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Theoretical analysis of resonances in the polarization spectrum of a two-level atom driven by
a polychromatic field
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Analytic solutions of the optical Bloch equations for a two-level atom interacting with a strong polychro-
matic field whose frequencies are symmetrically positioned with respect to the atomic frequency are used to
obtain the polarization spectrum of the atom. The spectrum is found to consist of a series of discrete peaks or
dips superimposed on the continuous part of the spectrum. Physical interpretation of resonances exhibited in
the continuous part of the spectrum is given using a semiclassical dressed-atom approach.
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PACS numbes): 42.50.Gy, 42.50.Ct, 42.50.Hz

I. INTRODUCTION in principle to perform diagonalization of an infinite-
dimensional matriX7].

The interaction of a two-level atom with an intense laser From the practical viewpoint, it is important to understand
field is of fundamental importance in quantum optics andthe interaction of an atom with a polychromatic field, be-
laser spectroscopy. The spectral properties of a two-levetause one frequently employs amplitude-modulated lasers
atom driven by a monochromatic laser field are now welland, in some cases, needs to use more than one laser. Theo-
understood, since the pioneering work of Moll¢®;2]. The retically, however, it is difficult to _descrlbe_analytlcal_ly the
fluorescence spectrum from the atom contains coherent adg§SPonse of an atom when the field configuration is more
incoherent contributions which respectively consist of a dis-COMPIex than bichromatic. Dressed states and energies have

crete elastic peak at the line center and a three-peaked co een obtained for a two-level atom in a bichromatic field

- . ¢ 17-10,14,19 for various configurations, e.g., when the
tinuous spectrum with the peaks separated by the Rabi fr ichromatic field is not resonant with the atomic transition

quency. Attention has been paid mainly to the incoheren i.e., when the average frequency of the field is not equal to

part of the spectrum, because the elastic peak in the fluore I atomic frequendy(8], and when the field consists of one
cence spectrum becomes negligibly small when the drivm%trong and one weak, frequency componédl To our

field is sufficiently strong to saturate the transition. Theknowledge however, there exist only a few rep&&<.6] in
dressd-atom picturg8,4] has been particularly useful in this \yhich calculation of dressed state energies for more complex
area of research, as it clearly explains the physical origin ofie|q configurations than a bichromatic driving field is at-
the three-peaked structure exhibited in the fluorescence andmpted. The problem gets even more difficult if one needs

absorption spectra. o to calculate absorption spectra under the condition that the
Recent investigation$-27] have shown that a significant probe field is also allowed to be intense.

variation of the three-peaked structure occurs when the driv- There exists one special situation in which the field has
ing field is polychromatic. Even under a bichromatially =~ more than two frequency components and analytical expres-
amplitude modulated field, fluorescence and absorption sions for emission and absorption spectra can still be ob-
spectra are found to exhibit vastly different characteristicstained. It is when the field contains an arbitrary number of
The spectra again contain coherent and incoherent contribyairs of frequency components which are symmetrically po-
tions [5,13-15,24 The coherent intensity, however, no sitioned with respect to the atomic frequency with symmetri-
longer decreases steadily to zero as the intensity of the driwcally arranged amplitudes. In addition, a single frequency
ing field is increasef5]. Furthermore, the incoherent part of component may be placed at the line center. In fact, it has
the fluorescence and absorption spectra exhibits a series béen knowr{6,11] that optical Bloch equations describing a
resonances separated not by the Rabi frequency but by theo-level atom interacting with a resonant, symmetrically
modulation frequency7,8]. Physical interpretation of these positioned bichromatic field possess analytic solutions in
resonances have been obtained again with the help of therms of the Bessel functions. Only a straightforward exten-
dressed-atom picturgr—10,14,19 It is, however, no easy sion of the method used in these treatments is required to
task to determine dressed-state energies of a two-level atotreat the atom interacting with a field with more than one pair
interacting with a bichromatic field, because it is necessarpf symmetrically positioned frequency components. Vitush-
kin et al. [20,21] recently considered an atom interacting
with a pentachromatic field, i.e., with a trichromatic pump

*Electronic address: thyoon@kriss.re.kr field which consists of a single frequency component at the
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trology (VNIIM ), 198005 St. Petersburg, Russia. components and with an arbitrarily intense bichromatic
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probe field which consists of another pair of symmetrically E, E, E, E E,
positioned frequency components. They obtained an analytic 5
expression for the polarization spectrum in terms of Bessel
functions. The results of their calculations indicate that the K
spectrum contains a coherent part which consists of
Ss-function peaks which they called supernarrow resonances
(SNR’s) and an incoherent part which corresponds to a con-
tinuous spectrum. This appears to be the first investigation o 0 O O oF
that reports a theoretical analysis of discrete absorption
peaks. No detailed analysis of the continuous part of the 7 _ )
spectrum is given, however: in particular, physical under-JUency componentey, wg=wo + J, and w, =ws=J; (with

standing of the resonances in reference to the dressed—até’lrﬁl‘g“;“detswgwf?n b)EnO’ES’ r?]”d 'r:‘ls’ rfs_peCt'\J’relg an: dthe, _pmbe
picture seems desirable. eld has two frequency componenig, =wo + dp and w, = wo

In this paper we present a theoretical analysis of the po- 9y (with an equal amplitude ).

!ar|zat|on spectrum of a two-_level atom Interacting V.V'th antrarily intense. We consider the situation in which the pair of
intense trichromatic pump field and an arbitrarily intense * . L

: . . X . : . frequency components are simultaneously varied in a
bichromatic probe field. Starting with analytic solutions of mmetrical way. and gbsor tiofor dispersioh is moni-

the optical Bloch equations, an analytic expression for theY d at eith yf’th ¢ pt n per 0 ;
polarization spectrum can be obtained, real and imaginar ,rfl P? ?' Ider 0 . e rgquznce&,Qd or ‘*lép : 1‘” system
parts of which determine the dispersion and absorption spe vith the field configuration depicted in Fig. 1 contains, as
tra, respectively. While an earlier treatmd@0,21 of this special cases, a two-level atom interacting with a resonant

system focused on discrete peaks that occur in the coherefonochromatic pump field when we takg=0, a two-level
part of the polarization spectrum, our main consideration i€{0M interacting with a bichromatic pump field when we take
given to resonances in the incoherent part of the spectrunzo=0- The properties of the system monitored by a weak
We introduce, in particular, a semiclassical method of deterProbe beam is obtained by taking the liréi—0.

mining dressed-state energies. Using this method we deter- W€ assume that all the five frequency components of the
mine dressed-state energies of our atom interacting with 4€ld are associated with the same polarization and the same
trichromatic pump field and a bichromatic probe field, which'hitial phase. The total electric field can then be written as
then provides physical interpretation of the resonances ex- 1

hibited in the polarization spectrum. It is thus hoped that our  E(t)=| ZE,+E cosdt+ E, COSS,t e oty ¢ .
analytical solutions for the polarization spectrum and physi- 2

cal interpretation of the spectrum on the basis of the dressed- 21

atom picture provide imporFant physicallinsight into the b.e'The interaction of our two-level atom with the field is de-
havior of a two-level atom interacting with a polychromatic scribed under the rotating wave approximation by the optical

FIG. 1. The field configuration. The pump field has three fre-

field. ; .
. . . . . Bloch ions in the v r model
In the next section we briefly review analytic solutions of och equations e vector mode
the optical Bloch equations for a two-level atom interacting du
with a trichromatic pump field and a bichromatic probe field. T YU, (2.2

An analytic expression for the polarization spectrum is pre-
sented in Sec. Ill, which consists of coherent and incoherent
o ) X . dv
contributions. The location and strength of discrete peaks in —=—yV+2aWw, (2.3

the coherent part and resonances in the incoherent part are dt

determined. In Sec. IV a semiclassical method of determin-

ing dressed-state energies is describeq and_ ap_plied to our d—W:—F(W+ 1)—2aV, (2.4)
system. The dressed-atom picture described in this section is dt

shown to provide physical interpretation of the resonances )
exhibited in the incoherent part of the polarization spectrumWhereU andV are related to the off-diagonal elements of the

Finally in Sec V a brief summary is given. density matrix as

1 |
— H - t .
Il. SOLUTIONS OF THE OPTICAL BLOCH EQUATIONS par=5(U—iV)e™™0,  pyr=pp, (2.9

Let us consider a two-level atofwith a lower level|1)
of energye; and an upper leveR) of energye,) interacting
with an arbitrarily intense polychromatic field. The field is por—p11=W, (2.6)
assumed to consist of one central pump field compongnt
resonant with the atomic frequency,=(e,—€;)/%, with  y(=1/T,) and I'(=1/T,) are, respectively, the transverse
an amplitudeE,, a pair of symmetrically positioned pump (dipole) and longitudinal(population relaxation rates, and
fields at frequencies, = wy* Js with equal amplitude&,, the parametea is given by
and another pair of symmetrically positioned probe fields at
frequenciesv, = wy* o, with equal amplitude&, (see Fig.

1). The probe field as well as the pump field can be arbi-

W represents population inversion

1
a=§QO+QSc0555t+Qpcosépt. 2.7
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In Eq. (2.7), Q4,9Qs, and(}, are the Rabi frequencies de- where N is the density of the atom. Sindedecays exponen-
fined by tially with time, it does not contribute t® at steady state.
The component of polarization oscillating (a§ =wo* Oy is

uEo MEg HE, determined from
Qo= Q== Qp=—0—, (2.8 .
P( *_ _,_5):_IN'U’<Veti5pt> (3 2)
whereu is the component of the eletric dipole moment @p = @0=9% 2 v '
n={(1ler|2) (2.9 where (), indicates time averaging. Due to the symmetric

field configuration we have

along the direction of the electric field.

Equations (2.2—(2.4) have Bessel function solutions
when the relaxation rategandI” are equal6,11,20,2]1. For
our analytical investigation, we therefore take=I". Equa-
tions (2.3) and(2.4) can then be combined to yield a single
equation

P(wy)=—P*(w,) (3.3

and it is sufficient to considd?(w;) only.

It should be stressed that the polarization spectrum has its
physical significance, because it is directly related to the re-
fractive index and the absorption coefficient of the system
dy which can be measured experimentally. The polarization
—=-T—(I'+2ia)y, (2.10  component of Eq(3.2) is related to the dimensionless first-
dt order susceptibilitf x(w, )/ xo] by

wherey is defined as

/Ny
. X(wg)/XOIQ—P(wS), (3.9
y=W-iV. (2.11 p

We note from Eq.(2.2) that U decays exponentially with whereyo=Nu?/#T". The refractive index and absorption co-

time and does not contribute to the steady-state solution. Use_fﬂment, respectively, are given by the real and imaginary

ing the Bessel identity parts of[ x(w, )/ xol-
Using Egs.(2.1)), (2.13, and(3.2), it is a simple matter

o to obtain the following expression fa?(w,):
exp(iz sinxt) = 2 Jn(z)expinxt), (2.12 Nl
n=—oo M
Ploj) =-S5 S 3
one can obtain by straightforward algebra a steady-state so- mon
lution to Eq.(2.10 as y I =2~ Zp)Im(Z6)In-1(Zy)
I24+[ Qo+ M+ (n—1)8,]°

y=—F; Z ; 2 I(—ZII(—Zp)In(Z9)I(Z,)

X (gillkm)dg+ 1+ aplt

explil(k+m) 5.+ (1 +”)5p]t}, (213 X[T =i (Qo+mést (n—1)5,)])
I+i(Qo+més+ndy)

‘Jk(_zs)Jl(_Zp)‘Jm(Zs)\]n+1(Zp)
whereZ,=2Q0/5s and Z,=20,/5,, and the summations - T2+ [ Qg+ mé.+(n+1)8,]2
overk,l,m andn here and from now on run from o to % 0 s P
unless otherwise stated. Equati@13 was obtained earlier ><<efi[(k+ m) 8+ (1+n) 5,1t

by Vitushkinet al.[20,21]. The polarization spectrum is de-
termined by the off-diagonal elements of the density matrix
which in turn is determined by, the imaginary part of. X[T+i(Qo+mds+(n+1)8p) )¢ - (3.9
We proceed in the next section to obtain the expression for
the polarization spectrum and present discussion of the ¢

9t is clear from Eq.(3.5) that only the terms that satisfy the
herent and incoherent contributions to the spectrum. q-3-5 y fy

condition
Ill. POLARIZATION SPECTRUM (k+m) 5S+(I +n)5p=0 (3.6)

In this section we obtain the polarization spectrum, theg,rive the time averaging. Equati¢B.6) is always satisfied
real and imaginary parts of which give the dispersion andregardless 06, and 5, if

absorption spectra, respectively. The polarization is related
to the off-diagonal elements of the density matrix by m=—-k and n=-1. 3.7

Nu ot o it The part ofP(w_) which is obtained by imposing the con-
= —_—— — [0} [0} p
P=Nplpart p1d = 7 [(U=iV)e 0+ (U+iV)ere], dition, Eq.(3.7), on Eq.(3.5) corresponds to the continuous
(3.1)  part of the polarization spectrum, which we refer to as the
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incoherent contribution. Equatio3.6) can also be satisfied Nul Jn(Zs)(Qp+méy)
at particular values o, given by ImPC(w! =wy+ndy) =
P (05 =00t na)=—— % T2+ (Qo+Mdy)°
k+m X[anfm(_zs)""]nfm(_zs)]v
§p=—m5s, n#—I. (38) (310

where the superscrifi stands for coherent contribution, and
The condition given by Eq:3.8) contributess-function type  real and imaginary parts of the coherent contribution to the
of peaks to the polarization spectrum, which we refer to agolarization spectrum are written separately. If we further
the coherent contribution. These peaks were called supetake(Q) ;=0 in Eq.(3.10, we find that all the peaks disappear
narrow resonances and investigated earlier by Vitushkiri.e., ImPC(w;=w0+ néds) =0] except the peak at the line

et al. [20—-23. We discuss below the coherent and incohercenter(i.e., atw, = wo). The strength of this central peak is
ent contributions in more detail. given by

A. Coherent contribution

N/.LF QO
. ) Im Pc(w;=w0)5— >
The coherent peak®r dip9 can be calculated by substi- 2 12403
tuting Eq.(3.8) into Eq.(3.5). Since the indicek,l,m, andn
run from —ce to o, there are in principle an infinite number £q,,ati0n(3.11) indicates that there is a single peak at the
of discrete peaks in the polarization spectrum. The strengtf.o center in the absorption spectrum of a two-level atom
of each peak of course is different for different peaks and igy;iyen by a resonant monochromatic field. On the other

determined by the magnitude of the terms involving thepang when the atom is driven by an amplitude-modulated
Bessel functions in EG3.9). Since these peaks were previ- (ichromatic or trichromaticfield, a series of discrete peaks
ously analyzed in detaj0,21, we give only a brief discus-  ganarated by the modulation frequency appear, as indicated

sion.
by Egs.(3.9) and (3.10.
It has been known for long that discrete peaks occurinthey as-(3.9 (310

fluorescence spectrum of a two-level atom. Mollply has
shown that, in addition to the characteristic three-peaked B. Incoherent contribution

continuous spectrum, there exists a discrete elastic peak at \ye now consider the continuous part of the polarization

the line center in the fluorescence spectrum of a tWO'leVeépectrum which can be obtained by substituting the condi-

atom driven by a resonant monochromatic field. The strengthyp, Eq.(3.7), into Eq.(3.5). After straightforward algebra
of the peak, however, is negligibly small when the intensity,,e fing

of the driving field is sufficiently strong to saturate the tran-

(3.11

sition. A series ofé-function type of discrete peaks have - Nul?

been shown to appear in the fluorescence spectrum when a ReP(w, )=~ 7 4 El

two-level atom interacts with a bichromatic or a trichromatic

fl_eld_[_5,13—15,2_4 It was found th_at these peaks can give I(—Z9I_(ZHI((Zp)
significant contributions to absorption even when the driving 5 >

field is strong, and that the peaks are separated by the modu- I+ (Qo—kds—16p)

lation frequency, consistent with the condition of E£§.8). X[I_1(~Zp) = diea(~Zp)], (312

With a few exceptiong20-22, however, no particular at-

tention has been paid in the past to the coherent peaks in the

absorption spectrum. Nul'
Call?:ulatiol?l of the position and strength of the coherent M PI(“’;): 4 Ek: EIZ

peaks is simpler in the limit of a weak probe figl,—0. In

the limit 3 ,— 0, only the terms witi=0 andn=1 in the I(=Z)I_W(Z)I_((Zp)(Qo—ks—15,)

first term in the curly bracket on the right hand side of Eq. X > 2

(3.5 and those withh=0 andn=—1 in the second term [+ (Qo—kés—16p)

contribute significantly th(w;). It is then clear from Eq. X[3-1(=Zp)+3111(—Zp)], (3.13

(3.9 that only those peaks dl,=nds (n=0,+1,=2,...)

are important. The strength of the peak a;t;= o

+néds (n=0,1,2...) can becalculated from Eq(3.5 and

where the superscrigt stands for incoherent contribution.
Equations(3.12 and (3.13 show that resonances occur, in

's given by the dispersion and absorption spectra of the atomj,at
Nul'2 3(Z9) *+Qq, 2 (Qox 6, = (Qo*x26y), . .., andtheir subharmon-

RePS(w, = wo+Nndy)=— s > - m—s . ics. The width of the resonancesa&= ({2o—kd;)/I, thelth
4 W T2+ (Qp+msy) subharmonic of Qo—kd), where k=0,£1,%2,..., is

X[J (=29 —dn-m(~Z9] given byI'/Il. In order to better understand these resonances,
—nem s/ Tn=m s/ which may be called generalized Rabi resonances, we con-
(3.9 sider some simple cases below.
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1.0.,=0 QoI 4
This is the case for a monochromatic pump fieldgtand 3
a bichromatic probe field ab; and w, . Equations(3.12 ,
and(3.13 in this case become I -
Q ) 4
Nul? J (z ®
ReP'(w;’)=— M E I p) o
4 I F2+(QO_I5D)2 Q, v 2

X[A-1(=Zp)=d+1(=Zp)], (3.14
FIG. 2. Dressed states of a two-level atom driven by a resonant
monochromatic field. A two photon transition between the two

o 4y NuT J1(Zp)(Qo—15p) dressed states 1 and 4 gives rise to a resonaneg-af)y/2. Simi-
ImP'(w)= > .
p 4 T r2+(QO— | 5p)2 larly, a two photon transition between the two dressed states 2 and
3 gives rise to a resonance @y — /2.
X[-1(=Zp)+J+1(=2Zp)]. (319
Nul2z (=293 _(Z
If we further assume that the probe field is weak, i.e., if we ReP'(w))=— 'u4 ) k(rz S()kék)(z d
K + (k&

take the limitQ),— 0 in Egs.(3.14 and(3.19, we obtain
I(—Z5)I_(Zs)

2 - , 3.1
ReP!(w])=— Nul"Z, ~ 2 e ! . 2+ (Kos— 5,)2 .19
8 [I?+Qf TI'?+(Q¢—46,)
B 1 | (3.16 Im Pl(w;)Z _ NMIZp 2 Ji( Zsz)J—k(Zs)(k(S; 5p) -
I2+(Qo+ 5,)2 k I'“+(kés— 6p) 3.19
Lo Nul'z, Qo= 6, Now, with a weak probe field, resonances occuwgt0,
Im P (wp)=— 8 T2+ (Qg—8,)2 + 685,285, ..., but not attheir subharmonics, because
° multiphoton transitions involving probe photons are negli-
Qo+ 8, gible.
| (3.17 The response of a two-level atom driven by a bichromatic
[+ (Qo+ 6p) pump field has been studied intensively in the fast27),

because theoretically this problem represents a natural exten-

Equations(3.16 and(3.17) represent dispersion and absorp- sion of the standard problem of a two-level atom driven by a
tion spectra for the case of a two-level atom driven by amonochromatic field and also because a bichromatic field
strong resonant monochromatic pump field and monitored bgorresponds to a practically important case of a fully
a weak bichromatic probe field. One sees that the dispersicamplitude-modulated field. It is already well known that the
curve exhibits Lorentzian peaks a§= =), while the ab-  absorption spectrum in a bichromatic field differs signifi-
sorption curve exhibits a dispersion-like profile with reso-cantly from that in a monochromatic field; instead of the
nances ab,= = (1. triplet structure found for the case of a monochromatic driv-

Comparison of Eqg3.14) and(3.15 with Egs.(3.16 and  ing field, the spectrum consists of a series of resonances
(3.17 indicate that, as the probe intensity is increased, rescseparated not by the Rabi frequency but by the modulation
nances occur not only at,= + (), but also at their subhar- frequency[7,8]. These resonances can be best interpreted
monics 6,= = 0o/2,£Q/3, ... . These subharmonic reso- with the help of the dressed-atom approach. An earlier the-
nances for the case of a strong monochromatic pump fieldretical investigatio7] has shown that dressed states for a
and a strong monochromatic probe field have been observedio-level atom driven by a strong resonant bichromatic field
experimentally [6,23,28-30 and analyzed theoretically comprise of manifolds of levels, with the neighboring mani-
[6,31]. The subharmonic resonances can be understood #&slds separated in frequency by the atomic frequeagy
arising from multiphoton transitions between nonadjacent=(e,— €;)/A. Each manifold consists of an infinite number

dressed-state paif&9], as illustrated in Fig. 2. of sublevels separated in frequency by the modulation fre-
quency 8;. The transition between two arbitrary dressed
2.Q,=0 states belonging to neighboring manifolds should then pro-

This corresponds to the case of a bichromatic pump fieléjuce resonances at frequencyo+md; (m=0.x1,

and a bichromatic probe field. Substitutifly=0 into Egs. *2,...)
(3.12 and(3.13, we see immediately that resonances occur

at frequencie$,=0,= 65, + 26, . . ., andtheir subharmon-

ics. As above, these subharmonic resonances arise from mul- Returning to Eqs(3.12 and(3.13), it is natural to expect
tiphoton transitions involving probe photons. If we further that the resonances &= ({2o—kds)/I can be explained if
take the limit of a weak probe field),—0, we obtain dressed-state energies of the atom interacting with a trichro-

3. Trichromatic pump field
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0.01
0.001
:n -0.01¢
“w
o -0.02f
E 0.031 FIG. 3. Real[(a),(c)] and imaginanyf(b),(d)]
P _ o5 & iz parts of the dimensionless polarization spectrum
%82 4 6 & 10 12 14 18 of a two-level atom interacting with a trichro-
SP/F matic pump field and a bichromatic probe field.
0.06 d The parameters aQ,/I'=5, Q /T = 2, §/T
@ =3, where the probe Rabi frequency is chosen to
— oo} — o003} be Q,/T'=0.1 for (a) and (b), andQ,/T"=2 for
< o™ (c) and(d).
%-. 0.00 n._-. 0.00
o E
00hs 2 4 6 8 d0 12 14 18 00352 2 6 8 10 12 14 16
8 /T s /T
p p
matic pump field and a bichromatic probe field are deter- IV. DRESSED-ATOM APPROACH

mined. We note, however, that it is no easy matter to deter-

mine he dressed-state energies of an stom crven by g 1 1% SSCHOR e vee 2 seicgssca dreeseracn o
bichromatic field alone, as it required diagonalizing anP P

infinite-dimensional matrix7]. It seems very difficult to ex- continuous part Of the polanzatlon spectrum. The starting
tend this method to the present case of a trichromatic pum oint of our §em|cIaSS|caI dress_e_d-atom _approach is the
field and an arbitrarily intense bichromatic probe field. We oupled equations for the probability amplitudegt) and
therefore introduce in the next section a semiclassical way O?Z(t)’
approximately determining dressed-state energies. This

method is relatively simple and can be applied to obtain dcy(t)
dressed-state energies for the present case of a two-level  ~g¢
atom interacting with a pentachromatic field.

(9

+Qgcosst+Q, cosépt) co(t), (4.9

Q
i =2+ Qgcosést+Q, cosﬁpt) cy(t), (4.2

C. Example dey(t) _i
2

dt

In Figs. 3a)—3(d) we present results of computation of
the real and imaginary parts of the polarization spectrum for
the case of a trichromatic pump field and a bichromaticwhere the probability amplitudes are defined by
probe field. The parameters were chosen to(hg=5,
=2, and 6;=3, where all frequencies are measured with
respect tal” which is taken to be 1. Figureg&8 and 3b)
show, respectively, the real and imaginary parts of the polar-
ization spectrum when the probe field is wedR,0.1), wi1=€1/h,wy=¢€,/h, and, as in Sec. I, we treat the field
whereas Figures(8) and 3d) are drawn for the case when classically and assume that the field has five frequency com-
the probe field is as strong as the pump fieftl,2). Fig-  ponents shown in Fig. 1 so that the total electric field is given
ures 3a) and 3b) indicate that, when the probe field is weak, by Eg.(2.1), and the Rabi frequenci&3,,(}s, and(}, are
coherent contributions are strong. The discrete peaks defined in Eq(2.8). Equations(4.1) and(4.2) are equivalent
dips) at §,=3, 6, 9, and 12 can clearly be identified. Theseto the Schrdinger equation except that the rotating wave
locations are consistent with the formuy=nss with n approximation is made to arrive at these equations. We as-
=1, 2, 3, and 4, as discussed in Sec. Il A. The insets irsume that the atom is initially in the lower levidl) so that
Figs. 3a) and 3b) show more detailed views of the continu- ¢;(0)=1,c;(0)=0.

[W(t))=cy(t)e 1[1)+cy(te ' @22), (4.3

ous part of the spectrum. The resonances,at2,5, and 8 In order to solve Eqs(4.1) and(4.2) we make an ansatz
can clearly be identified. These locations of the resonances
correspond tad,=o—kds with k=1,—1, and—2 and are ci(t)=cosé(t), cy(t)=isin&(t) (4.4)

consistent with the locations of the resonances predicted by

Egs.(3.12 and(3.13, wherel =0 should be taken for this ) o o

case of a weak probe field. When the probe field is allowednd substitute it into Eq¢4.1) and(4.2). One can easily find

to be strong, one sees from FiggcBand 3d) that more  that Egs(4.1) and(4.2) are solved if(t) is given by

discrete peaks and resonances appear. Discrete peaks occur

not only at§,=nds but also at the subharmonics of these Qy Qg Q,

frequencies as indicated by E@.8), and resonances in the &)= 7t+ gsin St + 5—sin opt. (4.5
1 S

continuous part of the spectrum occur not onlydgt=1 P

—ké, but also at the subharmonics of these frequencies as

indicated by Egs(3.12 and (3.13. The state vectof¥ (t)) in Eq. (43) can then be written as
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|W (1)) =cosé(t)e '“1t1) +i sin&(t)e @2 2) .
0, +Q/2 - ®
:l(el(ﬂolz)t i(Qs/8g)sin ot i (R / Sp)sin opt 4 c) o, a 2 manifold N+1 Oy
2 —— Q2 — 0"
% e—iwltl 1) +1(ei(00/2)tei(05/55)sin Sstei (Qp/dp)sin Syt
2
— t 0)0
—c.c)e'“22), (4.6
Using the identity, Eq(2.12), we rewrite Eq.(4.6) as — 0+ Qy2 — o®
o— v manifold N
)= E 2 E{ ~i(@1-Qol2-Ns—moy)t 3 (%)J (%) O-Qy2 - o
n m
2 s p .
: Q
+ g {01+ 0¢/2-nd5— map)tJn( ) ( 5_) } | 1) €)) (b)
FIG. 4. (a) Splitting of the bare atomic levels caused by inter-
) Qg Q action with a monochromatic fieldb) Dressed states of a two-level
+ efl(wzfﬂolzfnésf mép)tJ _> _P (+)—
5 atom driven by a monochromatic fieldoy’=w;+Q/2+Nwq
% =w,+ Qo2+ (N—D)wg, 0f'=w 0/2+ Nwo=wy—Qo/2

e—i(w2+(20/2—n65—m5p)t3n(_ Q_s) (_ (;_”|2>] +(N=1)wp.

1)
upper pair of states in Fig.(d) combined with N—1) pho-
(4.7 tons comprise manifoltll as do the lower pair of states com-

Equation(4.7) is th . i hich ides the b bined with N photons. The resulting structure of dressed
quation(4.7) is the main equation which provides the as'Cstates are shown in Fig(l9), which of course coincides with

information for our semiclassical dressed-atom approacl”t,ne well-known dressed-state struct(ige4] for a two-level
We first consider simple cases.

atom driven by a resonant monochromatic field.
Let us now return to Eq4.8) which applies to the case of

A Q=0 a monochromatic pump field and an intense bichromatic
Taking Q<=0 in Eq.(4.7) to consider the case of a mono- Probe field. Inspection of the phase terms in E48) indi-
chromatic pump field, we obtain cates that the interaction with a strong probe beam splits the

atomic levels of Fig. @) further into sublevels separated by
dp- As mentioned earlier, the physical mechanism respon-
sible for this splitting is multiphoton transitions involving
probe photons. These multiphoton transitions produce sub-

|\P<t>>=%2 [

m

e—i(wl—QO/Z— mﬁp)t‘]m( &)
6’3

Q harmonic resonances a,= =0/l (1=2,3,4...) in the
—i(wq+Qpf p X R . . . .
+e7i(eat o2 m(sp)t\]m( - 5p”|1> dispersion and absorption spectra, as illustrated in Fig. 2.
iy Qo2 Q B. 2,=0
+le i(wy—Qgl2 mﬁp)tJm< 5p) . 0

We now consider the case of a bichromatic pump field

_ (20=0) in the limit of a weak probe field(¢,—0). Sub-
—e'(“’zmolzm%mm( - ”|2>) (4.8 stituting Qo=0 and takingQ,—0 in Eq.(4.7), we obtain

1 . Qg
If we further take the limit},—0 in Eq. (4.8) to consider |W(t))= > > {e'(wlnﬁs)t (? +J ( S) |1)
the case of a weak probe beam, E48 becomes n S5
. Q Q
1 . . _|(w _n[ss)t _S — — _S
|\I,(t)>zE[e—l(wl—QO/2)1+e—l(wl+Q0/2)t]|1> +e 2 [Jn< 55) Jn( 63):||2>]
(4.10

1 ) )
Tra-i(w—Qu2t_ a—i(wy+Qg/2)t
+2[e 2 e 2" 0[2). (4.9 Since J,(—x)=(—1)"J,(X), the term in the first square

bracket on the right hand side of E@.10 (i.e., the term
Inspection of the phase terms in E4.9) suggests that the multiplied by the staté¢1)) vanishes for odah and the term
interaction with the monochromatic pump field splits thein the second square brackée., the term multiplied by the
bare atomic level$l) and|2) each into two, as shown in state|2)) vanishes for even. (It should be noted, however,
Fig. 4a). Dressed-state energies are obtained by adding phdhat, if we assume that the atom is initially in the upper state
ton energies to the energy of each of these levels. ThE), the term multiplied by the statd) vanishes for even
dressed states so obtained can be grouped into manifoldsd the term multiplied by the staf2) vanishes for odah.)
having the same number of excitation units. For example, th&quation(4.10 therefore indicates that the interaction of the
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. . 2 : s o1
: m2+385 : /"/ wN+1 * 0)1"'90/2"'8; O)N“G)“
. —— o e g >
2 ] O H )
0, —x ’ manifold N+1 ————— Opi® —_ |9 : manifold N+19 3O
— 0,5, EE— g o, "% : s L
®,~38 : N, (oz_ : o0
: s : " Wy 2 v 0,2 Oy
: +1 T 0,~%/2-3, T O
: ~ .
®, 4 , H i b 1
] *
O +45, : P @2 e zli%wt :{m
L] 1
— o2 - (ON T O+Q/2-3, T ot
-y * i ¢
o, —r——— o, manifold N e @0 o, Q . anss manifold N 9 3 o
_ —"-\\‘ _ 2 o,—! +0, 2
— 025, — T\ Oy 1 -y ©,-Q,2 O
T o4, . Ty : Or-y/2-3, T o0
. \ H
a b
(a) (b) @ (b)

FIG. 6. (a) Splitting of the bare atomic levels caused by inter-

FIG. 5. (a) Splitting of the bare atomic levels caused by inter- . . ! L
action with a bitl::)hron?atic field. The atom is assumed to b{a in theaCt'on with a trichromatic field(b) Dressed states of a two-level

- - -~ (+)m_
lower level at the initial time(b) Dressed states of a two-level atom it(,)\lm Erlverﬂbyl/zf t(rslcrr(’)\lrrlailc f'eld“’{“,)m_ wltgf’gi mgs
driven by a bichromatic fieldw2™=w;+2mss+Nwy, w2™* wo=wp Qo2+ MIH(N=1)wy, wy 7= w; = Qf2+mds
o (2t DA (N D, Mo itz +Nowg=0p— Qg/2+ M8+ (N—1)wy, m=0,+1,+2, ... .

atom with the bichromatic pump field splits the atomic states W (t))= l 2 [
|1) and|2) each into an infinite number of sublevels sepa- 2%
rated by 2, as illustrated in Fig. @). As in Sec. IV A, the
dressed states can be grouped into manifolds having the +e—i(wl+£20/2—n53)tJn<_Q_SH|1>
same number of excitation units, where the number of exci- s
tation units is given byN=N,+N,+N_, N, is 1 if the
atom is in the upper level and 0 if in the lower level, axd +
andN_ are the numbers of photons of frequenay+ s and
wg— b5, respectively. Noting that the bare atomic levels split Q
differently according to whether the atom is initially in the _e—i(wz+ﬂo/2—n5s)t3n< — _5'”|2>]_ (4.12)
lower or upper level, the dressed-level structure shown in S5
Fig. 5(b) is obtained. One sees that each manifold consists of
an infinite series of sublevels separated by the modulatiofrquation(4.11) suggests the level structure shown in Fig.
frequencyds. The same dressed-level structure has alread§(@. The corresponding dressed states can be grouped into
been obtained previously using a different methigl The = manifolds of levels, where manifoltl is represented by a
series of resonances separated by the modulation frequenggllection of states for whicN=N,+Nyo+N,+N_, N, is
observed in the spectrum of a two-level atom driven by al or O depending on whether the atom is in the upper or
bichromatic field can be easily explained with the help of thelower level, andNg,N, ,N_ are the numbers of photons of
dressed-atom picture shown in Fighs frequency wg,wo+ds, and wg— s, respectively. The

If we take(,=0 but do not take the limi€2,—0 in Eq. dressed-state structure for the present case, i.e., for a two-
(4.7), we obtain an expression fak (t) according to which level atom interacting with a trichromatic field, is shown in
the bare atomic leveld) and|2) split into an infinite num-  Fig. &b). It is clear from Fig. €b) that resonances occur at
ber of sublevels with energies given bfw;+nds+ms,)  *(Qot+nds), n=0,£1,+2,... . If werelax the condition
andf(w,+nNnds+mdy), respectively, where andm are in- that the probe field is weak, then resonances should occur not
tegers. Clearly, a strong probe beam causes further splittingnly at =({,+nds) but also at the subharmonics of these
of dressed states from those shown in Figh)5Because frequencies. The resonances &= = (Qq—kds)/l sug-
multiphoton transitions involving probe photons become im-gested by Eqs(3.12 and(3.13 can thus be explained with
portant as the intensity of the probe beam is increased, sufthe dressed-atom picture obtained with our simple method.
harmonic  resonances at 5,=(—kds)/l (I1==2,%3,
+4,...)appear in the polarization spectrum. V. SUMMARY

e—i(wl—(lolz_nﬁs)t‘]n< (;_)

S
S

e i(@y—Qg/2- n(ss)tJn( %)
Js

Analytic solutions of the optical Bloch equations describ-
ing a two-level atom interacting with a trichromatic pump
We now return to Eq(4.7) and consider the case of a field of frequency components, and wy* 65 and with a
trichromatic pump field. In order to avoid complications aris- bichromatic probe field of frequency componeatst 5, are
ing from multiphoton transitions involving probe photons, presented and used to obtain an analytic expression for the
we take the limit of a weak probe beafl,,—0. Equation  polarization spectrum of the atom. It is found that the spec-
(4.7) then becomes trum contains a coherent contribution which consists of a

C. Trichromatic pump field
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