
PHYSICAL REVIEW A JULY 1999VOLUME 60, NUMBER 1
Pattern formation in quantum Turing machines

Ilki Kim * and Günter Mahler
Institut für Theoretische Physik, Universita¨t Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany

~Received 10 December 1998!

We investigate the iteration of a sequence of local and pair unitary transformations, which can be interpreted
to result from a Turing-head~pseudospinS) rotating along a closed Turing tape (M additional pseudospins!.
The dynamical evolution of the Bloch vector ofS, which can be decomposed into 2M primitive pure state
Turing-head trajectories, gives rise to fascinating geometrical patterns reflecting the entanglement between
head and tape. These machines thus provide intuitive examples for quantum parallelism and, at the same time,
means for local testing of quantum network dynamics.@S1050-2947~99!07905-6#

PACS number~s!: 03.67.Lx, 03.65.Bz, 05.45.2a, 89.70.1c
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Despite the lack of a clear-cut definition, the physics
complexity@1# has intrigued physicists for many years. F
continuous classical systems with few degrees of freed
the notion of chaos has attracted much interest as a sig
uncontrollability @2#. For discrete classical systems in th
form of cellular automata, the notion of computational irr
ducibility has been introduced to account for the lack
‘‘short cuts,’’ i.e., our inability to predict the respective sta
evolution without following the detailed dynamics step
step@3#. The linearity of quantum dynamics appears to ma
the respective evolution ‘‘well behaved’’ from the start. Th
limit of control, nevertheless, abounds even for modes
large quantum networks@4# due to the, typically, exponen
tially large Hilbert space, in which the state evolves@5#. It
has been shown that if this kind of ‘‘quantum complexity
could be harnessed, new efficient modes of computa
should become available@6,7#. However, one will first have
to find ways to circumvent that disastrous exponen
blowup.

A quantum network~composed ofN subsystems! is de-
fined by its Hamiltonian operatorĤ. This Ĥ is also the gen-
erator of the respective unitary~system! dynamics, Û(t)
5exp(2iĤt/\), which transforms a given initial stateuc0&
into a final stateuc8& after some given timeDt: We thus
have a one-parameter transformationÛ(Dt) operating on ar-
bitrary initial states~requiring a number of state paramete
which grows exponentially withN). To improve control it is
therefore tempting to consider, instead, arbitrary unit
transformations acting on one given initial state: In fact, t
type of scenario underlies most current quantu
computational schemes@7#.

Any system dynamics can be approximated as an itera
sequence of unitary basis operators~so-called ‘‘gates’’@8#!.
In this Brief Report we address a quantum Turing mach
~QTM! architecture@9–13# which can be understood as
specific and formalized version of such an iterative m
Typically, one will be unable to ‘‘observe’’ the network i
full detail; one then usually resorts to ‘‘macro-observables
Here we focus, instead, on a single microscopic subsys
the ‘‘Turing head’’ S. To predict its state exactly, the fu
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network state is required. However, while the evolution
arbitrary initial states by a given map seems exponenti
‘‘hard,’’ the evolution of some specific initial state by
whole class of maps turns out to be ‘‘easy,’’ and is not at
limited to small-N networks. Furthermore we will show tha
the evolution of the Turing head in its reduced space gi
rise to geometrical patterns reflecting the entanglement
tween Turing head and Turing tape. These patterns can
thought to result from the superposition of exponentia
many ‘‘basic’’ Turing machines, an intuitive example o
‘‘quantum parallelism.’’

The quantum network to be considered here is compo
of N (5M11) pseudospins u j (m)&, j 50,1; m
5S,1,2, . . . ,M ~Turing head S, Turing tape spins
1,2, . . . ,M ) so that its network stateuc& lives in the
2M11-dimensional Hilbert space spanned by the prod
wave functionsu j (S)k(1)••• l (M )&5u jk••• l &. Correspond-
ingly, any ~unitary! network-operator can be expanded as
sum of product operators. The latter may be based on
traceless SU~2! generators

l̂x~m!5 P̂01~m!1 P̂10~m!,

l̂y~m!5 i P̂01~m!2 i P̂10~m!,

l̂z~m!5 P̂11~m!2 P̂00~m!, ~1!

whereP̂i j (m)5u i (m)&^ j (m)u is a ~local! transition operator.
We now consider the iterative map for which each f

cycle p51,2, . . . consists of a sequence of 2M unitary
transformationsÛn , n51,2, . . . ,2M . At step m, m5n
12M (p21), we thus have

ucm&5Ûn•••Û2Û1~Û2M•••Û2Û1!p21uc0&. ~2!

Presently we identify theÛn with the local unitary transfor-
mation on the Turing headS, Ûa(S), and the quantum-
controlled-NOT~QCNOT! on (S,m),Û(S,m), respectively:

Û2m215Ûam
~S!51̂~S!cos~am/2!2l̂x~S!i sin~am/2!,

~3!
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Û2m5Û~S,m!5 P̂00~S!l̂x~m!1 P̂11~S!1̂~m!5Û1~S,m!.
~4!

However, the basic results of this paper apply also to diff
ent transformationsÛ(S,m), e.g., with l̂x(m) replaced by
i l̂y(m). In any case, the sequence of Eq.~2! may be inter-
preted to emerge from a Turing-head rotation along
closed Turing tape, thus iterating between local and QCN
operations. Any such QTM is specified by its tape sizeM,
the external control parametersam , m51,2, . . . ,M , and the
initial stateuc0&. Without loss of generality we will restric
ourselves toa15a25•••aM5a. The stateuc0& will be
taken to be a product of Turing-head and -tape wave fu
tions. This initial ‘‘no-correlation’’ assumption is typica
also for system-bath models@4#. In fact, the Turing tape may
be considered as a special~finite! bath model for systemS.

We restrict ourselves to the Bloch vectorlW of the Turing
headS ~our ‘‘system of interest’’!

l i
m5^cmul̂ i~S! ^ 1̂~1! ^ •••^ 1̂~M !ucm&. ~5!

The Bloch vectors of the Turing tape could be calcula
along the same lines, but the Turing head plays a spe
role by construction. Due to the entanglement with the T
ing tape, the Turing head will, in general, appear to be i
‘‘mixed state’’ ulW mu2,1.

The tape spin states

u6~m!&5
1

A2
~ u0~m!&6u1~m!&), m51,2, . . . ,M ~6!

are eigenstates ofl̂x(m) with eigenvalues61, respectively.
If spin m is in one of these states, the QCNOT operat
r-
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Û(S,m) cannot create any entanglement, irrespective of
head stateuw(S)&:

Û~S,m!uw~S!& ^ u1~m!&5uw~S!& ^ u1~m!& ~7!

Û~S,m!uw~S!& ^ u2~m!&5l̂z~S!uw~S!& ^ u2~m!&. ~8!

For the 2M orthonormalized initial tape states,

FIG. 1. The primitivesP0
1 ~aperiodic! and P0

2 ~periodic! for
M51, andP0

21 ~aperiodic!, P0
22 , P0

12 , andP0
21 ~periodic! for

M52; a5p/A3 andw05p/6.
’’
r

uP0
j &P$uP0

66•••6&5u6~1!& ^ u6~2!& ^ •••^ u6~M !&% ~9!

and with uw0(S)&5cos(w0/2)u0(S)&2 i sin(w0/2)u1(S)&, the network stateucm& remains a product state,

ucm&5uwm~S!& ^ uP0
j &, ~10!

and the Turing head described by

l i
m~P0

j !5^P0
j u^wm~S!ul̂ i~S! ^ 1̂~1! ^ •••^ 1̂~M !uwm~S!&uP0

j & ~11!

performs a pure state trajectory on the Bloch circle,

„ly
m~P0

j !…21„lz
m~P0

j !…251. ~12!

We show examples forw05p/6 andM51 and 2~Fig. 1!. The step numberm is marked to specify the apparent ‘‘jumping.
The explicit machine rules for the Turing head are given in Table I (M51). The orbits for tapeM are contained in those fo
kM(k52,3, . . . ).

For given Turing-tape sizeM the initial stateuP0
j & gives rise to a periodic orbit whose period does not depend ona, if

uP0
j &5u1&n0u2&u1&n1u2&u1&n2

•••u2&u1&nq21u2&u1&nq, ~13!
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with ni50,1,2, . . . , containsqu2& states, where( i 50
q ni

1q5M ,q5odd for M odd or even, whileq can be even
only for M even, satisfying

(
i 50

q/2

n2i5
M2q

2
. ~14!

Otherwiseuwm(S)&uP0
j & generates an aperiodic orbit~i.e., an

effective rotation controlled bya). The aperiodic~‘‘quasi-
periodic’’! primitives also become strictly periodic, ifa is a
rational multiple ofp.

Any initial state withS in the pure stateuw0(S)& can thus
be written

uc0&5(
j 51

2M

aj uw0~S!&uP0
j &, ~15!

i.e., uc0& can be specified by the coefficients$aj%. With Eq.
~15!, and using the orthogonality of theuP0

j &, the resulting
motion of the Turing head depends only on the modulus
aj , and is given by@cf. Eqs.~5! and ~10!#

lk
m~c0!5(

j 51

2M

uaj u2lk
m~P0

j !. ~16!

This decomposition can be seen as an intuitive example
quantum parallelism: The individual Turing head perform
exponentially many primitive trajectories ‘‘in parallel.’’ We
may restrict the sum in Eqs.~15! and ~16! to the periodic
~aperiodic! primitives only. Equal weight superpositions o

FIG. 2. Equal-weight superpositions (aj5
1
2 ) of four periodic

~four aperiodic! orbits for uc0&5u0000&, M53, and total step num-
berm53000. The equal-weight superposition (1/A2) of these two,
in turn, generates the pattern for initial stateu0000& ~see Fig. 3 for
M53); a5p/A3.

TABLE I. State evolution of the Turing head forM51 and
initial statesuP0

j &: ly
m(P0

j )5Ym
( j ) , lz

m(P0
j )5Zm

( j ) , j 51 ~aperiodic!,
and j 52 ~periodic!.

Y0
(1)5sinw0 Y0

(2)5Y0
(1)

Z0
(1)52cosw0 Z0

(2)5Z0
(1)

Y1
(1)5Y2

(1)5sin(w01a) Y1
(2)52Y2

(2)5Y1
(1)

Z1
(1)5Z2

(1)52cos(w01a) Z1
(2)5Z2

(2)5Z1
(1)

Y3
(1)5Y4

(1)5sin(w012a) Y3
(2)52Y4

(2)52Y0
(2)

Z3
(1)5Z4

(1)52cos(w012a), etc. Z3
(2)5Z4

(2)5Z0
(2) , etc.
f

or

the four periodic~four aperiodic! orbits lead to the isolated
point ~quasi-one-dimensional! patterns as shown in Fig. 2
(M53,w050). The special equal-weight superposition wi
aj5(1/2M)1/2 corresponds to the initial stateuc0&5uw0(S)&
^ u00•••0&, which is a complete product state. There a
other nonproduct states, however, leading to the same eq
weight result for the Turing head, i.e., to the same patter

For uc0&5u00•••0&, the typical initial state also for quan
tum computation@6#, and for largeM the construction of the
Turing-head motion based on the decomposition appro
(2M primitives with equal weight! becomes impractical. Sur
prisingly, the Bloch vector ofS can easily be found for any
M and any step numberm5n12M (p21) from

lx
m50,

ly
m5Ym,M~a!,

lz
m5Zm,M~a! ~17!

using the recursion relations~Table II!. Alternatively, the
Bloch vectorlW m can be calculated directly from the initia
state@14#. The resulting geometrical patterns forM51, 2, 3,

FIG. 3. Turing-head patterns foruc0&u00•••0&, M51, 2, 3, and
10, and the total step numberm53000; a5p/A3.

TABLE II. Recursion relations for the reduced state evolution
S in the case ofuc0&5u00•••0& and a15a25•••5aM . Let Ym

5Ym,M , Zm5Zm,M , Zm,0ª21, andm8ªm24p12, wherep is
the cycle number for step m; m5n12M (p21), n
51,2, . . . ,2M . Y050, Y15sina, Z0521, andZ152cosa.

Ym52Y1Zm212Z1Ym21 n5odd
Ym,M5Ym21,M1Y1Zm8,M22 n5evenÞ2M
Ym,M5Ym21,M2Y1(2Z1)M21 n52M , p5odd
Ym,M5Ym21,M n52M , p5even
Zm52Z1Zm211Y1Ym21 n5odd
Zm52Z1Zm221Y1Ym22 n5even
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and 10 are shown in Fig. 3, including all steps up tom
53000. These patterns, reminiscent of Poincare´ sections in
classical phase spaces~for open quantum systems compa
@15#!, decompose into various submanifolds~which reflect
higher-order invariants!. In the process of their buildup, th
Bloch vectorlW m jumps between these submanifolds, just
between the discrete points of the corresponding superp
tion of all the periodic orbits~a one-to-one correspondenc
compare Fig. 2!; the latter thus play an important role rem
niscent of Gutzwiller’speriodic-orbit theory @16#. For M
51 and 2 the sub-manifolds are circles with radiusr and
centercW j , defining the invariantsI

I ~lW !5 )
j 51

2M11

~ ulW 2cW j u2r !50 ~18!

~for w050 two of the circles coincide!. We note in passing
that the initial stateu10•••0& generates a Turing-head traje
tory with lW m of Fig. 3 replaced by2lW m ~the individual tape
spin may be in any stateu0&,u1&). The unitary evolution of a
mixed state can thus be constructed as weighted comb
tions of these trajectories, at each stepm. They lead to
‘‘shrunk’’ patterns.

The unitary transformationsÛa(S) and Û(S,m) do not
commute foraÞ0: Even without introducing any time pa
rameters, the sequence of transformation thus defines a
-

-

s
si-

a-

pe-

cific order. This ordering can be made explicit by associat
a time Dt with each stepm. The Fourier transform of this
discrete dynamics~underlying the buildup of the Turing
head pattern! will thus give complementary information, ac
cessible to spectroscopy. This would amount to testing
‘‘nonclassicality’’ of the respective trajectory rather tha
testing the nonclassicality of states. Absolute time scales
come relevant as we compareDt with the decoherence time
tc . Even short timestc might be overcome by running th
Turing machine fast enough, i.e., by choosing 2MDt!tc .
Note that the Turing-head dynamics is robust with respec
phase changes of the Turing-tape states.

In conclusion, we have shown that the QTM architectu
allows for a discrete dynamical evolution which, whe
viewed from the reduced subspace of the Turing head,
pears as some highly ordered geometric pattern. For spe
initial states~‘‘input’’ !, these patterns~‘‘output’’ ! can be eas-
ily calculated for any tape size. They constitute a sensit
local test for the functioning of the total network in its e
ponentially large Hilbert space. The ‘‘output’’ become
available for any large enough observation period, and d
not suffer from the notorious ‘‘halting problem’’@17#. These
findings, we believe, are the first concrete results pertain
to QTM’s, a field which up to now has not shown muc
potential for future applications.

We would like to thank C. Granzow, A. Otte, and R
Wawer for stimulating discussions.
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