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Quantum logic gate operation between different ions in a trap
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We suggest a scheme for realizing a universal two-quanturfublitit) operation. The scheme uses two laser
beams with different intensities to illuminate two different ions in a harmonic trap. Both beams are tuned to the
red motional sideband. We find that, under certain conditions, the interaction will realize a universal two-qubit
operation, the controlled-rotation operation, which is to rotate the phase of the statetly when the two
states are both in the) state. The scheme requires careful control of laser intensity and Lamb-Dicke param-
eters. But after we reach the required parameters, the logic operation is very $§818180-29479)01807-7

PACS numbd(s): 32.80.Pj, 03.65.Bz

I. INTRODUCTION can be realized from this operation easily by the following
way,
Since a quantum computer can provide more powerful
computational ability than a classical oftd, much of peo- &.—R (Z 3_77) R.RIZT 3)
ple’s attention has been attracted to this field. To build a real 1272 g0 2 ) 22 40 2 )

guantum computer, we need to find quantum systems, which R
have little decoherence and easy ways for logic operationsvhereR; denotes single qubit rotation. In the computational
Although many systems have been proposed, few of therhasis{|0), |1)}, it is described by the matrix,
have succeeded, including the cavity QED mo[d| the
trapped ion systerfB8], and the NMR systerf4]. A promis-
ing candidate for realizing a small scale of quantum compu-
tation is a trapped ion system, which is first proposed by
Cirac and Zollef5]. Recently, Kinget al. has reported that The subscripts in the equations above denote which ion is
collective motion of two °Be’ ions has been cooled to being addressed. In the following, we show that single inter-
ground statg6]. This is a further step towards realizing the action can give the operation in E().
Cirac-Zoller guantum computer.

The original idea of Cirac and Zoller involves the center- Il. INTERACTION MODEL AND SOLUTION
of-mass(c.m.) mode of vibration as a “bus quantum kgu-
bit).” Each two-level ion is treated as an individual qubit.
Any two-qubit operation is completed by interacting the
“bus qubit” with two ions one by one. Also, a third auxil-
iary level is needed during the interaction. Moneteal. has _ i = At —ikiX
demonstrated this scheme in their experimggit Also, a H=(Qe' %10, efle Mt Hee)
simplified scheme without the auxiliary level for realizing + (€ %20, e'22le K22+ H.c), (5
guantum logic operation between the “bus qubit” and the
internal level of ion has been suggesf@li Recently, quan- where(); is Rabi frequency, and; denotes detuning of each
tum computation with hot vibrational state is under consid-aser with the ions. We sek;=A,=—v, wherev is the
eration[8]. Although these efforts have been made, we stillfrequency of the external potential. We neglect all the other
need to investigate a much easier scheme in order to realiz&yrmal modes irx;, except the c.m. motion. Using the ro-
logic operations between different ions in practice. tating wave approximation, we obtain

In this paper, we consider the situation of two beams of

cosf ie '¥sin 6)

Ri(0,¢)= (4)

iel®sing cosd

In an interaction picture, the Hamiltonian describing two
running wave lasers interact with two different iofien 1
and 2 in a trap has the form

laser, both tuned to red vibrational sideband, interacting with 2 i 712 @h)mtigm
two ions simultaneously. We find under certain conditions, itH;=| Q.€'%10; e~ 72 (m+1)iml +H.c
can realize the controlled rotatid@ROT) operation: m=0 o
2 o«
) 75 (l 7]2)2m+ l(aT)m+1am

~ iy —a— 5

R12=(0,00(0,0+[0,1(0,1+[1,0(1,0 —|1,2¢1,1. (1) | Qe 2mz=O (m+1)!m! the.
The widely discussed operation, controlledT, 6)

where a' and a are the creation and annihilation opera-
C1,=10,01(0,0+0,1(0,1 +]1,0¢(1,2 +]1,25¢(1,0, (2)  tors for the vibrational c.m. mode, respectively, and
denotes the lowering operator for iany; is the Lamb-Dicke

parameter. The invariant subspaces of this Hamiltonian
* Electronic address: Ixli@mail.ustc.edu.cn are {|09:,92)}, {/191.9-),/00:,6,),/01,9,)}, and
"Electronic address: gcguo@ustc.edu.cn {In,91,92),In—1,91,€5),In—1,e1,95),|n—2.e1,65)}, Nn=2.
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For state|0,9,,9,), the corresponding eigenvalue is zero,

and it remains unchanged under the Hamilton{@n The

remaining problem is to solve the eigenvalue and eigenvec-

tor in other invariant subspaces.
First, we define a notatiof2;, by the equation

§ )

Qinie” "iz/zL%— 1(7?)
= n (7)

for n=2. Lﬁ_l is Laguerre polynomial. Fom=1, if

)2m+ 1(aT)m+ 1am

i (i

2
.o=(). _7li/2
Qin=0e “ T (mrDiml

Lo 1 (n Qe 2 0
| ’>_E | 1g11g2>_E—13| !g1162>
Qe '
—E—13|0,81,92>- 9

We consider the evolution of the initial sta@,g,,e,). At
timet, the state evolves into

Q,e'%2sinE 4t
13

lya(t))y ="Mt

2 2
N 05,cosE ot +07;

we letL3(x)=1, the above notation can also be used. The E2, 0.91,€2)

Hamiltonian matrix in the invariant  space

{11.91,92),/10,91.€,),|0.61,9,)} is given by

0 iQ,e'% Qe
—iQ,e 1?2 0 0 _ (8)
—iQ e ' 0 0

The eigenvalues of this matrix areiO;/lepL 0221. We write

010 4,€' (%27 %)
+ E—z(cosE13t— 1)[0.1,92)-
13
(10

For another initial stat¢0.e;,9,), the state after time be-
comes

out the eigenvalues and corresponding eigenvectors. They

are, respectively,
2 2
E11=— vQ1,+ 03,

e 1 L iQ,e 42 0
| J‘E | ’91:92>+E—13| J1.€2)

Qe
+ J—
ElS

E12:0,
L i0.ei® "
|112>:E_13(_'9119 2(0,91,6,) +1Q5e7'%10,61,97)),

Eis= Q5+ 03,

0 i0,,e'%2
—iQ,,e %2 0
—iQqe ' 0

0 —iQ, e "

The eigenvalues of this matrix are

\/ﬂit (027 4(0)?

2

Eni:i

2_(2 2 2 2
Q=01+ Q5,+ Q7,1 +Q5,_4,

B Qq,€'%1sinE 4t
lgo(1)) =€ 'H't|0191192>=E—|1191192>
13
. 0,10 ,€'(¢17¢2)

. (cosEq gt —1)]0,9;,€,)
El3

2 2
N 0O 7;c0sE ot + 05,

= 10.61,02)- (1D
13

If the time duration satisfies the conditioB,st=2mqr,
wherem is an integer, we see that both stdt&g, ,e,) and
|0,e1,0,), returns to the original ones, respectively.

Next, we need to solve this problem in the subspace

spanned by {[n,0:,9,),In—10;,€,),[n—1.1,92).[n
—2.1,65)}. The Hamiltonian matrix is

Qe 0
0 iQ, €% ,
. - 1
0 iQy,_1€'%2 (12
—iQy, 87?2 0
[
05=011Q15 1~ Q20020 1. (13

We useE,;, E,,, E,3, andE,, to denote them from low to
high, respectively. The eigenvector corresponding to eigen-
valueE,; is given by
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TABLE I. Some results for the case af,= 7,= 7.

m=1, =0, k=2

m=2, =0, k=2 m=2, |=1, k=2

7 0.51764
0,19, or Q,/Q, 2.03951

0.93913
1.51899

0.70711
4.02791

e_i(¢l+¢2)(Eﬁi_ﬂinfl_ﬂg,n—1)
Q11020+ Qop- 104,

|n1i>:Nni{_ |n191192>

+i[iﬂl €'
Eni "

2 2 2
E _Ql,nfl_QZ,nfl

+iQ,e' %1
" Q1D+t Qon-1 Q4

|n_ 11g1162>

+i[i92 162
Eni "

2 02 2
E _Ql,nfl_ﬂz,nfl
Q- 1Qo0+Qop- 104,

+innei¢2 |n_1161192>

+|n—2,e1,e2>], (14

tion between two different ions, as long as the initial state of
the c.m. mode is in a vacuum state. The c.m. mode of ions
remains in the vacuum state after the operation.

Now we consider the details for the operation to be valid.
It requires

E,d=(21+1)m,

Et=2mmr.

Using the eigenvalues in E@) and Eq.(13), finally we get
Q3,4+ Q5,=(21+1)%+(2k+1)>—(2m)?,
[Q21011— Q201 =(2k+1) (21 +1), (19

05+ 0%,=(2m)?,

where the unit of) is set to ber/t. Use the definition of)

whereN,,; is a normalization factor. We need to find out the in Eq. (7), and solve the equations for selectgdl,m}; we

time evolution of statgn—2,e;,,e,). From Eq(14), it fol-
lows that|n—2,e,,e,) can be expressed as

In—2,e1,65)=Np1|n,1)+Ny5/n,2) +Nys|n,3) + Nn4|n,4i.

(15
At time t, the state evolves into
[w(D)=e " n—2ey,e5)
=Npe Ent|n, 1)+ N, e~ 'En2l|n,2)
+Npse 'End|n,3)+ N,e Endlin,4).  (16)

We can easily get the following result:
(n—2g1,6| (1)) =Nz e Enml+ N7 e Enzt+ N7 e~ 1Endt

+N2,e 1Enat, (17)
BecauseE, ;= —E4, andE,,= —E,3, if we let E ,t=(2k
+ 1) andEst= (21 +1)m, the statgn—2,e,,e,) will be
changed to-|n—2.,,e,). This result in the special case of
n=2, combined with the time evolution d0,g,,e,) and

can choose a particular set{d®,Q,, 71, 7.} to be used for
real experiments. We have presented some solutions of Eq.
(19 in Table I.

[ll. CONCLUSION

The easy way for realizing quantum computation in small
scale is of particular interest for experimentalists, and it is
very important for developing a real quantum computer. In
our scheme of quantum computation with trapped ions, the
requirement of an auxiliary level is eliminated. As pointed
out by Monroeet al.[7], this simplification may be useful in
experiments. Recently, some schemes for coherent operation
with hot vibrational states have been propo$&H But our
scheme is still worth some consideration because of its sim-
plicity. Also, if we use the c.m. motion as a “bus qubit,”
perhaps we will need both single bit rotation for the c.m.
motion and internal state, while in this scheme, single bit
rotations for the c.m. motion are not needed.
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