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Theoretical analysis of resonances in the polarization spectrum of a two-level atom driven by
a polychromatic field
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Analytic solutions of the optical Bloch equations for a two-level atom interacting with a strong polychro-
matic field whose frequencies are symmetrically positioned with respect to the atomic frequency are used to
obtain the polarization spectrum of the atom. The spectrum is found to consist of a series of discrete peaks or
dips superimposed on the continuous part of the spectrum. Physical interpretation of resonances exhibited in
the continuous part of the spectrum is given using a semiclassical dressed-atom approach.
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I. INTRODUCTION

The interaction of a two-level atom with an intense las
field is of fundamental importance in quantum optics a
laser spectroscopy. The spectral properties of a two-le
atom driven by a monochromatic laser field are now w
understood, since the pioneering work of Mollow@1,2#. The
fluorescence spectrum from the atom contains coherent
incoherent contributions which respectively consist of a d
crete elastic peak at the line center and a three-peaked
tinuous spectrum with the peaks separated by the Rabi
quency. Attention has been paid mainly to the incoher
part of the spectrum, because the elastic peak in the fluo
cence spectrum becomes negligibly small when the driv
field is sufficiently strong to saturate the transition. T
dressd-atom picture@3,4# has been particularly useful in thi
area of research, as it clearly explains the physical origin
the three-peaked structure exhibited in the fluorescence
absorption spectra.

Recent investigations@5-27# have shown that a significan
variation of the three-peaked structure occurs when the d
ing field is polychromatic. Even under a bichromatic~fully
amplitude modulated! field, fluorescence and absorptio
spectra are found to exhibit vastly different characterist
The spectra again contain coherent and incoherent cont
tions @5,13–15,24#. The coherent intensity, however, n
longer decreases steadily to zero as the intensity of the d
ing field is increased@5#. Furthermore, the incoherent part
the fluorescence and absorption spectra exhibits a serie
resonances separated not by the Rabi frequency but by
modulation frequency@7,8#. Physical interpretation of thes
resonances have been obtained again with the help of
dressed-atom picture@7–10,14,19#. It is, however, no easy
task to determine dressed-state energies of a two-level a
interacting with a bichromatic field, because it is necess
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in principle to perform diagonalization of an infinite
dimensional matrix@7#.

From the practical viewpoint, it is important to understa
the interaction of an atom with a polychromatic field, b
cause one frequently employs amplitude-modulated la
and, in some cases, needs to use more than one laser. T
retically, however, it is difficult to describe analytically th
response of an atom when the field configuration is m
complex than bichromatic. Dressed states and energies
been obtained for a two-level atom in a bichromatic fie
@7–10,14,19# for various configurations, e.g., when th
bichromatic field is not resonant with the atomic transiti
~i.e., when the average frequency of the field is not equa
the atomic frequency! @8#, and when the field consists of on
strong and one weak frequency component@9#. To our
knowledge, however, there exist only a few reports@5,16# in
which calculation of dressed state energies for more comp
field configurations than a bichromatic driving field is a
tempted. The problem gets even more difficult if one nee
to calculate absorption spectra under the condition that
probe field is also allowed to be intense.

There exists one special situation in which the field h
more than two frequency components and analytical exp
sions for emission and absorption spectra can still be
tained. It is when the field contains an arbitrary number
pairs of frequency components which are symmetrically
sitioned with respect to the atomic frequency with symme
cally arranged amplitudes. In addition, a single frequen
component may be placed at the line center. In fact, it
been known@6,11# that optical Bloch equations describing
two-level atom interacting with a resonant, symmetrica
positioned bichromatic field possess analytic solutions
terms of the Bessel functions. Only a straightforward ext
sion of the method used in these treatments is require
treat the atom interacting with a field with more than one p
of symmetrically positioned frequency components. Vitus
kin et al. @20,21# recently considered an atom interactin
with a pentachromatic field, i.e., with a trichromatic pum
field which consists of a single frequency component at
line center and a pair of symmetrically positioned frequen
components and with an arbitrarily intense bichroma
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606 PRA 60YOON, PULKIN, PARK, CHUNG, AND LEE
probe field which consists of another pair of symmetrica
positioned frequency components. They obtained an ana
expression for the polarization spectrum in terms of Bes
functions. The results of their calculations indicate that
spectrum contains a coherent part which consists
d-function peaks which they called supernarrow resonan
~SNR’s! and an incoherent part which corresponds to a c
tinuous spectrum. This appears to be the first investiga
that reports a theoretical analysis of discrete absorp
peaks. No detailed analysis of the continuous part of
spectrum is given, however; in particular, physical und
standing of the resonances in reference to the dressed-
picture seems desirable.

In this paper we present a theoretical analysis of the
larization spectrum of a two-level atom interacting with
intense trichromatic pump field and an arbitrarily inten
bichromatic probe field. Starting with analytic solutions
the optical Bloch equations, an analytic expression for
polarization spectrum can be obtained, real and imagin
parts of which determine the dispersion and absorption s
tra, respectively. While an earlier treatment@20,21# of this
system focused on discrete peaks that occur in the cohe
part of the polarization spectrum, our main consideration
given to resonances in the incoherent part of the spectr
We introduce, in particular, a semiclassical method of de
mining dressed-state energies. Using this method we de
mine dressed-state energies of our atom interacting wi
trichromatic pump field and a bichromatic probe field, whi
then provides physical interpretation of the resonances
hibited in the polarization spectrum. It is thus hoped that
analytical solutions for the polarization spectrum and phy
cal interpretation of the spectrum on the basis of the dres
atom picture provide important physical insight into the b
havior of a two-level atom interacting with a polychroma
field.

In the next section we briefly review analytic solutions
the optical Bloch equations for a two-level atom interacti
with a trichromatic pump field and a bichromatic probe fie
An analytic expression for the polarization spectrum is p
sented in Sec. III, which consists of coherent and incohe
contributions. The location and strength of discrete peak
the coherent part and resonances in the incoherent par
determined. In Sec. IV a semiclassical method of determ
ing dressed-state energies is described and applied to
system. The dressed-atom picture described in this sectio
shown to provide physical interpretation of the resonan
exhibited in the incoherent part of the polarization spectru
Finally in Sec. V a brief summary is given.

II. SOLUTIONS OF THE OPTICAL BLOCH EQUATIONS

Let us consider a two-level atom~with a lower levelu1&
of energye1 and an upper levelu2& of energye2) interacting
with an arbitrarily intense polychromatic field. The field
assumed to consist of one central pump field componenv0
resonant with the atomic frequency,v05(e22e1)/\, with
an amplitudeE0, a pair of symmetrically positioned pum
fields at frequenciesvs

65v06ds with equal amplitudesEs ,
and another pair of symmetrically positioned probe fields
frequenciesvp

65v06dp with equal amplitudesEp ~see Fig.
1!. The probe field as well as the pump field can be ar
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trarily intense. We consider the situation in which the pair
frequency componentsvp

6 are simultaneously varied in
symmetrical way, and absorption~or dispersion! is moni-
tored at either of the frequencies,vp

1 or vp
2 . Our system

with the field configuration depicted in Fig. 1 contains,
special cases, a two-level atom interacting with a reson
monochromatic pump field when we takeEs50, a two-level
atom interacting with a bichromatic pump field when we ta
E050. The properties of the system monitored by a we
probe beam is obtained by taking the limitEp→0.

We assume that all the five frequency components of
field are associated with the same polarization and the s
initial phase. The total electric field can then be written a

E~ t !5S 1

2
E01Es cosdst1Ep cosdpt De2 iv0t1c.c.

~2.1!

The interaction of our two-level atom with the field is d
scribed under the rotating wave approximation by the opt
Bloch equations in the vector model

dU

dt
52gU, ~2.2!

dV

dt
52gV12aW, ~2.3!

dW

dt
52G~W11!22aV, ~2.4!

whereU andV are related to the off-diagonal elements of t
density matrix as

r215
1

2
~U2 iV !e2 iv0t, r215r12* , ~2.5!

W represents population inversion

r222r115W, ~2.6!

g(51/T2) and G(51/T1) are, respectively, the transvers
~dipole! and longitudinal~population! relaxation rates, and
the parametera is given by

a5
1

2
V01Vs cosdst1Vp cosdpt. ~2.7!

FIG. 1. The field configuration. The pump field has three f
quency componentsv0 , vs

15v0 1 ds , and vs
25vs2ds ~with

amplitudes given byE0 ,Es , andEs , respectively!, and the probe
field has two frequency componentsvp

15v0 1 dp and vp
25v0

2dp ~with an equal amplitude ofEp).
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In Eq. ~2.7!, V0 ,Vs , and Vp are the Rabi frequencies de
fined by

V05
mE0

\
, Vs5

mEs

\
, Vp5

mEp

\
, ~2.8!

wherem is the component of the eletric dipole moment

mW 5^1uerWu2& ~2.9!

along the direction of the electric field.
Equations ~2.2!–~2.4! have Bessel function solution

when the relaxation ratesg andG are equal@6,11,20,21#. For
our analytical investigation, we therefore takeg5G. Equa-
tions ~2.3! and ~2.4! can then be combined to yield a sing
equation

dy

dt
52G2~G12ia !y, ~2.10!

wherey is defined as

y5W2 iV. ~2.11!

We note from Eq.~2.2! that U decays exponentially with
time and does not contribute to the steady-state solution.
ing the Bessel identity

exp~ iz sinxt!5 (
n52`

1`

Jn~z!exp~ inxt!, ~2.12!

one can obtain by straightforward algebra a steady-state
lution to Eq.~2.10! as

y52G(
k

(
l

(
m

(
n

Jk~2Zs!Jl~2Zp!Jm~Zs!Jn~Zp!

3
exp$ i @~k1m!ds1~ l 1n!dp#t%

G1 i ~V01mds1ndp!
, ~2.13!

whereZs52Vs /ds and Zp52Vp /dp , and the summations
over k,l ,m andn here and from now on run from2` to `
unless otherwise stated. Equation~2.13! was obtained earlie
by Vitushkin et al. @20,21#. The polarization spectrum is de
termined by the off-diagonal elements of the density ma
which in turn is determined byV, the imaginary part ofy.
We proceed in the next section to obtain the expression
the polarization spectrum and present discussion of the
herent and incoherent contributions to the spectrum.

III. POLARIZATION SPECTRUM

In this section we obtain the polarization spectrum,
real and imaginary parts of which give the dispersion a
absorption spectra, respectively. The polarization is rela
to the off-diagonal elements of the density matrix by

P5Nm~r211r12!5
Nm

2
@~U2 iV !e2 iv0t1~U1 iV !eiv0t#,

~3.1!
s-

o-

x

or
o-

e
d
d

where N is the density of the atom. SinceU decays exponen
tially with time, it does not contribute toP at steady state
The component of polarization oscillating atvp

65v06dp is
determined from

P~vp
65v06dp!52

iNm

2
^Ve6 idpt& t , ~3.2!

where ^& t indicates time averaging. Due to the symmet
field configuration we have

P~vp
1!52P* ~vp

2! ~3.3!

and it is sufficient to considerP(vp
1) only.

It should be stressed that the polarization spectrum ha
physical significance, because it is directly related to the
fractive index and the absorption coefficient of the syst
which can be measured experimentally. The polarizat
component of Eq.~3.2! is related to the dimensionless firs
order susceptibility@x(vp

1)/x0# by

x~vp
1!/x05

G/Nm

Vp
P~vp

1!, ~3.4!

wherex05Nm2/\G. The refractive index and absorption co
efficient, respectively, are given by the real and imagin
parts of@x(vp

1)/x0#.
Using Eqs.~2.11!, ~2.13!, and~3.2!, it is a simple matter

to obtain the following expression forP(vp
1):

P~vp
1!52

NmG

4 (
k

(
l

(
m

(
n

3H Jk~2Zs!Jl~2Zp!Jm~Zs!Jn21~Zp!

G21@V01mds1~n21!dp#2

3^ei [(k1m)ds1( l 1n)dp] t

3@G2 i ~V01mds1~n21!dp!#& t

2
Jk~2Zs!Jl~2Zp!Jm~Zs!Jn11~Zp!

G21@V01mds1~n11!dp#2

3^e2 i [(k1m)ds1( l 1n)dp] t

3@G1 i ~V01mds1~n11!dp!#& tJ . ~3.5!

It is clear from Eq.~3.5! that only the terms that satisfy th
condition

~k1m!ds1~ l 1n!dp50 ~3.6!

survive the time averaging. Equation~3.6! is always satisfied
regardless ofdp andds if

m52k and n52 l . ~3.7!

The part ofP(vp
1) which is obtained by imposing the con

dition, Eq. ~3.7!, on Eq.~3.5! corresponds to the continuou
part of the polarization spectrum, which we refer to as
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incoherent contribution. Equation~3.6! can also be satisfied
at particular values ofdp given by

dp52
k1m

l 1n
ds , nÞ2 l . ~3.8!

The condition given by Eq.~3.8! contributesd-function type
of peaks to the polarization spectrum, which we refer to
the coherent contribution. These peaks were called su
narrow resonances and investigated earlier by Vitush
et al. @20–22#. We discuss below the coherent and incoh
ent contributions in more detail.

A. Coherent contribution

The coherent peaks~or dips! can be calculated by subst
tuting Eq.~3.8! into Eq.~3.5!. Since the indicesk,l ,m, andn
run from 2` to `, there are in principle an infinite numbe
of discrete peaks in the polarization spectrum. The stren
of each peak of course is different for different peaks and
determined by the magnitude of the terms involving t
Bessel functions in Eq.~3.5!. Since these peaks were prev
ously analyzed in detail@20,21#, we give only a brief discus-
sion.

It has been known for long that discrete peaks occur in
fluorescence spectrum of a two-level atom. Mollow@1# has
shown that, in addition to the characteristic three-pea
continuous spectrum, there exists a discrete elastic pea
the line center in the fluorescence spectrum of a two-le
atom driven by a resonant monochromatic field. The stren
of the peak, however, is negligibly small when the intens
of the driving field is sufficiently strong to saturate the tra
sition. A series ofd-function type of discrete peaks hav
been shown to appear in the fluorescence spectrum wh
two-level atom interacts with a bichromatic or a trichroma
field @5,13–15,24#. It was found that these peaks can gi
significant contributions to absorption even when the driv
field is strong, and that the peaks are separated by the m
lation frequency, consistent with the condition of Eq.~3.8!.
With a few exceptions@20–22#, however, no particular at
tention has been paid in the past to the coherent peaks in
absorption spectrum.

Calculation of the position and strength of the coher
peaks is simpler in the limit of a weak probe fieldVp→0. In
the limit Vp→0, only the terms withl 50 andn51 in the
first term in the curly bracket on the right hand side of E
~3.5! and those withl 50 and n521 in the second term
contribute significantly toP(vp

1). It is then clear from Eq.
~3.8! that only those peaks atdp5nds (n50,61,62, . . . )
are important. The strength of the peak atvp

15v0

1nds (n50,1,2, . . . ) can becalculated from Eq.~3.5! and
is given by

RePC~vp
15v01nds!>2

NmG2

4 (
m

Jm~Zs!

G21~V01mds!
2

3@J2n2m~2Zs!2Jn2m~2Zs!#,

~3.9!
s
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Im PC~vp
15v01nds!>

NmG

4 (
m

Jm~Zs!~V01mds!

G21~V01mds!
2

3@J2n2m~2Zs!1Jn2m~2Zs!#,

~3.10!

where the superscriptC stands for coherent contribution, an
real and imaginary parts of the coherent contribution to
polarization spectrum are written separately. If we furth
takeVs50 in Eq.~3.10!, we find that all the peaks disappe
@i.e., ImPC(vp

15v01nds)50] except the peak at the lin
center~i.e., atvp

15v0). The strength of this central peak
given by

Im PC~vp
15v0!>

NmG

2

V0

G21V0
2

. ~3.11!

Equation~3.11! indicates that there is a single peak at t
line center in the absorption spectrum of a two-level at
driven by a resonant monochromatic field. On the oth
hand, when the atom is driven by an amplitude-modula
~bichromatic or trichromatic! field, a series of discrete peak
separated by the modulation frequency appear, as indic
by Eqs.~3.9! and ~3.10!.

B. Incoherent contribution

We now consider the continuous part of the polarizat
spectrum which can be obtained by substituting the con
tion, Eq. ~3.7!, into Eq. ~3.5!. After straightforward algebra
we find

RePI~vp
1!52

NmG2

4 (
k

(
l

3
Jk~2Zs!J2k~Zs!J2 l~Zp!

G21~V02kds2 ldp!2

3@Jl 21~2Zp!2Jl 11~2Zp!#, ~3.12!

Im PI~vp
1!5

NmG

4 (
k

(
l

3
Jk~2Zs!J2k~Zs!J2 l~Zp!~V02kds2 ldp!

G21~V02kds2 ldp!2

3@Jl 21~2Zp!1Jl 11~2Zp!#, ~3.13!

where the superscriptI stands for incoherent contribution
Equations~3.12! and ~3.13! show that resonances occur,
the dispersion and absorption spectra of the atom, atdp5
6V0 ,6(V06ds),6(V062ds), . . . , andtheir subharmon-
ics. The width of the resonances atdp5(V02kds)/ l , the l th
subharmonic of (V02kds), where k50,61,62, . . . , is
given byG/ l . In order to better understand these resonan
which may be called generalized Rabi resonances, we c
sider some simple cases below.



we

p-

b
si

o

s
-
-
e
rv
y
d
en

e

cu

m
er

e
li-

tic

ten-
y a
eld
lly
he
fi-
he
iv-
ces

tion
ted
he-
r a
eld
i-

er
fre-
ed
ro-

hro-

ant
o

and

PRA 60 609THEORETICAL ANALYSIS OF RESONANCES IN THE . . .
1. Vs50

This is the case for a monochromatic pump field atv0 and
a bichromatic probe field atvp

1 and vp
2 . Equations~3.12!

and ~3.13! in this case become

RePI~vp
1!52

NmG2

4 (
l

J2 l~Zp!

G21~V02 ldp!2

3@Jl 21~2Zp!2Jl 11~2Zp!#, ~3.14!

Im PI~vp
1!5

NmG

4 (
l

J2 l~Zp!~V02 ldp!

G21~V02 ldp!2

3@Jl 21~2Zp!1Jl 11~2Zp!#. ~3.15!

If we further assume that the probe field is weak, i.e., if
take the limitVp→0 in Eqs.~3.14! and ~3.15!, we obtain

RePI~vp
1!>2

NmG2Zp

8 F 2

G21V0
2

2
1

G21~V02dp!2

2
1

G21~V01dp!2G , ~3.16!

Im PI~vp
1!>2

NmGZp

8 F V02dp

G21~V02dp!2

2
V01dp

G21~V01dp!2G . ~3.17!

Equations~3.16! and~3.17! represent dispersion and absor
tion spectra for the case of a two-level atom driven by
strong resonant monochromatic pump field and monitored
a weak bichromatic probe field. One sees that the disper
curve exhibits Lorentzian peaks atdp56V0, while the ab-
sorption curve exhibits a dispersion-like profile with res
nances atdp56V0.

Comparison of Eqs.~3.14! and~3.15! with Eqs.~3.16! and
~3.17! indicate that, as the probe intensity is increased, re
nances occur not only atdp56V0 but also at their subhar
monicsdp56V0/2,6V0/3, . . . . These subharmonic reso
nances for the case of a strong monochromatic pump fi
and a strong monochromatic probe field have been obse
experimentally @6,23,28–30# and analyzed theoreticall
@6,31#. The subharmonic resonances can be understoo
arising from multiphoton transitions between nonadjac
dressed-state pairs@29#, as illustrated in Fig. 2.

2. V050

This corresponds to the case of a bichromatic pump fi
and a bichromatic probe field. SubstitutingV050 into Eqs.
~3.12! and~3.13!, we see immediately that resonances oc
at frequenciesdp50,6ds ,62ds , . . . , andtheir subharmon-
ics. As above, these subharmonic resonances arise from
tiphoton transitions involving probe photons. If we furth
take the limit of a weak probe field,Vp→0, we obtain
a
y

on
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o-
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ed
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t

ld

r

ul-

RePI~vp
1!52

NmG2Zp

4 (
k

FJk~2Zs!J2k~Zs!

G21~kds!
2

2
Jk~2Zs!J2k~Zs!

G21~kds2dp!2 G , ~3.18!

Im PI~vp
1!52

NmGZp

4 (
k

Jk~2Zs!J2k~Zs!~kds2dp!

G21~kds2dp!2
.

~3.19!

Now, with a weak probe field, resonances occur atdp50,
6ds ,62ds , . . . , but not attheir subharmonics, becaus
multiphoton transitions involving probe photons are neg
gible.

The response of a two-level atom driven by a bichroma
pump field has been studied intensively in the past@5–27#,
because theoretically this problem represents a natural ex
sion of the standard problem of a two-level atom driven b
monochromatic field and also because a bichromatic fi
corresponds to a practically important case of a fu
amplitude-modulated field. It is already well known that t
absorption spectrum in a bichromatic field differs signi
cantly from that in a monochromatic field; instead of t
triplet structure found for the case of a monochromatic dr
ing field, the spectrum consists of a series of resonan
separated not by the Rabi frequency but by the modula
frequency@7,8#. These resonances can be best interpre
with the help of the dressed-atom approach. An earlier t
oretical investigation@7# has shown that dressed states fo
two-level atom driven by a strong resonant bichromatic fi
comprise of manifolds of levels, with the neighboring man
folds separated in frequency by the atomic frequencyv0
5(e22e1)/\. Each manifold consists of an infinite numb
of sublevels separated in frequency by the modulation
quency ds . The transition between two arbitrary dress
states belonging to neighboring manifolds should then p
duce resonances at frequencyv01mds (m50,61,
62, . . . ).

3. Trichromatic pump field

Returning to Eqs.~3.12! and~3.13!, it is natural to expect
that the resonances atdp5(V02kds)/ l can be explained if
dressed-state energies of the atom interacting with a tric

FIG. 2. Dressed states of a two-level atom driven by a reson
monochromatic field. A two photon transition between the tw
dressed states 1 and 4 gives rise to a resonance atv01V0/2. Simi-
larly, a two photon transition between the two dressed states 2
3 gives rise to a resonance atv02V0/2.
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FIG. 3. Real@~a!,~c!# and imaginary@~b!,~d!#
parts of the dimensionless polarization spectru
of a two-level atom interacting with a trichro
matic pump field and a bichromatic probe fiel
The parameters areV0 /G55, Vs /G 5 2, ds /G
53, where the probe Rabi frequency is chosen
be Vp /G50.1 for ~a! and ~b!, andVp /G52 for
~c! and ~d!.
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matic pump field and a bichromatic probe field are det
mined. We note, however, that it is no easy matter to de
mine the dressed-state energies of an atom driven b
bichromatic field alone, as it required diagonalizing
infinite-dimensional matrix@7#. It seems very difficult to ex-
tend this method to the present case of a trichromatic pu
field and an arbitrarily intense bichromatic probe field. W
therefore introduce in the next section a semiclassical wa
approximately determining dressed-state energies. T
method is relatively simple and can be applied to obt
dressed-state energies for the present case of a two-
atom interacting with a pentachromatic field.

C. Example

In Figs. 3~a!–3~d! we present results of computation
the real and imaginary parts of the polarization spectrum
the case of a trichromatic pump field and a bichroma
probe field. The parameters were chosen to beV055,Vs
52, and ds53, where all frequencies are measured w
respect toG which is taken to be 1. Figures 3~a! and 3~b!
show, respectively, the real and imaginary parts of the po
ization spectrum when the probe field is weak (Vp50.1),
whereas Figures 3~c! and 3~d! are drawn for the case whe
the probe field is as strong as the pump field (Vp52). Fig-
ures 3~a! and 3~b! indicate that, when the probe field is wea
coherent contributions are strong. The discrete peaks~or
dips! at dp53, 6, 9, and 12 can clearly be identified. The
locations are consistent with the formuladp5nds with n
51, 2, 3, and 4, as discussed in Sec. III A. The insets
Figs. 3~a! and 3~b! show more detailed views of the continu
ous part of the spectrum. The resonances atdp52,5, and 8
can clearly be identified. These locations of the resonan
correspond todp5V02kds with k51,21, and22 and are
consistent with the locations of the resonances predicted
Eqs. ~3.12! and ~3.13!, wherel 50 should be taken for this
case of a weak probe field. When the probe field is allow
to be strong, one sees from Figs. 3~c! and 3~d! that more
discrete peaks and resonances appear. Discrete peaks
not only atdp5nds but also at the subharmonics of the
frequencies as indicated by Eq.~3.8!, and resonances in th
continuous part of the spectrum occur not only atdp5V0
2kds but also at the subharmonics of these frequencie
indicated by Eqs.~3.12! and ~3.13!.
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IV. DRESSED-ATOM APPROACH

In this section we use a semiclassical dressed-atom
proach to explain the resonance structure exhibited in
continuous part of the polarization spectrum. The start
point of our semiclassical dressed-atom approach is
coupled equations for the probability amplitudesc1(t) and
c2(t),

dc1~ t !

dt
5 i S V0

2
1Vs cosdst1Vp cosdpt D c2~ t !, ~4.1!

dc2~ t !

dt
5 i S V0

2
1Vs cosdst1Vp cosdpt D c1~ t !, ~4.2!

where the probability amplitudes are defined by

uC~ t !&5c1~ t !e2 iv1tu1&1c2~ t !e2 iv2tu2&, ~4.3!

v15e1 /\,v25e2 /\, and, as in Sec. II, we treat the fiel
classically and assume that the field has five frequency c
ponents shown in Fig. 1 so that the total electric field is giv
by Eq. ~2.1!, and the Rabi frequenciesV0 ,Vs , andVp are
defined in Eq.~2.8!. Equations~4.1! and~4.2! are equivalent
to the Schro¨dinger equation except that the rotating wa
approximation is made to arrive at these equations. We
sume that the atom is initially in the lower levelu1& so that
c1(0)51,c2(0)50.

In order to solve Eqs.~4.1! and ~4.2! we make an ansatz

c1~ t !5cosj~ t !, c2~ t !5 i sinj~ t ! ~4.4!

and substitute it into Eqs.~4.1! and~4.2!. One can easily find
that Eqs~4.1! and ~4.2! are solved ifj(t) is given by

j~ t !5
V0

2
t1

Vs

ds
sindst1

Vp

dp
sindpt. ~4.5!

The state vectoruC(t)& in Eq. ~43! can then be written as
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uC~ t !&5cosj~ t !e2 iv1tu1&1 i sinj~ t !e2 iv2tu2&

5
1

2
~ei (V0/2)tei (Vs /ds)sin dstei (Vp /dp)sin dpt1c.c.!

3e2 iv1tu1&1
1

2
~ei (V0/2)tei (Vs /ds)sin dstei (Vp /dp)sin dpt

2c.c.!e2 iv2tu2&. ~4.6!

Using the identity, Eq.~2.12!, we rewrite Eq.~4.6! as

uC~ t !&5
1

2 (
n

(
m

H Fe2 i (v12V0/22nds2mdp)tJnS Vs

ds
D JmS Vp

dp
D

1e2 i (v11V0/22nds2mdp)tJnS 2
Vs

ds
D JmS 2

Vp

dp
D G u1&

1Fe2 i (v22V0/22nds2mdp)tJnS Vs

ds
D JmS Vp

dp
D

2e2 i (v21V0/22nds2mdp)tJnS2 Vs

ds
DJmS2 Vp

dp
D G u2&J .

~4.7!

Equation~4.7! is the main equation which provides the bas
information for our semiclassical dressed-atom approa
We first consider simple cases.

A. Vs50

TakingVs50 in Eq.~4.7! to consider the case of a mono
chromatic pump field, we obtain

uC~ t !&5
1

2 (
m

H Fe2 i (v12V0/22mdp)tJmS Vp

dp
D

1e2 i (v11V0/22mdp)tJmS 2
Vp

dp
D G u1&

1Fe2 i (v22V0/22mdp)tJmS Vp

dp
D

2e2 i (v21V0/22mdp)tJmS 2
Vp

dp
D G u2&J . ~4.8!

If we further take the limitVp→0 in Eq. ~4.8! to consider
the case of a weak probe beam, Eq.~4.8! becomes

uC~ t !&>
1

2
@e2 i (v12V0/2)t1e2 i (v11V0/2)t#u1&

1
1

2
@e2 i (v22V0/2)t2e2 i (v21V0/2)t#u2&. ~4.9!

Inspection of the phase terms in Eq.~4.9! suggests that the
interaction with the monochromatic pump field splits t
bare atomic levelsu1& and u2& each into two, as shown in
Fig. 4~a!. Dressed-state energies are obtained by adding p
ton energies to the energy of each of these levels.
dressed states so obtained can be grouped into mani
having the same number of excitation units. For example,
h.

o-
e

lds
e

upper pair of states in Fig. 4~a! combined with (N21) pho-
tons comprise manifoldN as do the lower pair of states com
bined with N photons. The resulting structure of dress
states are shown in Fig. 4~b!, which of course coincides with
the well-known dressed-state structure@3,4# for a two-level
atom driven by a resonant monochromatic field.

Let us now return to Eq.~4.8! which applies to the case o
a monochromatic pump field and an intense bichroma
probe field. Inspection of the phase terms in Eq.~4.8! indi-
cates that the interaction with a strong probe beam splits
atomic levels of Fig. 4~a! further into sublevels separated b
dp . As mentioned earlier, the physical mechanism resp
sible for this splitting is multiphoton transitions involvin
probe photons. These multiphoton transitions produce s
harmonic resonances atdp56V0 / l ( l 52,3,4, . . . ) in the
dispersion and absorption spectra, as illustrated in Fig. 2

B. V050

We now consider the case of a bichromatic pump fi
(V050) in the limit of a weak probe field (Vp→0). Sub-
stituting V050 and takingVp→0 in Eq. ~4.7!, we obtain

uC~ t !&5
1

2 (
n

H e2 i (v12nds)tFJnS Vs

ds
D1JnS 2

Vs

ds
D G u1&

1e2 i (v22nds)tFJnS Vs

ds
D2JnS 2

Vs

ds
D G u2&J .

~4.10!

Since Jn(2x)5(21)nJn(x), the term in the first square
bracket on the right hand side of Eq.~4.10! ~i.e., the term
multiplied by the stateu1&) vanishes for oddn and the term
in the second square bracket~i.e., the term multiplied by the
stateu2&) vanishes for evenn. ~It should be noted, however
that, if we assume that the atom is initially in the upper st
u2&, the term multiplied by the stateu1& vanishes for evenn
and the term multiplied by the stateu2& vanishes for oddn.!
Equation~4.10! therefore indicates that the interaction of th

FIG. 4. ~a! Splitting of the bare atomic levels caused by inte
action with a monochromatic field.~b! Dressed states of a two-leve
atom driven by a monochromatic field.vN

(1)5v11V0/21Nv0

5v21V0/21(N21)v0 , vN
(2)5v12V0/21Nv05v22V0/2

1(N21)v0 .
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atom with the bichromatic pump field splits the atomic sta
u1& and u2& each into an infinite number of sublevels sep
rated by 2ds , as illustrated in Fig. 5~a!. As in Sec. IV A, the
dressed states can be grouped into manifolds having
same number of excitation units, where the number of e
tation units is given byN5Na1N11N2 , Na is 1 if the
atom is in the upper level and 0 if in the lower level, andN1

andN2 are the numbers of photons of frequencyv01ds and
v02ds , respectively. Noting that the bare atomic levels sp
differently according to whether the atom is initially in th
lower or upper level, the dressed-level structure shown
Fig. 5~b! is obtained. One sees that each manifold consist
an infinite series of sublevels separated by the modula
frequencyds . The same dressed-level structure has alre
been obtained previously using a different method@7#. The
series of resonances separated by the modulation frequ
observed in the spectrum of a two-level atom driven by
bichromatic field can be easily explained with the help of
dressed-atom picture shown in Fig. 5~b!.

If we takeV050 but do not take the limitVp→0 in Eq.
~4.7!, we obtain an expression forC(t) according to which
the bare atomic levelsu1& and u2& split into an infinite num-
ber of sublevels with energies given by\(v11nds1mdp)
and\(v21nds1mdp), respectively, wheren andm are in-
tegers. Clearly, a strong probe beam causes further spli
of dressed states from those shown in Fig. 5~b!. Because
multiphoton transitions involving probe photons become i
portant as the intensity of the probe beam is increased,
harmonic resonances at dp5(2kds)/ l ( l 562,63,
64, . . . ) appear in the polarization spectrum.

C. Trichromatic pump field

We now return to Eq.~4.7! and consider the case of
trichromatic pump field. In order to avoid complications ar
ing from multiphoton transitions involving probe photon
we take the limit of a weak probe beam,Vp→0. Equation
~4.7! then becomes

FIG. 5. ~a! Splitting of the bare atomic levels caused by inte
action with a bichromatic field. The atom is assumed to be in
lower level at the initial time.~b! Dressed states of a two-level ato
driven by a bichromatic field.vN

2m5v112mds1Nv0 , vN
2m11

5v21(2m11)ds1(N21)v0 , m50,61,62, . . . .
s
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uC~ t !&5
1

2 (
n

H Fe2 i (v12V0/22nds)tJnS Vs

ds
D

1e2 i (v11V0/22nds)tJnS 2
Vs

ds
D G u1&

1Fe2 i (v22V0/22nds)tJnS Vs

ds
D

2e2 i (v21V0/22nds)tJnS 2
Vs

ds
D G u2&J . ~4.11!

Equation ~4.11! suggests the level structure shown in F
6~a!. The corresponding dressed states can be grouped
manifolds of levels, where manifoldN is represented by a
collection of states for whichN5Na1N01N11N2 , Na is
1 or 0 depending on whether the atom is in the upper
lower level, andN0 ,N1 ,N2 are the numbers of photons o
frequency v0 ,v01ds , and v02ds , respectively. The
dressed-state structure for the present case, i.e., for a
level atom interacting with a trichromatic field, is shown
Fig. 6~b!. It is clear from Fig. 6~b! that resonances occur a
6(V01nds), n50,61,62, . . . . If we relax the condition
that the probe field is weak, then resonances should occu
only at 6(V01nds) but also at the subharmonics of the
frequencies. The resonances atdp56(V02kds)/ l sug-
gested by Eqs.~3.12! and ~3.13! can thus be explained with
the dressed-atom picture obtained with our simple metho

V. SUMMARY

Analytic solutions of the optical Bloch equations descr
ing a two-level atom interacting with a trichromatic pum
field of frequency componentsv0 and v06ds and with a
bichromatic probe field of frequency componentsv06dp are
presented and used to obtain an analytic expression for
polarization spectrum of the atom. It is found that the sp
trum contains a coherent contribution which consists o

e

FIG. 6. ~a! Splitting of the bare atomic levels caused by inte
action with a trichromatic field.~b! Dressed states of a two-leve
atom driven by a trichromatic field.vN

(1)m5v11V0/21mds

1Nv05v21V0/21mds1(N21)v0 , vN
(2)m5v12V0/21mds

1Nv05v22V0/21mds1(N21)v0 , m50,61,62, . . . .
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series of discreted-function peaks~or dips! and an incoher-
ent contribution which gives rise to a continuous part of
spectrum. A simple semiclassical method of obtain
dressed-state energies is introduced and used to o
dressed-state energies for the present system of a two-
atom interacting with a trichromatic pump field and a bich
matic probe field. Resonances that occur in the polariza
spectrum can be successfully explained using our semic
sical dressed-atom approach.
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