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Pattern formation in quantum Turing machines
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We investigate the iteration of a sequence of local and pair unitary transformations, which can be interpreted
to result from a Turing-heathseudospirB) rotating along a closed Turing tap® (additional pseudospins
The dynamical evolution of the Bloch vector 8f which can be decomposed intd Zrimitive pure state
Turing-head trajectories, gives rise to fascinating geometrical patterns reflecting the entanglement between
head and tape. These machines thus provide intuitive examples for quantum parallelism and, at the same time,
means for local testing of quantum network dynamj&L050-29479)07905-9

PACS numbsg(s): 03.67.Lx, 03.65.Bz, 05.45.a, 89.70+c

Despite the lack of a clear-cut definition, the physics ofnetwork state is required. However, while the evolution of
complexity[1] has intrigued physicists for many years. For arbitrary initial states by a given map seems exponentially
continuous classical systems with few degrees of freedonihard,” the evolution of some specific initial state by a
the notion of chaos has attracted much interest as a sign #fhole class of maps turns out to be “easy,” and is not at all
uncontrollability [2]. For discrete classical systems in the limited to smallN networks. Furthermore we will show that
form of cellular automata, the notion of computational irre- the evolution of the Turing head in its reduced space gives
ducibility has been introduced to account for the lack offisé to geometrical patterns reflecting the entanglement be-
“short cuts,” i.e., our inability to predict the respective state tWeen Turing head and Turing tape. These patterns can be
evolution without following the detailed dynamics step by thought to result from the superposition of exponentially
step[3]. The linearity of quantum dynamics appears to makgMany “basic” Turing machines, an intuitive example of
the respective evolution “well behaved” from the start. The “auantum parallelism.” _ _
limit of control, nevertheless, abounds even for modestly ~The quantum network to be considered here is composed
large quantum networkgt] due to the, typically, exponen- of N (=M+1) pseudospins [j(n)), =01, u
tially large Hilbert space, in which the state evohj&. It =S1,2....M (Turing head S Turing tape spins
has been shown that if this kind of “quantum complexity” 1.2,... M) so that its network statdy) lives in the
could be harnessed, new efficient modes of computatioR -dimensional Hilbert space spanned by the product
should become availab[&,7]. However, one will first have Wwave functiongj(S)k(1)- - -1(M))=|jk- - -1). Correspond-
to find ways to circumvent that disastrous exponentiafngly, any (unitary) network-operator can be expanded as a
blowup. sum of product operators. The latter may be based on the

A quantum networkcomposed olN subsystemsis de-  traceless S(2) generators

fined by its Hamiltonian operatdt. ThisH is also the gen-

erator of the respective unitarsystem dynamics, U(t) M) =Poa(p) + Pao ),

=exp(—iHt/4), which transforms a given initial state),) - . .

into a final stately’) after some given time\t: We thus Ny(pm)=1Poa(p) —iPyo(u),

have a one-parameter transformatidAt) operating on ar- . . )

bitrary initial states(requiring a number of state parameters N () =P ) —Poo( ), (€N}

which grows exponentially witiN). To improve control it is

therefore tempting to consider, instead, arbitrary Unita_rXNherelf’ij(M)z|i(,u)>(j(,u)| is a (local) transition operator.
transformations acting on one given initial state: In fact, this \ye now consider the iterative map for which each full

type of scenario underlies most current quantum-cyde p=1,2,... consists of a sequence ofvR unitary

computational schemgg]. . A
; . . . transformationsU,,, n=1,2,...,2M. At step m, m=n
Any system dynamics can be approximated as an iterativ 2M(p—1). we thus have

sequence of unitary basis operatéss-called “gates”[8]).

In this Brief Report we address a quantum Turing machine . A A
(QTM) architecture[9—13 which can be understood as a [hm)=Up- - -UU1(Ugy- - UaU )P~ go). 2
specific and formalized version of such an iterative map.

Typically, one will be unable to “observe” the network in presently we identify thé) , with the local unitary transfor-

full detail; one then usually resorts to “macro-observables.” 1.ation on the Turing head, U,(S), and the quantum-

Here we focus, instead, on a single microscopic subsystem, ~ o
the “Turing head” S. To predict its state exactly, the full controlled-NOT(QCNOT) on (S,4),U(S,x), respectively:

Usu-1=0,,(9)=1(S)cod @,/2) — A((S)i sin(a,/2),
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02M=0<s,m=ﬁ’oo<8>>1x<u>+ﬁ’11<8>i<m=0+<s.u>(.4) |

However, the basic results of this paper apply also to differ- .

ent transformationd) (S, 1), e.g., withX,(x) replaced by |

iXy(M). In any case, the sequence of E8) may be inter-
preted to emerge from a Turing-head rotation along the s
closed Turing tape, thus iterating between local and QCNOT
operations. Any such QTM is specified by its tape dize Ty
the external control parametess,, ©=1,2,... M, and the

initial state|y,). Without loss of generality we will restrict
ourselves toa;=a,=---ay=a. The state|yy) will be i
taken to be a product of Turing-head and -tape wave func-
tions. This initial “no-correlation” assumption is typical os
also for system-bath modé€l4]. In fact, the Turing tape may

Py Pyt

Ay

be considered as a speciéhite) bath model for systers. 0 0
We restrict ourselves to the Bloch vectorof the Turing
heads (our “system of interest) 03 03
N “ N = =0,8 } =34 =0,7,8
AN"=(mNi(S)@L(D)® - - - @ L(M)| ). 5 B a Ty, 0 i s 6y, 05 i

The Bloch vectors of the Turing tape could be calculated Fig 1. The primitivesP; (aperiodi¢ and P, (periodig for
along the same lines, but the Turing head plays a specifig =1, andP2* (aperiodio, 72, P; ", and P, * (periodig for
role by construction. Due to the entanglement with the Tury=2: o= 7/,3 andg,= /6.
ing tape, the Turing head will, in general, appear to be in a
“mixed state” |[\™2<1.
The tape spin states U(S,u) cannot create any entanglement, irrespective of the
head statéo(S)):
1 .
|+ (w))= E(low»rum)», p=12,...M (6 U wleS)e|+w)=leS)e|+(u) @

. u(s, 9)®|—(w)=AAS)|e(S))®|—(u)). (8
are eigenstates of, () with eigenvaluest 1, respectively. SwleE)el=(u)=(leS)el=(w). @
If spin w is in one of these states, the QCNOT operationFor the 2! orthonormalized initial tape states,

P ellPs ™ H)=lx)elx(2)e- - o= (M)} ©)
and with|¢q(S))=cosy/2)|0(S)) —i sin(ey/2)|1(S)), the network statéy,,) remains a product state,
) =] om(S) @ |Ph), (10
and the Turing head described by
AP =(Phl(em(SIN(9®L(1)@ - - ®1(M)]@m(S))|Ph) (1D
performs a pure state trajectory on the Bloch circle,

(NJ(Ph)*+ (AJ(Ph)?=1. (12)

We show examples fap,= 7/6 andM =1 and 2(Fig. 1). The step numbem is marked to specify the apparent “jumping.
The explicit machine rules for the Turing head are given in Tabl H1). The orbits for tapé/ are contained in those for
kM(k=2,3,...).

For given Turing-tape sizM the initial state|7)) gives rise to a periodic orbit whose period does not depend,dh

|[Phy=1-+)" =) )" =) +)"2- - [ =) +) a1 =)| +), (13
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TABLE |. State erIution of the _Turing_ head favi=1 and
initial states|Ph): A (Ph) =YY, NP(Ph) =2, j=1 (aperiodig,

andj =2 (periodig.

YV =sing, Y@=y
z{M=—cosg, z{P=z{
Y=Y =sin(gy+a) YP=-vy@P=vy@
zM =27 = —cosfpy+a) VASEVASEYAY

Y =YP =sin(py+2a)

Y@= _y@=_y@

ZWM =7V =—cosgpy+2a), etc. 2P =7P=z{2, etc.

with n;=0,1,2 ... , containsqg|—) states, where{ ,n;
+g=M,q=o0dd for M odd or even, whileg can be even
only for M even, satisfying

q}? =4 (14)
“=h 2i 2
Otherwise| ¢n(S))|P)) generates an aperiodic orffite., an
effective rotation controlled byyr). The aperiodic(*‘quasi-
periodic”) primitives also become strictly periodic, df is a
rational multiple ofr.

Any initial state withSin the pure statépy(S)) can thus
be written

oM

[40)= 2, ayleo(9)IP%). (15
i.e., [o) can be specified by the coefficieds;}. With Eq.
(15), and using the orthogonality of thé,), the resulting
motion of the Turing head depends only on the modulus o
a;, and is given bycf. Egs.(5) and(10)]

oM

A ( ¢o>=§l |aj|PAR(Ph). (16)

This decomposition can be seen as an intuitive example for I

guantum parallelism: The individual Turing head performs
exponentially many primitive trajectories “in parallel.” We
may restrict the sum in Eq$15) and (16) to the periodic
(aperiodig primitives only. Equal weight superpositions of

FIG. 2. Equal-weight superpositions;& %) of four periodic
(four aperiodi¢ orbits for| o) =]0000, M =3, and total step num-
berm=3000. The equal-weight superposition{2) of these two,
in turn, generates the pattern for initial std®00 (see Fig. 3 for
M=3); a=n/ \/§
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TABLE Il. Recursion relations for the reduced state evolution of
Sin the case ofo)=|00---0) and a;=a,=---=ay . Let Y,
=Ymm:» Zm=Zmm Zmo=—1, andm’:=m—4p+2, wherep is
the cycle number for stepm;, m=n+2M(p—1), n
=1.2,...,M.Yy=0, Y;=sine, Zy=—1, andZ,= —coSa.

Ymn==Y1Zn-1—Z1Ym-1 n=odd
YoM=Ym-imt+Y1Zm m-2 n=event2M
Yom=Ym-1m—Yo(=Z)"? n=2M, p=odd
Ymm=Ym-1m n=2M, p=even
Zn=—2Z1Zy-1+tY1 Y1 n=odd
Z2ow=—"21Zp—>+Y1 Y2 n=even

the four periodic(four aperiodi¢ orbits lead to the isolated
point (quasi-one-dimensionabpatterns as shown in Fig. 2
(M=3,99=0). The special equal-weight superposition with
a;= (1/2")"2 corresponds to the initial stafe/o)=|¢o(S))
®|00- - -0), which is a complete product state. There are
other nonproduct states, however, leading to the same equal-
weight result for the Turing head, i.e., to the same pattern.
For|q)=|00- - - 0), the typical initial state also for quan-
tum computatior§6], and for largeM the construction of the
Turing-head motion based on the decomposition approach
(2M primitives with equal weightbecomes impractical. Sur-
prisingly, the Bloch vector of can easily be found for any
M and any step numben=n+2M(p—1) from

AP0,
)\;nz Ym,M(a’)v
17

using the recursion relation@able 1). Alternatively, the

Bloch vector\™ can be calculated directly from the initial
state[ 14]. The resulting geometrical patterns fdr=1, 2, 3,

f N'=Zmnm(a)

FIG. 3. Turing-head patterns fpg,)|00- - -0), M=1, 2, 3, and
10, and the total step number=3000; a = /+/3.
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and 10 are shown in Fig. 3, including all steps upnto
=3000. These patterns, reminiscent of Poincsaetions in
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cific order. This ordering can be made explicit by associating
a time At with each stepm. The Fourier transform of this

classical phase spacé®r open quantum systems compare discrete dynamicgunderlying the buildup of the Turing-

[15]), decompose into various submanifol@ighich reflect

head patternwill thus give complementary information, ac-

higher-order invarianis In the process of their buildup, the cessible to spectroscopy. This would amount to testing the

Bloch vector\™ jumps between these submanifolds, just a
between the discrete points of the corresponding superposi-
tion of all the periodic orbit§a one-to-one correspondence;
compare Fig. 2 the latter thus play an important role remi-

niscent of Gutzwiller'speriodic-orbit theory[16]. For M
=1 and 2 the sub-manifolds are circles with radiuand

centerc;, defining the invariants

2M+1

I(X)= ]Hl (IX—=¢j|-r)=0 (18)

(for =0 two of the circles coincide We note in passing

S

“nonclassicality” of the respective trajectory rather than
testing the nonclassicality of states. Absolute time scales be-
come relevant as we compata with the decoherence time
7.. Even short times; might be overcome by running the
Turing machine fast enough, i.e., by choosinigl 2t< 7.

Note that the Turing-head dynamics is robust with respect to
phase changes of the Turing-tape states.

In conclusion, we have shown that the QTM architecture
allows for a discrete dynamical evolution which, when
viewed from the reduced subspace of the Turing head, ap-
pears as some highly ordered geometric pattern. For specific
initial states(“input” ), these pattern§'output” ) can be eas-
ily calculated for any tape size. They constitute a sensitive

that the initial staté10- - - 0) generates a Turing-head trajec- local test for the functioning of the total network in its ex-

tory with X™ of Fig. 3 replaced by- X™ (the individual tape
spin may be in any sta{®),|1)). The unitary evolution of a

ponentially large Hilbert space. The “output” becomes
available for any large enough observation period, and does

mixed state can thus be constructed as weighted combin&0t suffer from the notorious “halting problem{17]. These

tions of these trajectories, at each step They lead to
“shrunk” patterns.

The unitary transformationsl ,(S) and U(S,) do not

commute fora#0: Even without introducing any time pa-

findings, we believe, are the first concrete results pertaining
to QTM’s, a field which up to now has not shown much
potential for future applications.

We would like to thank C. Granzow, A. Otte, and R.

rameters, the sequence of transformation thus defines a sp&fawer for stimulating discussions.
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