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Theory of dressed states in quantum optics
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Via Erasmo Gattamelata 3, 00176 Roma, Italy

~Received 27 October 1998; revised manuscript received 1 February 1999!

The dual Dyson series@M. Frasca, Phys. Rev. A58 3439~1998!# is used to develop a general perturbative
method for the study of atom-field interaction in quantum optics. In fact, both the Dyson series and its dual, by
renormalization-group methods to remove secular terms from the perturbation series, give the opportunity for
a full study of the solution of the Schro¨dinger equation in different ranges of the parameters of the given
Hamiltonian. In view of recent experiments with strong laser fields, this approach seems well-suited to give a
clarification and an improvement of the applications of the dressed states as currently done through the
eigenstates of the atom-field interaction, showing that these are just the leading order of the dual Dyson series
when the Hamiltonian is expressed in the interaction picture. In order to best exploit the method, a study is
accomplished of the well-known Jaynes-Cummings model in the rotating-wave approximation, whose exact
solution is known, comparing the perturbative solutions obtained by the Dyson series and its dual with the
same approximations obtained by Taylor expanding the exact solution. Finally, a full perturbative study of
high-order harmonic generation is given, obtaining, through analytical expressions, a clear account of the
power spectrum using a two-level model, even if the method can be successfully applied to a more general
model that can account for ionization too. The analysis shows that to account for the power spectrum it is
necessary to go to first order in the perturbative analysis. The spectrum obtained gives a way to measure
experimentally the shift of the energy levels of the atom interacting with the laser field by looking at the
shifting of hyper-Raman lines.@S1050-2947~99!03807-X#

PACS number~s!: 42.50.Ct, 42.50.Hz, 42.65.Ky, 32.80.2t
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I. INTRODUCTION

Recent experiments on atoms using strong laser fields@1#
have shown the appearance of a wealth of effects, e.g., h
order harmonics generation, in the interaction between l
and atoms. This situation forced researchers to find diffe
approaches to describe the outcomes of those experim
Numerical studies of the time-dependent Schro¨dinger equa-
tion @2# have shown that the two-level model still proves
be very useful to describe all the features of harmonics g
eration@3#, even if the rotating-wave approximation must
abandoned. Indeed, recent work@4,5# indicates, by compar-
ing results from a two-level model using Floquet states a
numerical work on the Schro¨dinger equation, that the simpl
two-level model is fairly effective in describing the physic
situation at hand. So far, no perturbative solution seems t
known of this two-level model beyond Floquet states for
case of a strong laser field. But, a study by Meystre of
atom in a Fabry-Perot cavity@6# used the same model of Re
@5# and gave a perturbative analytical solution to such
model in a strong coupling regime. In fact, the analytic
solution given by Meystre and its higher-order correctio
has been successfully obtained in Ref.@7#, showing that the
levels of the atom undergoes a shift. Being the same mo
now we have at hand a way to observe experimentally su
shift through hyper-Raman lines in harmonic generation
one is able to properly account for the spectrum.

An understanding of interaction between an atom an
strong electromagnetic field has been possible in recent y
through the introduction of the dressed-atom picture@8#. This
approach assumes that the field couples the levels of
atom in such a way that the interaction is between t
‘‘dressed’’ atom and the field itself. The computation of t
PRA 601050-2947/99/60~1!/573~9!/$15.00
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corresponding dressed states, as currently found in litera
involves the computation of the eigenstates and the eigen
ues of the term of interaction between the atom and the fi
in the Hamiltonian, either the computation of the eigensta
of the full Hamiltonian, taking into account in this way th
field too. From a physical standpoint the dressed-atom
ture is quite general as it assumes that the photons of
field surround the atom as to modify the way the atom its
responds to the field; then it should concern a fully seco
quantized theory. But, the computation of the eigenstate
the full Hamiltonian or just the atom-field interaction term
which we take to be the dressed states, often reveals itse
an approximation scheme whose understanding is the m
aim of this paper. So far, no reason has been known for
nice working of such dressed states in applied mathema
A recently devised approach@9#, the dual Dyson perturbation
series, turns out to be both an explanation and an impro
ment of the computation of dressed states permitting
computation of higher-order corrections to a leading-or
solution obtained through such dressed states. As a
product one has a clear physical understanding of what
the parameters involved in such approximate dressed s
and what is going to be neglected. So, by this improvem
of the computation of dressed states, we are able to find
analytical perturbative solution to the two-level model
analyze high-order harmonic generation showing that thi
a first-order effect, that is, the leading-order solution fou
by Meystre is not enough to get the right spectrum. Then,
result properly accounts for the relevance of population d
tribution as discussed in Ref.@5# and an analytical closed
expression is given.

The dual Dyson series that accounts for the dressed s
as defined above can be derived from the time-depen
573 ©1999 The American Physical Society
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574 PRA 60MARCO FRASCA
Schrödinger equation by using the duality principle in pe
turbation theory and the quantum adiabatic approxima
@9#. In this way one realizes that the dual Dyson series is
same one as Ref.@10#. The results one gets from what shou
work just for quantum adiabatic processes can appear so
what unexpected, as it will be shown for the Jayn
Cummings model in the rotating wave approximati
~RWA! for whom an exact solution is known. But, this ju
agrees with the results of Ref.@9#.

So, the existence of a dual Dyson series can improve
study of atom-field interaction. In fact, one can accomplis
perturbative analysis of models in quantum optics in diff
ent regions of the parameter space that for a Jay
Cummings model can be easily identified, when spontane
emission is neglected, with the ratio between the detun
and the Rabi frequency. Then, by generalizing the comp
tion of dressed states through the dual Dyson series on
side and by the standard Dyson series on the other, we
reach the main aim of this paper: A general perturbat
method to study atom-field interaction in quantum optics
different values of the parameters of the Hamiltonian.

The completeness of our approach is strongly tied w
the recent results obtained in quantum optics through
renormalization-group methods for perturbation theory@7#.
These methods permit the resummation of the so-ca
secularities that appear in perturbation theory. Indeed, we
able to derive an energy level shift of the atom in high-ord
harmonic generation that has an effect on hyper-Ram
lines. As shown in Ref.@5#, when the two levels of the atom
are equally populated, only hyper-Raman lines should be
served. Then, in view of this situation, such an energy-le
shift turns out to be significant.

It should be pointed out that, although the extension
this approach to the method of the master equation@8#
should be straigthforward, it is not considered in this pap
So, e.g., the effect of vacuum fluctuations of the field mo
is neglected.

The paper is so structured. In Sec. II we give a gene
description of the methods and show why the eigenstate
the perturbation are important for strong fields. In Sec. II
study of the Jaynes-Cummings model in RWA is acco
plished in order to have a pedagogical description of
methods and a comparation with an exact solution. In S
IV the question of high-order harmonic generation is d
cussed through the methods so far introduced.

II. A GENERAL METHOD
FOR PERTURBATIVE ANALYSIS

A. General theory

In Ref. @9# we have introduced the duality principle i
perturbation theory. By duality we mean that, for a giv
differential equation, it is possible to compute both a pert
bation series inl and 1/l, l being the characteristic param
eter of the equation. This is accomplished by a proper cho
of the leading-order equation. So, e.g., for the Duffing eq
tion

ẍ1x1lx350, ~1!

one can compute a series inl and 1/l by taking, at leading
order, in the former caseẍ1x50 and in the latter caseẍ
n
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1lx350. It is easy to see that the duality principle is tru
independently by our ability to do the computations of t
equations one gets from the perturbation series.

In turn, the existence of a duality principle in perturbatio
theory means that a perturbative analysis is possible in
ferent regions of the parameter space of the given equa
This situation could turn out to be very useful in quantu
mechanics if one is able to obtain a dual Dyson series. T
is indeed the case.

So, let us consider the time-dependent Schro¨dinger equa-
tion,

H~ t !uc&5 i
]uc&
]t

, ~2!

where H(t) is the Hamiltonian and\51 here and in the
following. The Dyson series is a perturbative solution of th
equation given by

uc~ t !&5S I 2 i E
t0

t

dt1 H~ t1!

2E
t0

t

dt1E
t0

t1
dt2 H~ t1!H~ t2!1••• D uc~ t0!& ~3!

or, by introducing the time-ordering operatorT,

uc~ t !&5T expS 2 i E
t0

t

dt8 H~ t8! D uc~ t0!&. ~4!

The dual series can be obtained, through the duality p
ciple, by assuming that the HamiltonianH(t) has a discrete
spectrum, that is,H(t)un,t&5En(t)un,t& with un,t& the
eigenstate corresponding to the eigenvalueEn(t). Then, the
dual Dyson series is the one given in Ref.@10#, that is,

uc~ t !&5UA~ t !T expS 2 i E
t0

t

d t̂ H8~ t̂ ! D uc~ t0!& ~5!

being

UA~ t !5(
n

eign(t)2 i * t0

t dt8En(t8)un,t&^n,t0u, ~6!

the adiabatic unitary evolution operator, for the Berry pha
ġn(t)5^n,tu i ]/]tun,t& and

H8~ t !52 (
n,m,nÞm

e2 i [gm(t)2gn(t)]ei * t0

t dt8[Em(t8)2En(t8)]

3 K m,tU i\ ]

]t Uun,t L um,t0&^n,t0u. ~7!

This result proves that the well-known adiabatic approxim
tion and its higher-order corrections can be very effective
building asymptotic approximations to the solution of t
Schrödinger equation, as is, on the other side, the Dys
series.

Let us now consider a perturbed quantum system w
Hamiltonian

H5H01V~ t !, ~8!
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PRA 60 575THEORY OF DRESSED STATES IN QUANTUM OPTICS
whereH0 is the Hamiltonian of the unperturbed system a
V(t) is the perturbation. In the interaction picture one ha

HI~ t !5eiH 0tV~ t !e2 iH 0t. ~9!

It is now possible to study the given system in differe
regions of the parameter space through the Dyson series
its dual. In the former case we have standard textbook ti
dependent perturbation theory. In the latter case we hav
compute

HI~ t !un,t& I5En
(I )~ t !un,t& I . ~10!

But HI(t) is just the interactionV(t) transformed by a uni-
tary transformation. Then, the eigenvaluesEn

(I )(t) are those
of the perturbationV(t) and the eigenstatesun,t& I are just a
unitary transformation away from the corresponding eig
states. These are the dressed states as generally compu
the current literature: It is just the leading-order approxim
tion of a dual Dyson series. But now we have a more gen
theory and higher-order corrections can be computed.
sides, we realize why the dressed states are so effective
strong-field regime being obtained from the dual Dyson
ries that has a development parameter exactly inverse o
one of the Dyson series.

It should be pointed out that both Dyson series and
dual can have the same kind of problems. One of the m
important is surely the question of secularities: In any ca
resummation of secular terms can be achieved through
renormalization group methods as pointed out, for quan
optics, in Ref.@7#.

B. An example

To give a clear insight of the working of the above ana
sis for a differential equation, let us consider the stand
textbook example,
s
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c9~x!1a2~x!c~x!50, ~11!

which can be written in the form~the i factor is introduced
just for convenience!,

i
d

dx S c~x!

f~x!
D 5S 0 i

2 ia2~x! 0D S c~x!

f~x!
D 5L~x!S c~x!

f~x!
D .

~12!

We can apply Dyson series and its dual. Dyson serie
not normally applied to the above equation. Indeed, it giv
the expansion

S c~x!

f~x!
D 5F I 2 i E

x0

x

dx8S 0 i

2 ia2~x8! 0D
2E

x0

x

dx8E
x0

x8
dx9S a2~x9! 0

0 a2~x8!
D 1•••G

3S c~x0!

f~x0!
D . ~13!

In order to compute the dual Dyson series, we need
compute the eigenvectors and eigenvalues of the ma
L(x). So, for the eigenvaluea(x), one has the eigenvector

u1,x&5
1

A22ia~x!
S 1

2 ia~x!
D ~14!

and for the eigenvalue2a(x),

u2,x&5
1

A2ia~x!
S 1

ia~x!
D . ~15!

Then, one has for the Berry phaseŝ2,xu id/dxu2,x&
5^1,xu id/dxu1,x&50 and the unitary evolution operator~6!,
UA~x,x0!5
1

Aa~x!a~x0! S a~x0!cosS E
x0

x

dx8a~x8! D sinS E
x0

x

dx8a~x8! D
2a~x!a~x0!sinS E

x0

x

dx8a~x8! D a~x!cosS E
x0

x

dx8a~x8! D D . ~16!
to
re

gen-

p-
en
a-
e
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It is straightforward to see that

S c~x!

f~x!
D'UA~x,x0!S c~x0!

f~x0!
D ~17!

gives the well-known Wentzel-Kramers-Brillouin-Jeffrey
~WKBJ! result,

c~x!'
C1

Aa~x!
cosS E

x0

x

dx8a~x8! D
1

C2

Aa~x!
sinS E

x0

x

dx8a~x8! D . ~18!
In this derivation we have omitted the problem connected
turning points. We just note that, if there are points whe
a(x)50, Berry phases are no more zero as these are de
eracy points.

This example shows the full power of the adiabatic a
proximation in finding asymptotic approximations to a giv
differential equation, without any requirement of slow vari
tion of the parameters of the equation. In the following w
will show how to find higher-order corrections too.

C. Duality and Berry’s asymptotics

Duality principle has been introduced in Ref.@9# to re-
solve problems both with infinitely small and large perturb
tions. As such, there is a region of the parameter space th
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576 PRA 60MARCO FRASCA
not possible to analyze by perturbation methods. But, i
not difficult to realize that, as a by-product, an alternat
solution to the Schro¨dinger equation for its unitary evolutio
through Eq.~5! is obtained. This has no trivial consequenc
as, differently from the Dyson series, a superadiab
scheme could be applied instead as devised by Berry@11#
that could give nonperturbative informations on the dual
ries.

A superadiabatic scheme proves to be very useful w
the full Hamiltonian is considered with noa priori large or
small parts, as shown in Ref.@12# to describe stimulated
Raman adiabatic passage by a three-level model. Indeed
idea is to iterate the scheme to compute the adiabatic s
giving UA(t) andH8(t), by computingUA8 (t) for H8(t), and
the HamiltonianH9(t) through the eigenstates ofH8(t).
In principle, the procedure can be repeated to the s
one wants, giving the unitary evolution U(t)
;UA(t)UA8 (t)UA9 (t) . . . U (n)(t) and it is tempting to stop to
a given step to obtain an approximation to the unitary e
lution but, actually, the procedure is shown to diverge. An
how, an optimal stepnc exists for which an eigenstate bas
set can be built by the approximatedU(t) to approximate the
solution of the Schro¨dinger equation. Divergence is due
the fact that off-diagonal terms computed by the Hamil
nians are systematically neglected.

Indeed, to address the question of dressed states we
sider a Hamiltonian like

H5
v0

2
s31V~ t !s1 , ~19!

whereV(t) is a generic perturbation,s1 and s3 are Pauli
matrices andv0 is the level separation of the model. Th
regimes of interest are fully perturbative asV(t) is assumed
to be very large. So, the initial Hamiltonian to apply th
superadiabatic scheme is given, in interaction picture, by

HI5eiv0ts3V~ t !s1 . ~20!

In this case, the superadiabatic scheme just stops to the
ond step. Indeed, at the first step one hasUA(t)

5ei (v0/2)s3te2 is1*0
t dt8 V(t8) and, at the second step,UA8 (t)

5UA
†(t). So, the product of unitary evolution operators

stopped and nothing new is obtained. Anyhow, the Berr
scheme can prove to be very useful in a nonperturba
regime, that is, whenV(t) andv0 are of the same order o
magnitude and exponentially small factors can be retain
Then, we can conclude that a superadiabatic scheme t
out to be useful in an intermediate regime, being in this w
a bridge between the small and large perturbation the
linked in turn by the duality principle. This matter deserv
further investigation.

III. PERTURBATIVE ANALYSIS
OF THE JAYNES-CUMMINGS MODEL

The Jaynes-Cummings model is widely used in quant
optics. Its Hamiltonian, in the RWA, is given by@8#
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HJC5va1a1
v0

2
~ u2&^2u2u1&^1u!

1g~ u2&^1ua11u1&^2ua!, ~21!

representing a two-level atom coupled with a single-mo
radiation of frequencyv through the constantg. The reason
to consider it here is that the exact solution is known and c
be compared with the results of our perturbative analysis

In the interaction picture one has the Hamiltonian,

HJC
(I )5g~eiDtu2&^1ua11e2 iDtu1&^2ua!, ~22!

whereD5v02v is the detuning that here we assume di
ferent from 0 for the sake of generality. As it can be se
from the form ofHJC

(I ) , the critical parameter in the model is
the ratiog/D. This means that an eventual perturbation ser
and its dual will have this parameter and its inverse as
development parameter. Now, we proceed to compute th
series from the exact solution.

The exact solution of the Schro¨dinger equation in interac-
tion picture

HJC
(I )uc& I5 i

]uc& I

]t
~23!

can be found by looking for a solution in the form

uc& I5(
n

c1,n11~ t !u1,n11&1c2,n~ t !u2,n&, ~24!

wheren is the photon number. So, the probability amplitude
are given by@8#

c1,n11~ t !5H c1,n11~0!FcosS Vnt

2 D1
iD

Vn
sinS Vnt

2 D G
2

2igAn11

Vn
c2,n~0!sinS Vnt

2 D J e2 iDt/2,

c2,n~ t !5H c2,n~0!FcosS Vnt

2 D2
iD

Vn
sinS Vnt

2 D G
2

2igAn11

Vn
c1,n11~0!sinS Vnt

2 D J eiDt/2, ~25!

where Vn5AD21R n
2 andRn52gAn11 is the Rabi fre-

quency. As expected,D andg are the only parameters, thei
ratio enters the only meaningful development parameter. T
Dyson series is obtained by expanding the above solution
Taylor series ofl5Rn /D giving till second order,

c1,n11~ t !5H c1,n11~0!F11 i
l2

4
@Dt1 i ~12e2 iDt!#G

2
l

2
c2,n~0!~12e2 iDt!1O~l3!J ,

c2,n~ t !5H c2,n~0!F12 i
l2

4
@Dt1 i ~eiDt21!#G2

l

2
c1,n11~0!

3~eiDt21!1O~l3!J . ~26!
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It is easy to see that at second order in the developm
parameter a secularity appears, which is a term that gr
without bound in the limitt→`. In perturbation theory, un
less we are not able to get rid of the secularity, the serie
not very useful. This can be accomplished through
renormalization-group methods described in Ref.@7#. But
here, the problem can be easily traced back to the Ta
expansion of the function sin(A11e2t) in e, having
A11e2511e2/21O(e4). So, we can eliminate it by simply
substitutingD with D1R n

2/2D everywhere in the approxi
mate solution into the exponentials of Eq.~26!.

It is not difficult to get back the result~26! through the
Dyson series~3!. So, as expected, this series gives an ana
sis of the Jaynes-Cummings model when the detuningD is
larger enough than the Rabi frequencyRn .

Now, let us repeat the above discussion in the oppo
limit with the Rabi frequency larger than the detunin
Again, by Taylor expanding the exact solution, one has

c1,n11~ t !5Xc1,n11~0!FcosSRn

2
t D1

i

l
sinSRn

2
t D

2
1

2l2

Rn

2
t sinSRn

2
t D G2 ic2,n~0!H sinSRn

2
t D

2
1

2l2 FsinSRn

2
t D2
Rn

2
t cosSRn

2
t D G J

1OS 1

l3D Ce2 iDt/2, ~27!

c2,n~ t !5Xc2,n~0!FcosSRn

2
t D2

i

l
sinSRn

2
t D

2
1

2l2

Rn

2
t sinSRn

2
t D G2 ic1,n11~0!H sinSRn

2
t D

2
1

2l2 FsinSRn

2
t D2
Rn

2
t cosSRn

2
t D G J

1OS 1

l3D CeiDt/2,

with the same problem of a secularity at second order.
deed, this series can be obtained by the dual Dyson serie~5!
showing what could seem an unexpected result from
adiabatic approximation, but in agreement with the results
Ref. @9#.

To compute the dual Dyson series we need the eigens
and eigenvalues ofHJC

(I ) . It is easily found that for the eigen
valuegAn11 we have the eigenstate

ua,n,t&5
1

A2
~e2 iDtu1,n11&1u2,n&), ~28!

and for the eigenvalue2gAn11 we have the eigenstate
nt
s

is
e
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-

te
.

-

e
f

tes

ub,n,t&5
1

A2
~ u1,n11&2eiDtu2,n&), ~29!

which are easily recognized as the dressed states of Re@8#
for the Jaynes-Cummings model with a nonzero detuni
Berry phases are then easily computed to give

ġa5 K a,n,tU i ]

]t Ua,n,t L 5
D

2
, ~30!

ġb5 K b,n,tU i ]

]t Ub,n,t L 52
D

2
. ~31!

Then, after some algebra using the dressed states comp
above, the unitary evolution operator~6! is given by

U0~ t !5ei (D/2)t2 igAn11tua,n,t&^a,n,0u

1e2 i (D/2)t1 igAn11tub,n,t&^b,n,0u

5cosSRn

2
t D ~e2 i (D/2)tu1,n11&^1,n11u

1ei (D/2)tu2,n&^2,nu!2 i sinSRn

2
t D ~e2 i (D/2)tu1,n11&

3^2,nu1ei (D/2)tu2,n&^1,n11u! ~32!

that, for uc(0)&5c1,n11(0)u1,n11&1c2,n(0)u2,n&, gives

uc~ t !& I'FcosSRn

2
t D c1,n11~0!2 i sinSRn

2
t D c2,n~0!G

3e2 i (D/2)tu1,n11&

1FcosSRn

2
t D c2,n~0!2 i sinSRn

2
t D c1,n11~0!G

3ei (D/2)tu2,n& ~33!

that is the exact form of Eqs.~27! when higher-order terms
beyond the leading one are neglected, i.e., whenl→`, as
expected from the results of Ref.@9#.

In order to go to higher orders, we have to computeH8(t)
from Eq. ~7!. Again, using the above expressions for t
dressed states, one gets

H8~ t !52
D

2
@cos~Rnt !~ u1,n11&^1,n11u2u2,n&^2,nu!

2 i sin~Rnt !~ u1,n11&^2,nu2u2,n&^1,n11u!#,

~34!

so that, the first-order correction to the leading-order evo
tion operatorU0(t) of Eq. ~32! is given by

U1~ t !52 iU 0~ t !E
0

t

dt1 H8~ t1!

5 i
1

l
sinSRn

2
t D ~e2 i (D/2)tu1,n11&^1,n11u

2ei (D/2)tu2,n&^2,nu! ~35!

that gives the first-order correction,
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ud1c~ t !& I5 i
1

l
sinSRn

2
t D ~e2 i (D/2)tc1,n11~0!u1,n11&

2ei (D/2)tc2,n~0!u2,n&), ~36!

again in agreement with the Taylor expansion as given
Eqs.~27!, to order 1/l. So, in the same way we have at th
second order,

U2~ t !52U0~ t !E
0

t

dt1 H8~ t1!E
0

t1
dt2 H8~ t2!

5 i
1

2l2 H FsinSRn

2
t D2
Rn

2
t cosSRn

2
t D G

3~ei (D/2)tu2,n&^1,n11u1e2 i (D/2)tu1,n11&^2,nu!

2 i
Rn

2
t sinSRn

2
t D ~e2 i (D/2)tu1,n11&^1,n11u

1ei (D/2)tu2,n&^2,nu!J . ~37!

Then, one has

ud2c~ t !& I5 i
1

2l2 H FsinSRn

2
t D2
Rn

2
t cosSRn

2
t D G

3~ei (D/2)tc1,n11~0!u2,n&

1e2 i (D/2)tc2,n~0!u1,n11&)

2 i
Rn

2
t sinSRn

2
t D ~e2 i (D/2)tc1,n11~0!

3u1,n11&1ei (D/2)tc2,n~0!u2,n&)J . ~38!

The agreement with the Taylor expansion as given in E
~27!, to order 1/l2, is complete.

As expected from the results of Ref.@9#, the adiabatic
approximation and its higher-order corrections turn out to
a nice method for asympotic analysis of the Schro¨dinger
equation, being the dual of the well-known Dyson series a
explaining in this way the nice working of the method
dressed states currently used in quantum optics. No slo
varying of the parameters of the Hamiltonian is involved
one could expect for the adiabatic approximation.

IV. PERTURBATIVE ANALYSIS OF MODELS
FOR HIGH-ORDER HARMONIC GENERATION

A. Models

Several models are currently used to account for hi
order harmonic generation. The first model considered@2#
has been a one-dimensional model described by the Sc¨-
dinger equation,

F2
1

2

]2

]x2
1V~x!2xe0~ t !sinvLtGC~x,t !5 i

]C~x,t !

]t
,

~39!
n

s.

e

d

ly
s

-

ro

wheree0(t) is a function taking in account the time to ris
the laser field to its maximum value,vL is the frequency of
the laser field, andV(x) is a simple representative bindin
potential for the atom. A choice currently found in literatu
is V(x)521/A11x2. Beside numerical methods that a
very computer demanding, other methods as Floquet the
have also been applied@13# for the full three-dimensiona
case. A fruitful understanding of harmonic generati
through semiclassical ideas has also been yielded in
@14#. By these semiclassical results, a nonperturbative qu
tum model has been obtained@15#. Besides, an approach b
second quantization has also been given where a hint was
forward that harmonic generation is a first-order effect@16#.
Analytical expressions are barely given as all these mod
have been solved numerically or nonperturbatively so as
require at some step numerical computation. Another mo
is a simpler two-level system described by the Hamilton
@3–5#,

H5
v0

2
~ u2&^2u2u1&^1u!2xe0~ t !H sinvLt

cosvLtJ ~40!

and

x52d12~ u1&^2u1u2&^1u!, ~41!

whered12 is the matrix element of the atomic dipole. Th
model is well-known in quantum mechanics. A first hint to
strong coupling perturbative solution was given by Meys
@6# who used it to describe an atom inside a Fabry-Pe
cavity. The series till first order and the way to compu
higher orders for strong coupling were finally obtained
Ref. @7# where it was shown that a shift of the levels of th
atom occurs.

Indeed, this two-level model seems very effective in d
scribing high-order harmonic generation too. The two phy
cal situations of a Fabry-Perot cavity strongly coupled w
an atom and an atom in a strong laser field seems to
described by the same Hamiltonian. But this should
come as a surprise. What really matters here is the existe
of the shift of the energy levels of the atom in these situ
tions that, for the case of high-order harmonic generati
can change the spectrum of hyper-Raman lines and so,
be measured experimentally.

Besides, as we are going to show, the leading-order s
tion found by Meystre is not enough to get the power sp
trum computed through the Fourier transform of the equat

x~ t !5^C~ t !uxuC~ t !&. ~42!

In fact, by the dual Dyson series one can see that high-o
harmonic generation is actually a first-order effect. In th
way we are able to reproduce the results obtained in Ref.@5#
by the Floquet method, but having an analytical express
to be compared with experiments. As a by-product we h
that the hyper-Raman lines can be shifted. Through this
proach the computation can be pushed to any order, co
always with definite analytical expressions.

The model~39! can also be treated by this approach. I
deed, an application to multiphoton ionization has be
found by Salamin@17#. The leading-order solution should b
written as
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c~x,t !'eix*0
t dt8e0(t8)sin vLt8fn~x!, ~43!

where

F2
1

2

]2

]x2
1V~x!Gfn~x!5Enfn~x!. ~44!

It is easy to see that probability transitions given
wmn(t)5*2`

1`dx fm(x)c(x,t) are not trivial and can be
computed also for the continuous part of the spectrum. B
as we are going to show using the two-level model and
can be seen by the look of the leading-order solution~43!,
we need to compute the first-order correction to it to acco
for high-order harmonic generation. We do not pursue
study of this model further here, as the two-level model c
give a satisfactory account of all this matter in a simpler w
We just note that in this way, more complex models than t
of Eq. ~39!, through perturbation methods, could be tak
into account.

B. Perturbative analysis for high-order harmonic generation

To fix the ideas, we consider the two-level model of R
@5#, that is, Eq.~40! with a cosine perturbation. Dyson serie
using probability amplitudes and its dual solution to fi
order of this model through operatorial methods were giv
in Ref. @7#. So, we avoid the analysis by the Dyson series
this model discussed in depth in@7# and references therein
Instead, we use the dual Dyson series to show that i
equivalent to the operatorial method used in@7# and pre-
sented initially in Ref.@18#.

The rising of the laser field accounted for by the functi
e0(t) is taken as instantaneous to make the computat
simpler; that is, we takee0(t)5V5const.

In the interaction picture, the Hamiltonian~40! is given by

HI5Vd12cosvLt~e2 iv0tu1&^2u1eiv0tu2&^1u!. ~45!

Then, computing the dual Dyson series, for the eigenva
Vd12cosvLt we get the eigenvector
ri

re
t,
s

t
e
n
.
t

.

t
n
f

is

ns

e

ub,t&5
1

A2
~eiv0tu2&1u1&), ~46!

and for the eigenvalue2Vd12cosvLt we get the eigenvecto

ua,t&5
1

A2
~ u2&2e2 iv0tu1&). ~47!

These are the dressed states for this model. The corresp
ing Berry phases are given by

ġb~ t !5
v0

2
,

ġa~ t !52
v0

2
. ~48!

It is interesting to note here that Berry phases originate fr
the energies of the levels of the unperturbed atom.

All this gives the unitary evolution

U0~ t !5e2 i (v0/2)tei (Vd12 /vL)sin vLtua,t&^a,0u

1ei (v0/2)te2 i (Vd12 /vL)sin vLtub,t&^b,0u ~49!

that yields in terms of the bare statesu1& and u2&,

U0~ t !5cosS Vd12

vL
sinvLt D ~e2 i (v0/2)tu1&^1u1ei (v0/2)tu2&^2u!

2 i sinS Vd12

vL
sinvLt D ~e2 i (v0/2)tu1&^2u

1ei (v0/2)tu2&^1u!. ~50!

We can reformulate the above operator as a matrix by tak
for the bare states,

u1&5S 0

1D , u2&5S 1

0D , ~51!

so to have
U0~ t !5S ei (v0/2)t cosS Vd12

vL
sinvLt D 2 iei (v0/2)t sinS Vd12

vL
sinvLt D

2 ie2 i (v0/2)t sinS Vd12

vL
sinvLt D e2 i (v0/2)t cosS Vd12

vL
sinvLt D D . ~52!
s to
It is not difficult to see that the above operator can be rew
ten through the Pauli matricess1 ,s2 ,s3 as

U0~ t !5ei (v0/2)s3te2 is1(Vd12 /vL)sin vLt. ~53!

Then, by eliminating the prefactor due to interaction pictu
we are left with the leading-order result of Ref.@7# for the
wave function

uC~ t !&'e2 is1(Vd12 /vL)sin vLtuC~0!&. ~54!
t-

,

In the same way, we can compute higher-order correction
the above by computingH8(t) for the dual Dyson series. In
the bare states, using again the dressed ones, one has

H8~ t !5
v0

2 FcosS 2
Vd12

vL
sinvLt D ~ u2&^2u2u1&^1u!

2 i sinS 2
Vd12

vL
sinvLt D ~ u2&^1u2u1&^2u!G .

~55!

That is,
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H8~ t !5
v0

2
eis1(Vd12 /vL)sin vLts3e2 is1(Vd12 /vL)sin vLt,

~56!

in agreement with the computation of the first-order corr
tion computed through operatorial methods in Ref.@7#. The
two series are identical as should be expected.

So, the solution for the system~40! till first order can be
written as@7#

uC~ t !&5e2 is1(Vd12 /vL)sin vLtF I 2 i
v0

2
J0S 2Vd12

vL
D ts3

2 iv0(
n51

`

J2nS 2Vd12

vL
D sin~2nvLt !

2nvL
s3

1 iv0(
n50

`

J2n11S 2Vd12

vL
D cos@~2n11!vLt#21

~2n11!vL
s2

1•••G uC~0!&, ~57!

where use has been made of the operatorial identity,

e6 iskz sin f5J0~z!12(
n51

`

J2n~z!cos~2nf!

62isk(
n50

`

J2n11~z!sin@~2n11!f#, ~58!

with sk , one of the Pauli matrices andJn(z), Bessel func-
tions of integer order. The secular term in Eq.~57! can be
resummed away by renormalization-group methods,
shown in Ref.@7#, giving the renormalized levels of the ato
in the laser field. Then, the solution one has to use to c
pute the power spectrum is

uC~ t !&5e2 is1(Vd12 /vL)sin vLtF I 2 iv0(
n51

`

J2nS 2Vd12

vL
D

3
sin~2nvLt !

2nvL
s31 iv0(

n50

`

J2n11S 2Vd12

vL
D

3
cos@~2n11!vLt#21

~2n11!vL
s21•••G

3e2 i (v0/2)J0(2Vd12 /vL)ts3uC~0!&. ~59!

It is easy to see that if we just limit our analysis to E
~54!, we are not able to obtain the spectrum of the harm
ics. In fact, one would have from Eq.~42! x(t)
5^C(t)uxuC(t)&52d12̂ C(0)us1uC(0)&5const. Instead,
using Eq.~59! one has at first order,
-

s

-

.
-

x~ t !52d12F c2c1* e2 iv0Rt1c2* c1eiv0Rt1~ uc1u22uc2u2!v0

3 (
n50

`

J2n11S 2Vd12

vL
D cos@~2n11!vLt#21

S n1
1

2DvL

1 i ~c2* c1eiv0Rt2c2c1* e2 iv0Rt!v0

3 (
n51

`

J2nS 2Vd12

vL
D sin~2nvLt !

nvL G , ~60!

where v0R5v0J0(2Vd12/vL) is the renormalized separa
tion of the two levels of the atom and introducing the pop
lation distributionc1 andc2 for the bare levels of the atom
through the initial stateuC(0)&. This is exactly the form one
must have for the high-order harmonic generation using
model, as shown in Ref.@5# by the Floquet method. In fact
we have odd harmonics of intensity (uc1u22uc2u2)2, while
the latter term is due to the hyper-Raman lines atv0R

62nvL of intensityuc2u2uc1u2. But now, an explicit analytic
expression for the power spectrum is given, so that a c
understanding of all the parameters involved into atom a
strong laser field interaction is obtained. Particularly,
have an exact expression for the shift of the levels of
atom that now we know how to measure: If we take initia
uc1u5uc2u we will be just left with hyper-Raman lines into
the spectrum. These lines can be shifted by varying the r
2Vd12/vL , given by the parameters to be controlled into t
experiment. By observing how these lines move we can
tain a measure of the shifts of the atom levels. By the
pression ofx(t), it is clear that the only lines that can b
moved are indeed the hyper-Raman lines.

The advantages above the Floquet method used in Ref@5#
are evident as we have an explicit analytical formula for
spectrum with all the functional dependencies on the par
eters entering into the model explicitly expressed.

V. CONCLUSIONS

The way dressed states are currently treated in quan
optics becomes to compute the eigenstates and eigenv
pertaining to either the full Hamiltonian of a given system
the interaction term. In this paper we have shown how
dual Dyson series can give both an understanding of
approach and a tool to improve it. Indeed, the existence
dual Dyson series permits, as we have shown, a perturba
study of atom-field interaction in different regions of th
parameter space of a given model. The case of the Jay
Cummings model, fully exploited in this paper, is an e
ample in this sense. Besides, the dual Dyson series is not
else than the quantum adiabatic approximation and
higher-order corrections that in this way prove to be a v
powerful tool to obtain asymptotic approximations to t
Schrödinger equation.



h
fo
b
e

in a
trol
the

PRA 60 581THEORY OF DRESSED STATES IN QUANTUM OPTICS
The theory is applied to the analysis of models for hig
order harmonic generation giving an explicit expression
the power spectrum. In this way new experiments can
thought where, properly changing the parameters involv
s.

e
iry
-
r
e
d,

measures of the energy levels of the atom in interaction
strong laser field could be accomplished. Besides, a con
on the amplitudes of the harmonics and the position of
cutoff on the spectrum could be obtained.
e,
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