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Effect of the detector efficiency on the phase sensitivity in a Mach-Zehnder interferometer
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The effect of quantum efficiencies of detectors on the phase sensitivity of a Mach-Zehnder is analyzed for
the Fock state input. The phase uncertainty of two different interference experiments, the second order and the
fourth order, are compared with two practical detectors with less than unit quantum efficiencies. It is found out
that in the second-order interference experiment we cannot beat the classical limit in the phase sensitivity, even
with ideal detectors. We show that almost ideal detectors are required to get the Heisenberg limit in the phase
sensitivity of the fourth-order interference for two Fock state light inputs. There exists an optimum angle given
by the efficiency of the detectors.@S1050-2947~99!08207-4#
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A Mach-Zehnder interferometer~MZI ! is one of the most
widely used, exquisite apparatuses for measuring the s
phase shift between the two paths. Its application ran
from small gas density changes in a combustion proces
the detection of the gravitational wave. It is believed that i
possible to detect the graviton, provided that the phase
sitivity of an interferometer has the Heisenberg limit, i.
1/N, whereN is the total incident photon number in the me
surement. At present, there are a number of experiments
derway for the graviton with a Michelson-type interferom
eter employing a laser as an input light source. In this ca
the sensitivity of the system is bounded by the classical lim
i.e., 1/AN @1,2#. Many efforts have been made to overcom
the conventional limit by finding special kinds of input ligh
for the ultimate sensitivity. Caves, for the first time, su
gested a squeezed light instead of a laser light for the unu
port of a Michelson interferometer@3#. Holland and Burnett
came out with twin Fock state light inputs for MZI@4#. A
correlated light as a possible candidate has been propose
the quantum phase sensitivity@5,6#.

A recent study showed that the phase sensitivity of a M
can be different according to the measurement scheme
the interferometer in an ideal case, and that most meas
ment schemes are classified into two kinds of interfere
experiments, the second-order and the fourth-order exp
ment, in their sensitivity@7#. It is well known that imperfect
detectors will degrade the sensitivity, but the details are
found yet, as far as we know. In the following, we derive t
exact effects of practical detectors with less than unit qu
tum efficiencies on the phase sensitivity of the two kinds
measurements for the Fock state light inputs. The mode
nonideal photodection has been studied in detail by Y
and Shapiro@8,9# and Yurke@10#. They showed that for pho
todetection with quantum effucuency 0,m<1, the detected
field mode is described by a photon annihilation opera
â85Amâ1A(12m) v̂, where â and v̂ are the annihilation
operators for the input mode and vacuum-state mode.
PRA 601050-2947/99/60~1!/708~4!/$15.00
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Let us assume that we have two photodetectors,D1 and
D2, with quantum efficiencies ofm1 andm2, respectively, as
shown in Fig. 1. The annihilation operators for the detec
can be described as

â585Am1â51A12m1v̂5 ,
~1!

â685Am2â61A12m2v̂6 ,

whereâ5 ,v̂5 and â6 ,v̂6 represent the annihilation operato
at output mode 5,6, respectively. The operators of the
sorbed photon numbers by two practical detectors attache
the two output ports are given as follows:

n̂585â58
†â585m1n̂51Am1~12m1!Û51~12m1!V̂5 ,

~2!
n̂685â68

†â685m2n̂61Am2~12m2!Û61~12m2!V̂6 ,

where the operatorsÛ5 ,V̂5 ,Û6 ,V̂6 are defined by

Û5[ v̂5
†â51â5

†v̂5 ,

FIG. 1. A Mach-Zehnder interferometer with two detectors,D1

andD2, of quantum efficiencies ofm1 andm2, respectively.
708 ©1999 The American Physical Society
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Û6[ v̂6
†â51â6

†v̂6 ,
~3!

V̂5[ v̂5
†v̂5 ,

V̂6[ v̂6
†v̂6 .

The number operators at two output ports of the MZI of tw
lossless 50-50 beamsplitters have the relationship with a
hilation operatorsâ1 ,â2 for the two input field modes, 1,2,

n̂55
1

2
~ â1

†â11â2
†â2!1

1

2
~ â1

†â21â2
†â1!sinu

2
1

2
~ â1

†â12â2
†â2!cosu,

~4!

n̂65
1

2
~ â1

†â11â2
†â2!2

1

2
~ â1

†â21â2
†â1!sinu

1
1

2
~ â1

†â12â2
†â2!cosu,

where the creation and annihilation operators have the u
commutation relations@ âi ,â j #50 and @ âi ,â j

†#5d i j for
( i , j )5(1,2) @11#. In this expressionu is the phase shift,u4
2u3, between the overall phaseu3 in path 3, and the overal
phaseu4 in path 4 of the MZI.

Let us suppose that we are measuring the phase shiftu by
the detection of photon numbern5 of output mode 5 by the
detectorD1 with quantum efficiency ofm1, which corre-
sponds to the experiment of the second-order interfere
When we perform the calculation of the operators,v̂5 andv̂6,
for the vaccum states in the 5 and 6 mode, which cause
expectation value of all terms containingV̂5 ,V̂6 and the odd-
order terms ofÛ5 ,Û6 to vanish, we are left with

^n̂58&5m1^n̂5&,
~5!

^n̂58
2&5m1

2^n̂5
2&1m1~12m1!^n̂5&.

These lead to a variance of photodetection at the output
5,

~Dn58!25^n̂58
2&2^n̂58&

25m1
2~^n̂5

2&2^n̂5&
2!

1m1~12m1!^n̂5&. ~6!

This is merely but the Burgess variance theorem for pho
detection with a detector of quantum efficiencym1.

If two Fock state lights ofn1 photons for input mode 1
andn2 photons for input mode 2 are assumed to be incid
on the MZI , namelyun1 ,n2&, we can calculate the expecta
tion values for the input state as follows:

^n1 ,n2un̂5un1 ,n2&5
1

2
~n11n2!2

1

2
~n12n2!cosu, ~7!
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^n1 ,n2un̂5
2un1 ,n2&5

1

4
@~n11n2!222~n1

22n2
2!cosu

1~n12n2!2 cos2u

1~2n1n21n11n2!sin2u#,

where we used the relation ofâi uni&5Ani uni21& for i
51,2. Then the variance of the detected photon number
the output mode 5 is obtained as

~Dn58!25
1

4
m1

2~2n2n21n11n2!sin2u1
1

2
m1~12m1!

3@~n11n2!2~n12n2!cosu#. ~8!

Substituting the above equations into the expression for
square of the phase sensitivity~or phase uncertainty!, (Du)2,
one has

~Du!25
~Dn58!2

F ]^n̂58&
]u

G2 5
2n1n21n11n2

~n12n2!2

1
2~12m1!

m1

@~n11n2!2~n12n2!cosu#

~n12n2!2 sinu
, ~9!

which consists of two kinds of terms. The first term in th
right side, independent of the quantum efficiency, represe
the ideal case. On the other hand, the second term a
from quantum efficiencym1 of the detector, which goes to
zero in the case ofm151.

Let us take two special input cases, a twin Fock state li
(n25n25n) and one Fock state light (n15n, n250).
When a twin Fock state light is entering into MZI, the pha
uncertainty diverges to infinity,Du→`, irrespective of the
quantum efficiency of the detector. As we can see in Eq.~5!,

^n̂58& is constant, independent ofu, which means we do no
have an interference fringe in this case. For a latter case
square of the phase uncertainty becomes

~Du!25
1

n
1

2~12m1!

m1

1

n

1

11 cosu
. ~10!

Figure 2 shows the dependence of the phase uncertainty,Du,
on the phase shiftu for a few different values ofm1 in the
case ofn5100. The square of the phase uncertainty
creases monotonically asu goes top/2 rad from 0 rad. No
one can have a phase sensitivity greater than the clas
limit in this second-order interference experiment.

Now, let us suppose that we are measuring the phase
by the coincidence detection of two output photons,
fourth-order interference, by the two detectors of quant
efficienciesm1 and m2 as shown in Fig. 1. The straightfor
ward calculation of the expectation values of the coincide
detection operatorsN̂c85:n̂58n̂68 : and N̂c8

2 for the vacuum
states and for the general Fock state inputsun1 ,n2& leads to
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^N̂c8&5m1m2^n̂5n̂6&5
1

4
m1m2@~n11n2!2

2~2n1n21n11n2!sin2u2~n12n2!2 cos2u#

~11!

and

^N̂c8
2&5m1

2m2
2^n1 ,n2un̂5

2n̂6
2un1 ,n2&1m1m2

2~12m1!

3^n1 ,n2uÛ5
2n̂6

2un1 ,n2&1m1
2m2~12m2!

3^n1 ,n2un̂5
2Û6

2un1 ,n2&1m1m2~12m1!~12m2!

3^n1 ,n2uÛ5
2Û6

2un1 ,n2&, ~12!

by the same logic for the operatorsÛ ’s andV̂’s. From these
expressions one can readily show the variance of the co
dence detection for the general Fock state input by the
tectors as below,

~DNc8!25^~N̂58N̂68!2&2^N̂58N̂68&
25m1

2m2
2@^~ n̂5n̂6!2&

2^n̂5n̂6&
2#1m1m2

2~12m1!^n̂5n̂6
2&1m1

2m2

3~12m2!^n̂5
2n̂6&1m1m2~12m1!~12m2!^n̂5n̂6&.

~13!

This is the relation between the variance (DNc8)
2 of photo-

electrons and the variance (DNc)
2 of photons in the fourth-

order interference experiment. The square of the phase
uncertainty is finally given by

~Du!25
~DNc!

2

F ]^N̂c&
]u

G2 1
~12m2!

m2

^n̂5
2n̂6&

F ]^N̂c&
]u

G2 1
12m1

m1

^n̂5n̂6
2&

F ]^N̂c&
]u

G2

1
~12m1!~12m2!

m1m2

^n̂5n̂6&

F ]^N̂c&
]u

G2 , ~14!

FIG. 2. The phase uncertainty for the various values ofm1 in the
second-order interference experiment with a single Fock state i
(n5100).
i-
e-

ift

where ^N̂c& and (DNc)
2 means^n̂5n̂6& and ^N̂c

2&2^N̂c&
2,

respectively. The first term in this expression is an inher
term, and the three remaining terms show the relations w
the quantum efficiencies, on the other hand.

In order to gain some insight, let us take some spe
cases. For a single Fock state light input (n15n@1,n250),
the square of the phase shift uncertainty becomes

~Du!2'
1

n
1

1

2n2
tan2u1

1

2n S 12m1

m1
1

12m2

m2

1
2

n

~12m1!~12m2!

m1m2
D 1

cos2u
1

1

2n S 12m2

m2

2
12m1

m1
D 1

cosu
. ~15!

We can easily see that we cannot get the quantum limit in
phase sensitivity in this case, even with the ideal detector
m15m251. If two Fock state lights with large numbers o
photons (n1'n25n@1) are fed into both input ports of th
interferometer, Eq.~14! can be approximated by

~Du!2'
1

2n2
1

1

8
tan2u1

1

2n S 12m1

m1
1

12m2

m2

1
1

n

~12m1!~12m2!

m1m2
D 11 cos2u

sin2u cos2u
. ~16!

The first two terms are for the ideal cases, and the
term is dependent on the quantum efficiencies of the de
tors. Figure 3 shows the dependence of the phase uncert
on the phase shift for the different values ofm (m1 andm2
are assumed to be equal tom) in the input of n15n2
510 000. We can see that if we have the ideal detector
m15m251, we can have the Heisenberg limit in the pha
sensitivity atu50. However, unless the quantum efficienci
of the detectors are unity or very close to 1, it is difficult
beat the classical limit. It is interesting that as the quant

ut
FIG. 3. The phase uncertainty for the various values ofm

(5m15m2) in the fourth-order interference experiment with a tw
Fock state input (n15n2510 000).
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efficiency decreases, the uncertainty increases rapidly
small angle. There exists an optimum angleu for the values
of m.

We conclude that we can reach the Heisenberg limit in
fourth-order interference measurement with two Fock s
light inputs of similar photon numbers only when it is pe
formed with almost ideal detectors with quantum efficienc
of m1'm2'1. Measurements should be performed at s
d,

n

a

e
te

s
-

cific phase shifts according to the quantum efficiencies of
detectors to have the best results.
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