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Effect of the detector efficiency on the phase sensitivity in a Mach-Zehnder interferometer
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The effect of quantum efficiencies of detectors on the phase sensitivity of a Mach-Zehnder is analyzed for
the Fock state input. The phase uncertainty of two different interference experiments, the second order and the
fourth order, are compared with two practical detectors with less than unit quantum efficiencies. It is found out
that in the second-order interference experiment we cannot beat the classical limit in the phase sensitivity, even
with ideal detectors. We show that almost ideal detectors are required to get the Heisenberg limit in the phase
sensitivity of the fourth-order interference for two Fock state light inputs. There exists an optimum angle given
by the efficiency of the detectorgS1050-29479)08207-4

PACS numbd(s): 42.50.Dv

A Mach-Zehnder interferometéMZI) is one of the most Let us assume that we have two photodetectdrsand
widely used, exquisite apparatuses for measuring the smdb,, with quantum efficiencies g, and u,, respectively, as
phase shift between the two paths. Its application rangeshown in Fig. 1. The annihilation operators for the detector
from small gas density changes in a combustion process tgan be described as
the detection of the gravitational wave. It is believed that it is

possible to detect the graviton, provided that the phase sen- ég: Viras+ 11— uqvs,
sitivity of an interferometer has the Heisenberg limit, i.e., (1)
1/N, whereN is the total incident photon number in the mea- a = \/Ea6+ /1_/“'21)61

surement. At present, there are a number of experiments un-
derway for the graviton with a Michelson-type interferom- Whereés,fzs and 56,56 represent the annihilation operators

eter employing a laser as an input light source. In this casey output mode 5.6, respectively. The operators of the ab-

fche sensitivity of the system is bounded by the classical IImIt'sorbed photon numbers by two practical detectors attached at
i.e., 1NN [1,2]. Many efforts have been made to overcomeine two output ports are given as follows:

the conventional limit by finding special kinds of input light

for the ultimate sensitivity. Caves, for the first time, sug- Sr_artar_ oo " Y
' ' Ng=ac ag=wiNs+ Vu1(1—pu)Us+(1—pq) Vs,
gested a squeezed light instead of a laser light for the unused > 2 ©° #17 #a(l=p)Ust (1= p)Vs

port of a Michelson interferomet¢B]. Holland and Burnett A, Aty - - T
came out with twin Fock state light inputs for MZ4]. A Ng=ag'ag= poNe+ Via(1— pz)Us+(1— ua) Ve,
correlated light as a possible candidate has been proposed for N A A _
the quantum phase sensitivitg, 6. where the operatods,Vs,Ug,Ve are defined by

A recent study showed that the phase sensitivity of a MZI N agaage
can be different according to the measurement schemes of Us=vsas+agus,

the interferometer in an ideal case, and that most measure-
ment schemes are classified into two kinds of interference
experiments, the second-order and the fourth-order experi-
ment, in their sensitivity 7]. It is well known that imperfect
detectors will degrade the sensitivity, but the details are not
found yet, as far as we know. In the following, we derive the
exact effects of practical detectors with less than unit quan-
tum efficiencies on the phase sensitivity of the two kinds of
measurements for the Fock state light inputs. The model of
nonideal photodection has been studied in detail by Yuen
and Shapird8,9] and Yurke[10]. They showed that for pho-
todetection with quantum effucuencyQu<1, the detected
field mode is described by a photon annihilation operator,

a’'=ua+(1—u)v, wherea andv are the annihilation FIG. 1. A Mach-Zehnder interferometer with two detectdds,
operators for the input mode and vacuum-state mode. andD,, of quantum efficiencies of, and u,, respectively.
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N nta L ath - 1

JoT e Bave, 3 <nl,n2|n§|nl,n2>=Z[(n1+n2)2—2(n%—n§)0050
A

Vs=vlvs, +(n;—ny)2cosh

A +(2n;N,+n; +N,)sSirte],

VGEUGUG'

The number operators at two output ports of the Mzl of twowhere we used the relation af;[n;)= Jnilni—1) for i
lossless 50-50 beamsplitters have the relationship with anni=1,2. Then the variance of the detected photon numbers at

hilation operators, ,a, for the two input field modes, 1,2, € output mode 5 is obtained as

S R VUV o 1 . 1
n5:§(a1a1+a£a2)+E(a{a2+a£al)sin0 (An5)2=z,uf(2n2n2+n1+n2)sm20+ 7 (1= p)

1 oapn g X[(ng+nz)—(ny—nz)cosd]. (8
- 5(3131_ a,a,)cosd,

(4) Substituting the above equations into the expression for the

1 1 square of the phase sensitivityr phase uncertainty(A 6)?,
ng==(ala;+ala,)— =(ala,+ala;)sing one has
6 2 191 292 2 192 291
1 i aia 2
+ E(a]‘.al_a;aZ)Cosgv (A0)2: (A?S) ,= 2n1n2+ n1+ n2
(Ns) (n1—nyp)?
where the creation and annihilation operators have the usual a0

cpmmutation reIation.s[ai ,aj]zp and [a ,a}r]zﬁij .for 2(1— pq) [(Ny+1N,)—(Ny;—N,)coSH]
(i,j)=(1,2) [11]. In this expressiom is the phase shiftd, +

— 63, between the overall phagg in path 3, and the overall
phased, in path 4 of the MZI.

Let us suppose that we are measuring the phaseshift ~ which consists of two kinds of terms. The first term in the
the detection of photon numbeg of output mode 5 by the right side, independent of the quantum efficiency, represents
detectorD; with quantum efficiency ofu,, which corre- the ideal case. On the other hand, the second term arises
sponds to the experiment of the second-order interferenc&om quantum efficiency, of the detector, which goes to
When we perform the calculation of the operatorsando,, ~ 2€r0 in the case of;=1. _ _
for the vaccum states in the 5 and 6 mode, which cause the L&t us take two special input cases, a twin Fock state light

. L e _ (nz=ny=n) and one Fock state lightng=n, n,=0).
expectation value Pf al terms containing, Ve E,md the odd When a twin Fock state light is entering into MZI, the phase
order terms olUs,Ug to vanish, we are left with

uncertainty diverges to infinityA 6— o, irrespective of the
guantum efficiency of the detector. As we can see in(Byg.

(€)

M1 (n;—ny)?sing

(Ng)=pea(Ns), <ﬁg.,> is constant, independent @& which means we do not
(5  have an interference fringe in this case. For a latter case, the
(L= u3(n®+ uq(1— wy)(Ns). square of the phase uncertainty becomes
These lead to a variance of photodetection at the output port 1 2(1- 1 1
: P putp (Agp=ty 2tk l . (10)
; n m1 N1+ cosd
(Ang)?=(ng?) —(ng)?= ui((n3)—(ns)?) Figure 2 shows the dependence of the phase uncertaifty,
- on the phase shifé for a few different values of:; in the
+pa(1=p)(Ns). ©) case ofn=100. The square of the phase uncertainty in-

creases monotonically asgoes tow/2 rad from 0 rad. No
This is merely but the Burgess variance theorem for photopne can have a phase sensitivity greater than the classical
detection with a detector of quantum efficienay. limit in this second-order interference experiment.

If two Fock state lights oh; photons for input mode 1 Now, let us suppose that we are measuring the phase shift
andn; photons for input mode 2 are assumed to be incidenpy the coincidence detection of two output photons, the
on the MZI , namelyiny,n,), we can calculate the expecta- fourth-order interference, by the two detectors of quantum
tion values for the input state as follows: efficienciesu; and u, as shown in Fig. 1. The straightfor-

ward calculation of the expectation values of the coincidence

detection operatorf\.=:n/n;: and N.? for the vacuum

~ 1 1
(n1,n|ng[ny.n;) 2 (N1 N2) =5 (N1 =Nz)C080, (7)) (s and for the general Fock state ingaisn,) leads to
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second-order interference experiment with a single Fock state INPYL. = 41,) in the fourth-order interference experiment with a twin
(n=100). Fock state inputrf;=n,=10 000).

where (N.) and (AN.)? means(ngng) and (N2)—(N.)?,
respectively. The first term in this expression is an inherent
term, and the three remaining terms show the relations with
the quantum efficiencies, on the other hand.

. .1
(Ng)=pmyuo(Nsng) = Zﬂlﬂz[(nﬁ‘ ny)?

—(2n1n,+ N3+ N,)sif6— (N, —n,)2 cos 6]

(11 In order to gain some insight, let us take some special
cases. For a single Fock state light inpot€n>1,n,=0),
and the square of the phase shift uncertainty becomes
<Né2>:Mi“%(”l:n2|ﬁ§ﬁ§|”1:n2>+M1M§(1_M1) 1 1 1(1— 1—
2 M1 M2
“onp 5 (A6) ~—+—tar120+—( +
X(Nng,nalUsngIng, o)+ puipa(1— o) N 2n? R M2
X(Ny,ng|NE0EINL o)+ papea(1— ) (1= o) L2 <1—ul><1—#2>> 1 i(l_l/«z
P, n ML 2n
X<nl’n2|U§Ué|nlln2>v (12) e COS?G He
. ~ ~ 1-pq) 1
by the same logic for the operatdiss andV’s. From these — M prvyL (15
1

expressions one can readily show the variance of the coinci-
dence detection for the general Fock state input by the d

&e can easily see that we cannot get the quantum limit in the
tectors as below,

phase sensitivity in this case, even with the ideal detectors of
N2 RURIN2N R RIN2 2 20 A A D m1=uo=1. If two Fock state lights with large numbers of
(AN)*=((N5Ng))—(N5Ng)“= 1445[((NsNe)“) photons ;~n,=n>1) are fed into both input ports of the
—(ﬁsﬁs>2]+M1M§(1—M1)<ﬁsﬁ§)+ﬂfﬂz interferometer, Eq(14) can be approximated by

X (1= o) (N2Ng)+ pmapea(1— ) (1— po)(NsNg). (A0)2~i2+£tarﬁ9+i 1_'“1+ 1-pe
(13) 8 2n\  pq M2
This is the relation between the variana&N_)? of photo- 1 (1= py)(1=pp)| 1+ coso
electrons and the varianca ) of photons in the fourth- T 1fho Sink0 coLe’ (16
order interference experiment. The square of the phase shift
uncertainty is finally given by The first two terms are for the ideal cases, and the last
) npn A ny term is dependent on the quantum efficiencies of the detec-
, (ANQ)?  (1—pp) (nsng)  1—u; (NsNg) tors. Figure 3 shows the dependence of the phase uncertainty
(AO)'=r 2 72 T2 T2 the phase shift for the different values of d
AN Mo AN 1 [N on the phase shift for the different values © (mq and uy
{ 70 { 70 70 are assumed to be equal ) in the input of n;=n,
=10000. We can see that if we have the ideal detectors of
(1= 1) (1= pp) (NsNe) m1=pa=1, we can have the Heisenberg limit in the phase
——7, (14 sensitivity atd=0. However, unless the quantum efficiencies
Hikt2 I(N¢) of the detectors are unity or very close to 1, it is difficult to
a6 beat the classical limit. It is interesting that as the quantum




PRA 60 BRIEF REPORTS 711

efficiency decreases, the uncertainty increases rapidly at @fic phase shifts according to the quantum efficiencies of the
small angle. There exists an optimum angléor the values detectors to have the best results.

of u. . . :
We conclude that we can reach the Heisenberg limit in the One of us(Taesoo Kim would like to express gratitude to

fourth-order interference measurement with two Fock stat refessor John L. Hall at JILA for the chance to study this
light inputs of similar photon numbers only when it is per- topic, and to Professor Dae-Yoon Park at Inha University for

formed with almost ideal detectors with quantum efficienciesh® encouragement. This work was supported by the Re-
of u;~u,~1. Measurements should be performed at speSearch Fund of the University of Ulsan.

[1] B. Yurke, S. L. McCall, and J. R. Klauder, Phys. Rev.38 Park, Tae-gon Noh, and Chung Ki Hong, Opt. CommiLi56,
4033(1986. 37(1998.
[2] M. G. A. Paris, Phys. Lett. 225, 23 (1997)_ [8] H. P. Yuen and J. H. Shapiro, IEEE Trans. Inf. TheﬂFyZG,
[3] C. M. Caves, Phys. Rev. b3, 1693(1981. [9] LS (F%gf(?].en and J. H. Shapiro, iBoherence and Quantum
[4] M. HoIIanq and K Burngtt, Phys. Rev. Leftl, 1355(1993. Optics IV, edited by L. Mandel and E. WolfPlenum, New
[5] Taesoo Kim, Olivier Pfister, Jaewoo Noh, Murray Holland, York, 1978, p. 719.
and John L. Hall, Phys. Rev. B7, 4004(1998. [10] B. Yurke, Phys. Rev. /32, 311(1985.
[6] Jonathan P. Dowling, Phys. Rev. %, 4736(1998. [11] L. Mandel and E. WolfOptical Coherence and Quantum Op-
[7] Taesoo Kim, Jongtae Shin, Yang Ha, Heonoh Kim, Goodong tics (Cambridge University Press, New York, 199&hap. 12.



