressed by plane waves in the presence of an axial ele
field.

C. Axial electric field

To solve the eigenspinor equation~26! for the case of a
plane wave plus a constant axial field, we employ t

complementary projectorsPk̂5(11 k̂)/2 and P̄k̂512Pk̂ to
separate the equation into parts belonging to distinct ideal
the algebra. The parts can be solved independently and
combined. With this approach we find explicit solutions th
have eluded more traditional methods. In particular,
know of no other method that has given analytical solutio
for charge motion in plane waves plus axial electric fie
and as far as we know the analytical solutions for pla
waves plus axial magnetic field, which led to proposals
the autoresonance laser accelerator~ALA !, have been indi-
rect and limited to monochromatic plane waves@10,19,20#.

Consider the electric field

F5E0k̂1~11 k̂!vĀ8~s! ~51!

of a plane wave plus a constant axial electric field of amp

tudeE0. Applying the projectorsPk̂ and P̄k̂ to the Lorentz-

force equation~26! and noting thatk̂Pk̂5Pk̂ and k̂P̄k̂5

2 P̄k̂ , we obtain

Pk̂L̇5
1

2
aPk̂L2

ev

mc
A8~s!P̄k̂L, ~52!

P̄k̂L̇52
1

2
a P̄k̂L, ~53!

wherea5eE0 /(mc). The solution to Eq.~53!, namely,

P̄k̂L~t!5exp~2at/2!P̄k̂L~0!, ~54!

allows us to relates andt. The frequency of the plane wav
in the charge frame,

v r~t!5 ṡ~t!5c^ k̄u~t!&S

52v^L†~t!P̄k̂L~t!&S5e2atv r~0!, ~55!

is immediately integrated to give
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s~t!5
v r~0!

a
~12e2at!, ~56!

where we have takent50 at the intersection of the particl
world line with the light cones50. The Lorentz-invariant
phases of the oscillating field as sampled by the charge
thus limited to 0<s,v r(0)/a ast increases from 0 to in-
finity.

Equation~52! becomes

Pk̂L̇5
1

2
aPk̂L2e2at/2

ev

mc
A8~s!P̄k̂L~0!. ~57!

To solve, we put

L~t![eat k̂/2K~t!. ~58!

Then

Pk̂L̇5eat/2Pk̂@
1
2 aK~t!1K̇~t!#, ~59!

and by comparison with Eq.~57!,

Pk̂K̇~t!52e2at
ev

mc
A8~s!P̄k̂K~0!. ~60!

Sinceds5v r(0)e2at dt, integration gives

Pk̂K~t!5Pk̂K~0!2
av

v r~0!
P̄k̂K~0!, ~61!

wherea[eDA/(mc). Adding Pk̂L1 P̄k̂L and applying the
gauge condition~33!, we find

L~t!5H e2at/2P̄k̂1eat/2Pk̂F11
āv

v r~0!
G J L~0!

5eat k̂/2F11Pk̂

āv

v r~0!
GL~0!. ~62!

When the plane-wave field vanishes,a50, and the solution
reduces to the well-known case of hyperbolic motion. On
other hand, if the constant electric field vanishes, thena
50 and solution~38! is regained. More generally, the mo
mentum is

p~t!5mcLL†

5eat k̂/2F p~0!12K Pk̂

āv

v r~0!
p~0!L

R

2mc
aāv

v r~0!
Pk̂Geat k̂/2. ~63!

It may be verified thatp(t) p̄(t)5m2c2.
If the plane wave oscillates rapidly compared to the

celeration by the axial field,v r(0)@a, we can average ove
the oscillations to obtain

pav~t!5eat k̂/2Fp~0!1m2mc
v

v r~0!
Pk̂Geat k̂/2, ~64!
e

-

where as above,m5^2aā&av
1/2. Result~64! describes the uni-

form acceleration of a dressed charge of initial moment

pav(0) and massm* 5Apavp̄av/c5mA11m2. The proper
acceleration rate is notac becauset is the proper time of the
rapidly oscillating frame rather than of the drift frame of th
dressed charge. The proper acceleration of the dre
charge,

aDc5
dt

dtD
ac5

gD

g
ac, ~65!

is less thanac by the factorgD /g, where

gD5
^pav&S

m* c
5

m

m*
F ^eat k̂u~0!&S1

1

2
m2eat

v

v r~0!G .
~66!

The effective mass of the dressed charge in the drift fram
defined operationally as the force exerted by the cons
field E0 divided by the proper acceleration,

mD5
eE0

aDc
5

g

gD
m ~67!

and after averaging over rapid oscillations this is identi
with m* , since

gav5
^p&S,av

mc
5

m*

m
gD . ~68!

Note thatm is inversely proportional tom, so that in the limit
m˜0, the effective massm* 5mA11m2 approaches

e^2DADĀ&av
1/2/c.

D. Axial magnetic field

Consider the field

F5 icB0k̂1~11 k̂!vĀ8~s! ~69!

of a plane wave plus an axial magnetic field. Application

P̄k̂ to both sides of Eq.~26! yields

P̄k̂L̇52
i

2
vcP̄k̂L, ~70!

wherevc5eB0 /m is the proper cyclotron frequency. Its so
lution is

P̄k̂L~t!5exp~2 ivct/2!P̄k̂L~0!, ~71!

which we use to find

ṡ~t!5c^L†~t!k̄L~t!&S5c^L†~0!k̄L~0!&S

5c^ k̄u~0!&S5v r . ~72!

Thus s(t)5s01v rt, where s05s(0). Although the rest-
frame paravectorkr is no longer invariant, the frequencyv r
is, and this suffices to determines(t).
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Applying Pk̂ to the Lorentz-force equation~26! and using
Eq. ~71! with the gauge condition~33!, we find

Pk̂L̇5
i

2
vcPk̂L2va8P̄k̂L~t!

5
i

2
vcPk̂L2e2 ivct/2va8P̄k̂L~0!, ~73!

wherea8(s)5eA8(s)/(mc). To find Pk̂L, we transform to a
rotating frame and defineK to be the eigenspinor

K„s~t!…5exp~2 i k̂vct/2!L~t!. ~74!

In particular, att50, K(s0)5L(0), andwith the help of Eq.
~71!,

P̄k̂K~s!5eivct/2P̄k̂L~t!5 P̄k̂K~s0!. ~75!

Applying Pk̂ to L and differentiating, we get

Pk̂L̇5Pk̂

d

dt
~eivct/2K !5

i

2
vcPk̂L1eivct/2Pk̂K̇.

Comparison with Eq.~73! gives

Pk̂K̇5exp~2 ivct!vPk̂ā8L~0!, ~76!

and in terms ofs,

Pk̂K8~s!5exp@2 ivc~s2s0!/v r #Pk̂

vā8

v r
K~s0!. ~77!

Integrating Eq.~77! and addingP̄k̂K(s)5 P̄k̂K(s0) we
obtain

K~s!5~11Q!K~s0! ~78!

and thus

L~t!5ei k̂vct/2~11Q!L~0!, ~79!

u~t!5ei k̂vct/2@u~0!12^Qu~0!&R#e2 i k̂vct/21Qu~0!Q†,
~80!

whereQ is the dimensionless null biparavector,

Q5
v

v r
Pk̂E

s0

s

ds8exp@2 ivc~s82s0!/v r #ā8~s8!5Pk̂âq~s!,

~81!

with â, any real unit vector perpendicular tok̂, and q, the
complex scalar-valued function

q~s![E
s0

s

ds8exp@2 ivc~s82s0!/v r #
eF~s8!

mcv r
•â. ~82!

Note that because of relation~72! and the projector proper

ties of P̄k̂ ,
Qu~0!Q†5QP̄k̂u~0!P̄k̂Q†52Q^P̄k̂u~0!&SP̄k̂Q†

5
v r

v
QQ†5

v r

v
uqu2Pk̂ .

~83!

The energy gain of the charge ismc2 times the change in
g5^u&S . From Eq. ~80! and the relation ^Qu(0)&RS
5^Q&R–u(0),

Dg[g~t!2g~0!52^Q&R–u~0!1
v r

2v
uqu2. ~84!

While all components ofu are given directly by Eq.~80!, the
longitudinal component of the proper velocity is also relat
by Eq. ~72!:

ui[~u–k̂!k̂5S g2
v r

v D k̂, ~85!

and the magnitude of the transverse component is given
unimodularityuū51:

u'
2 ~t!5u'

2 ~0!12
v r

v
Dg. ~86!

Large gains in energy give rise to velocities that are incre
ingly collimated alongk. Note that if the initial velocity is
longitudinal, then̂ Qu(0)&R5(v r /v)^Q&R , the scalar part
of which vanishes.

Consider the case of a circularly polarized monoch
matic wave:

a~s!5ei (s2s0) k̂a ~87!

with a5eA'(s0)/(mc), a constant vector perpendicular tok.
Integration gives

q5uauvH 12exp@ i ~v r2vc!t#

v r2vc
J . ~88!

If the rest-frame frequencyv r is close to the cyclotron fre-
quencyvc , then

q.2 i uauvt. ~89!

More generally,

uqu25v2a2S sin@~v r2vc!t/2#

~v r2vc!/2
D 2

. ~90!

There is a strong resonance in the interaction when
proper cyclotron frequency of the relativistic charge match
the Doppler-shifted frequency of the wave. Whenv r5vc ,
relation ~84! reduces to

Dg5vt~ k̂3a!–u~0!1 1
2 vv rt

2a2. ~91!

This is the basis of the ALA. Of course, the resonance c
dition will be difficult to hold for more than, say, 104 cycles,
because it is difficult to make a magnetic fieldB0 more ho-
mogeneous than about a part in 104 over macroscopic dis-
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tances. On the other hand, short-range inhomogeneities,
distances on the order ofg2c/v at relativistic velocities, are
well tolerated. Nevertheless, withv rt on the order of 104

and dimensionless amplitudesa on the order of unity, large
energy gains by factors on the order of 108 appear plausible

E. Plane-wave pulse

To investigate the ALA case further, consider a plan
wave pulse centered ats50, with the derivative of the rea
paravector fielda(s)5e(mc)21DA(s) taken to be the circu-
larly polarized Gaussian wave packet

a8~s!5eisk̂2
1
2 s2/s2

a8~0!, ~92!

which is related to the electric fieldE of the pulse bya85
2eE/(mcv). After the pulse has passed, Eq.~81! gives

q5ua8~0!ueiwA2ps
v

v r
expF2

s2

2 S vc

v r
21D 2G , ~93!

where the constant phase anglew depends on the initia
values0 ~assumed!2s). If u(0) is longitudinal, the energy
increasemc2Dg is quadratic in the field strength:

Dg5
v

v r
@a8~0!#2ps2 expF2s2S vc

v r
21D 2G . ~94!

To maximize the energy transfer, the pulse widths can be
set touvc /v r21u21, which can be quite large whenvc and
v r are well matched. The enhancement factor arising fr
the resonancev r.vc is limited only by the homogeneity o
the large magnetic field required. In the absence of the a
magnetic field,vc50. The presence of the magnetic field
seen to enhance the energy gain by a factor ofs2.

Two practical concerns for the application of such
scheme are the potential loss of energy to radiation and
required length of the accelerator.

F. Larmor power

Loeb and Friedland@10# have established that the radiat
energy by the ALA is negligible. We confirm this result wit
simple analytical relations. The Larmor power lost to rad
tion can be written@25#

P52 2
3 mcreu̇u̇, ~95!

where r e5e2/(4p«0mc2).2.82310215 m is the classical
electron radius. For a plane wave plus an axial magnetic fi

F5 icB0k̂1~11 k̂!E, ~96!

the Lorentz-force equation~19! of the charge leads to

P5
2

3
mcreS vcu3 k̂1

v r

v

e

mc
ED 2

. ~97!

The fraction of particle energygmc2 radiated by the cy-
clotron component per period 2pg/vc in the laboratory
frame after the driving laser pulse has passed is
ver

-

al

he

-

ld

~gmc2!21P
2pg

vc
5

4p

3

r e

r c
uu'u3, E50, ~98!

with r c5ucu' /vcu the orbital radius of the cyclotron. Th
cyclotron is a very efficient radiator at high transverse v
locities uu'u;106. The situation at first appears bad for th
ALA because the cyclotron radius is quite small:

r c5
c

vc
S 2

vc

v
Dg D 1/2

;0.1 m ~99!

for vc /v;1023 and 1-TeV electrons withu'(0)50. What
rescues the ALA is the high pitch of the spiral:

U ui

u'
U5 g0v0 /c1Dg

~2v rDg/v!1/2
.

c

uv'u
;33104 ~100!

under the circumstances above. Thus, the transverse vel
component is nonrelativistic. Withu'

2 52Dgv r /v @see Eq.
~86!# and at 1 teslavc51.831011 s21'v r , one finds

~gmc2!21P
2pg

vc
.1.4310214Dg, E50. ~101!

One can similarly investigate the radiation from the react
to the laser pulse in the case of vanishingB0 by puttingvc
50 in Eq. ~97!.

Of more interest, however, is the total power loss in
ALA. In the presence of both an axial magnetic field and
laser pulse, there can be interference inP @Eq. ~97!# between
the cyclotron motion and the term linear in the fieldE of the
laser. Consider a circularly polarized plane wave of the fo
~87!. The proper velocity is given by Eq.~80!, and in the
resonant casev r5vc , for which q52 ivt,

2^Qu&R5^ ivta~12 k̂!u&R5^ ivta~12 k̂!~g1ui1u'!&R .
~102!

Since

v r~12 k̂!5v~12 k̂!~g2u–k̂!5v~12 k̂!~g1ui!

and

^ ivta~12 k̂!u'&R52vta3u'~11 k̂!,

Eq. ~80! gives

u'~t!5ei k̂vct@u'~0!1v rta3 k̂#. ~103!

Substitution into Eq.~97! with v r5vc yields the radiated
power

P5 2
3 mcrevc

2@u~0!3 k̂2vcta1 k̂3a#2. ~104!

In principle, one can chooseu'(0) to minimize energy
loss and/or to maximize energy gain, but in practice it
difficult to synchronize injection with the phase of the las
wave. If instead we choose axial injection,u'(0)50,

P5 2
3 mcrevc

2a2~11vc
2t2!. ~105!

The ratio of the total energy radiated,
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E P dt5E Pg dt5E P@g~0!1Dg#dt, ~106!

to the energy gainedDgmc25 1
2 vvct

2a2mc2 is then

E P dt

Dgmc2
5

4

3

r evc

ct2v
E ~11vc

2t2!Fg~0!1
1

2
vvct

2a2Gdt

5
4

9

r evc

ctv F ~31vc
2t2!g~0!1S 11

3

5
vc

2t2DDgG
;

4

15

r evc
3t

cv
Dg, ~107!

where the last line is the limiting case whenvct@1 and
Dg@g(0)5 1

2 (v/vc1vc /v). The restriction that this ratio
be small places an upper limit on the energy gain that can
realized from an ALA for a resonance pulse ofvct radians:

Dg&
cv

r evc
3t

. ~108!

The limit can be quite large: for an electron in an axial ma
netic field of 10 T (vc.1.831012 s21) and a pulse length o
vct5103 from a Ti:sapphire laser (v.2.431015 s21), it is
Dg&1011.

G. Size of accelerator

The acceleration is limited by practical considerations
size. Particles moving at constant proper velocityu for
proper time intervalt travel a longitudinal distance

Dx–k̂5ctu–k̂, ~109!

so that 1-TeV electrons (g.23106) stretch a 1-ms proper-
time interval (53105 rad of cyclotron motion in a magneti
field of 1 T! into 2 s and cover a distance of 63105 km,
almost a round trip to the moon and rather large for an
celerator! Of course, the electrons do not enter the acce
tor with 1 TeV of energy, so the actual size requirements
less severe.

To determine the conditions more precisely, conside
square-wave pulse of a circularly polarized plane wave tu
to resonance with the cyclotron frequency in the frame of
charge moving in an axial magnetic field, with coaxial inje
tion. Label the beginning of the pulse at the particle
proper timet50. During the interaction of the charge in th
pulse, Eqs.~80!, ~81!, and~89! give

u~t!5u~0!1@vctei k̂vctk̂3a1vvct
2a2Pk̂# ~110!

in the resonance limitv r˜vc . Integration yields

Dx5u~0!ct1
c

vc
Fei k̂vct~ k̂3a2avct!

1
v

3vc
~vct!3a2Pk̂G . ~111!

Thus, the cyclotron radius is
e

-

f

-
ra-
re

a
d
e
-

r c5
cuau
vc

A11~vct!2 ~112!

and the longitudinal distance traveled is

Dx–k̂5ctFu~0!• k̂1
Dg

3 G . ~113!

It is advantageous to use high magnetic fields and mo
pulse widthsvct in order to limit the acceleration lengt

Dx–k̂. Of course, short pulses must be balanced by hig
laser intensities. For example, with a 10-T magnetic field a
a laser of wavelength 0.8mm ~Ti:sapphire! with a dimen-
sionless vector-potential amplitudea2510, one could boost
342 MeV electrons to 1 TeV in under 1.9 km with a 17-ra
pulse, and to 10 TeV in 59 km with a 54-rad pulse. Althou
intensities of 4.331019 W/cm2 corresponding toa2510
@see Eq.~30! and recall use of circular polarization# are fea-
sible in focused beams from tabletop lasers, much more m
sive devices are required to produce such intensities ov
spot that encompasses the cyclotron orbit of radiusr c.1 cm
at 1 TeV along the length of the accelerator. To achiev
given energy change, if the amplitude of the plane wave
scaled by a factorf, the required pulse length and hence t
length of the accelerator are scaled byf 21.

V. DISCUSSION

With the help of projectors in an eigenspinor approach
the classical Lorentz-force equation, we have obtained r
tively simple analytical solutions for the motion of charges
some electromagnetic fields. The covariant approach, wh
employs Clifford’s geometric algebra of physical space,
valuable in identifying and explaining conserved quantiti
and although basically classical, it bears an intriguing rese
blance to quantum methods. We have concentrated her
simple cases of plane-wave fields, both monochromatic
pulsed, plus constant axial electric or magnetic fields.
though we have used plane waves rather than focused Ga
ian beams that would more realistically describe practi
lasers, it is only important that the field at the charge be w
represented by a plane wave, and the simplicity of the res
may provide useful insights in situations of more compl
geometry. Since the plane wave can be a pulse, the appr
may even simulate qualitative results from charges ente
finite laser beams. We have looked at applications to
ALA scheme, in which electrons are accelerated to TeV
ergies by circularly polarized lasers resonant with the cyc
tron motion in a constant magnetic field. One could simila
use microwaves to accelerate ions or protons in axial m
netic fields. The results may also be useful in analyzing p
sible astrophysical acceleration mechanisms.

The applications made here demonstrate the potentia
the eigenspinor approach as a powerful tool of analysis
problems of relativistic dynamics.
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