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Quantum logic gate operation between different ions in a trap

Li-Xiang Li* and Guang-Can Guo†

Department of Physics, University of Science and Technology of China, HeFei 230026, People’s Republic of China
~Received 28 December 1998!

We suggest a scheme for realizing a universal two-quantum-bit~qubit! operation. The scheme uses two laser
beams with different intensities to illuminate two different ions in a harmonic trap. Both beams are tuned to the
red motional sideband. We find that, under certain conditions, the interaction will realize a universal two-qubit
operation, the controlled-rotation operation, which is to rotate the phase of the state byp only when the two
states are both in theu1& state. The scheme requires careful control of laser intensity and Lamb-Dicke param-
eters. But after we reach the required parameters, the logic operation is very simple.@S1050-2947~99!01807-7#

PACS number~s!: 32.80.Pj, 03.65.Bz
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I. INTRODUCTION

Since a quantum computer can provide more powe
computational ability than a classical one@1#, much of peo-
ple’s attention has been attracted to this field. To build a r
quantum computer, we need to find quantum systems, w
have little decoherence and easy ways for logic operatio
Although many systems have been proposed, few of th
have succeeded, including the cavity QED model@2#, the
trapped ion system@3#, and the NMR system@4#. A promis-
ing candidate for realizing a small scale of quantum com
tation is a trapped ion system, which is first proposed
Cirac and Zoller@5#. Recently, Kinget al. has reported tha
collective motion of two 9Be1 ions has been cooled t
ground state@6#. This is a further step towards realizing th
Cirac-Zoller quantum computer.

The original idea of Cirac and Zoller involves the cente
of-mass~c.m.! mode of vibration as a ‘‘bus quantum bit~qu-
bit!.’’ Each two-level ion is treated as an individual qub
Any two-qubit operation is completed by interacting t
‘‘bus qubit’’ with two ions one by one. Also, a third auxil
iary level is needed during the interaction. Monroeet al. has
demonstrated this scheme in their experiment@3#. Also, a
simplified scheme without the auxiliary level for realizin
quantum logic operation between the ‘‘bus qubit’’ and t
internal level of ion has been suggested@7#. Recently, quan-
tum computation with hot vibrational state is under cons
eration@8#. Although these efforts have been made, we s
need to investigate a much easier scheme in order to re
logic operations between different ions in practice.

In this paper, we consider the situation of two beams
laser, both tuned to red vibrational sideband, interacting w
two ions simultaneously. We find under certain conditions
can realize the controlled rotation~CROT! operation:

R̂125u0,0&^0,0u1u0,1&^0,1u1u1,0&^1,0u2u1,1&^1,1u. ~1!

The widely discussed operation, controlledNOT,

Ĉ125u0,0&^0,0u1u0,1&^0,1u1u1,0&^1,1u1u1,1&^1,0u, ~2!
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can be realized from this operation easily by the followi
way,

Ĉ125R̂2S p

4
,
3p

2 D •R̂12•R̂2S p

4
,
p

2 D , ~3!

whereR̂i denotes single qubit rotation. In the computation
basis$u0&, u1&%, it is described by the matrix,

R̂i~u,w!5S cosu ie2 iwsinu

ieiwsinu cosu D . ~4!

The subscripts in the equations above denote which io
being addressed. In the following, we show that single int
action can give the operation in Eq.~1!.

II. INTERACTION MODEL AND SOLUTION

In an interaction picture, the Hamiltonian describing tw
running wave lasers interact with two different ions~ion 1
and 2! in a trap has the form

HI5~V1eif1s1
2eiD1te2 ik1x11H.c.!

1~V2eif2s2
2eiD2te2 ik2x21H.c.!, ~5!

whereV i is Rabi frequency, andD i denotes detuning of eac
laser with the ions. We setD15D252n, where n is the
frequency of the external potential. We neglect all the ot
normal modes inxi , except the c.m. motion. Using the ro
tating wave approximation, we obtain

HI5S V1eif1s1
2e2

h1
2

2 (
m50

`
~ ih1!2m11~a†!m11am

~m11!!m!
1H.c.D

1S V2eif2s2
2e2

h2
2

2 (
m50

`
~ ih2!2m11~a†!m11am

~m11!!m!
1H.c.D ,

~6!

where a† and a are the creation and annihilation oper
tors for the vibrational c.m. mode, respectively, ands i

2

denotes the lowering operator for ioni. h i is the Lamb-Dicke
parameter. The invariant subspaces of this Hamilton
are $u0,g1 ,g2&%, $u1,g1 ,g2&,u0,g1 ,e2&,u0,e1 ,g2&%, and
$un,g1 ,g2&,un21,g1 ,e2&,un21,e1 ,g2&,un22,e1 ,e2&%, n>2.
696 ©1999 The American Physical Society



o

e

h
e

h

ce

PRA 60 697BRIEF REPORTS
For stateu0,g1 ,g2&, the corresponding eigenvalue is zer
and it remains unchanged under the Hamiltonian~6!. The
remaining problem is to solve the eigenvalue and eigenv
tor in other invariant subspaces.

First, we define a notationV in by the equation

V in5V ie
2h i

2/2U K nU (
m50

`
~ ih i !

2m11~a†!m11am

~m11!!m! Un21L U
5

V ih ie
2h i

2/2Ln21
1 ~h i

2!

An
~7!

for n>2. Ln21
1 is Laguerre polynomial. Forn51, if

we let L0
1(x)51, the above notation can also be used. T

Hamiltonian matrix in the invariant spac
$u1,g1 ,g2&,u0,g1 ,e2&,u0,e1 ,g2&% is given by

S 0 iV21e
if2 iV11e

if1

2 iV21e
2 if2 0 0

2 iV11e
2 if1 0 0

D . ~8!

The eigenvalues of this matrix are 0,6AV11
2 1V21

2 . We write
out the eigenvalues and corresponding eigenvectors. T
are, respectively,

E1152AV11
2 1V21

2 ,

u1,1&5
1

A2
S u1,g1 ,g2&1

iV21e
2 if2

E13
u0,g1 ,e2&

1
iV11e

2 if1

E13
U0,e1 ,g2L ,

E1250,

u1,2&5
1

E13
~2 iV11e

2 if2u0,g1 ,e2&1 iV21e
2 if1u0,e1 ,g2&),

E135AV11
2 1V21

2 ,
,

c-

e

ey

u1,3&5
1

A2
~ u1,g1 ,g2&2

iV21e
2 if2

E13
u0,g1 ,e2&

2
iV11e

2 if1

E13
u0,e1 ,g2&. ~9!

We consider the evolution of the initial stateu0,g1 ,e2&. At
time t, the state evolves into

uc1~ t !&5e2 iH I tu0,g1 ,e2&5
V21e

if2 sinE13t

E13
u1,g1 ,g2&

1
V21

2 cosE13t1V11
2

E13
2

u0,g1 ,e2&

1
V21V11e

i (f22f1)

E13
2 ~cosE13t21!u0,e1 ,g2&.

~10!

For another initial stateu0,e1 ,g2&, the state after timet be-
comes

uc2~ t !&5e2 iH I tu0,e1 ,g2&5
V11e

if1 sinE13t

E13
u1,g1 ,g2&

1
V21V11e

i (f12f2)

E13
2 ~cosE13t21!u0,g1 ,e2&

1
V11

2 cosE13t1V21
2

E13
2

u0,e1 ,g2&. ~11!

If the time duration satisfies the conditionE13t52mp,
wherem is an integer, we see that both state,u0,g1 ,e2& and
u0,e1 ,g2&, returns to the original ones, respectively.

Next, we need to solve this problem in the subspa
spanned by $un,g1 ,g2&,un21,g1 ,e2&,un21,e1 ,g2&,un
22,e1 ,e2&%. The Hamiltonian matrix is
S 0 iV2neif2 iV1neif1 0

2 iV2ne2 if2 0 0 iV1,n21eif1

2 iV1ne2 if1 0 0 iV2,n21eif2

0 2 iV1,n21e2 if1 2 iV2,n21e2 if2 0

D . ~12!
en-
The eigenvalues of this matrix are

Eni56AVA
26A~VA

2 !224~VB
2 !2

2
,

VA
25V1n

2 1V2n
2 1V1,n21

2 1V2,n21
2 ,
VB
25V1nV1,n212V2nV2,n21 . ~13!

We useEn1 , En2 , En3, andEn4 to denote them from low to
high, respectively. The eigenvector corresponding to eig
valueEni is given by
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TABLE I. Some results for the case ofh15h25h.

m51, l 50, k52 m52, l 50, k52 m52, l 51, k52

h 0.51764 0.93913 0.70711
V2 /V1 or V1 /V2 2.03951 1.51899 4.02791
e

f

ra

of
ns

id.

Eq.

all
is
In
the
d

tion

im-
’

.
bit

ci-
nd
un,i &5NniH 2e2 i (f11f2)~Eni
2 2V1,n21

2 2V2,n21
2 !

V1,n21V2n1V2,n21V1n
un,g1 ,g2&

1
1

Eni
F iV1,n21eif1

1 iV2neif1
E22V1,n21

2 2V2,n21
2

V1,n21V2n1V2,n21V1n
G un21,g1 ,e2&

1
1

Eni
F iV2,n21eif2

1 iV1neif2
E22V1,n21

2 2V2,n21
2

V1,n21V2n1V2,n21V1n
G un21,e1 ,g2&

1un22,e1 ,e2&J , ~14!

whereNni is a normalization factor. We need to find out th
time evolution of stateun22,e1 ,e2&. From Eq.~14!, it fol-
lows thatun22,e1 ,e2& can be expressed as

un22,e1 ,e2&5Nn1un,1&1Nn2un,2&1Nn3un,3&1Nn4un,4&.
~15!

At time t, the state evolves into

uc~ t !&5e2 iH I tun22,e1 ,e2&

5Nn1e2 iEn1tun,1&1Nn2e2 iEn2tun,2&

1Nn3e2 iEn3tun,3&1Nn4e2 iEn4tun,4&. ~16!

We can easily get the following result:

^n22,e1 ,e2uc~ t !&5Nn1
2 e2 iEn1t1Nn2

2 e2 iEn2t1Nn3
2 e2 iEn3t

1Nn4
2 e2 iEn4t. ~17!

BecauseEn152En4, andEn252En3, if we let En4t5(2k
11)p and En3t5(2l 11)p, the stateun22,e1 ,e2& will be
changed to2un22,e1 ,e2&. This result in the special case o
n52, combined with the time evolution ofu0,g1 ,e2& and
u0,e1 ,g2& discussed above, yields a CROT quantum ope
on

w

t

-

tion between two different ions, as long as the initial state
the c.m. mode is in a vacuum state. The c.m. mode of io
remains in the vacuum state after the operation.

Now we consider the details for the operation to be val
It requires

E23t5~2l 11!p,

E24t5~2k11!p,

E13t52mp.

~18!

Using the eigenvalues in Eq.~9! and Eq.~13!, finally we get

V21
2 1V22

2 5~2l 11!21~2k11!22~2m!2,

uV21V112V22V12u5~2k11!~2l 11!,

V11
2 1V12

2 5~2m!2,

~19!

where the unit ofV is set to bep/t. Use the definition ofV
in Eq. ~7!, and solve the equations for selected$k,l ,m%; we
can choose a particular set of$V1 ,V2 ,h1 ,h2% to be used for
real experiments. We have presented some solutions of
~19! in Table I.

III. CONCLUSION

The easy way for realizing quantum computation in sm
scale is of particular interest for experimentalists, and it
very important for developing a real quantum computer.
our scheme of quantum computation with trapped ions,
requirement of an auxiliary level is eliminated. As pointe
out by Monroeet al. @7#, this simplification may be useful in
experiments. Recently, some schemes for coherent opera
with hot vibrational states have been proposed@8#. But our
scheme is still worth some consideration because of its s
plicity. Also, if we use the c.m. motion as a ‘‘bus qubit,’
perhaps we will need both single bit rotation for the c.m
motion and internal state, while in this scheme, single
rotations for the c.m. motion are not needed.
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