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The dual Dyson seriddVl. Frasca, Phys. Rev. A8 3439(1998)] is used to develop a general perturbative
method for the study of atom-field interaction in quantum optics. In fact, both the Dyson series and its dual, by
renormalization-group methods to remove secular terms from the perturbation series, give the opportunity for
a full study of the solution of the Schdinger equation in different ranges of the parameters of the given
Hamiltonian. In view of recent experiments with strong laser fields, this approach seems well-suited to give a
clarification and an improvement of the applications of the dressed states as currently done through the
eigenstates of the atom-field interaction, showing that these are just the leading order of the dual Dyson series
when the Hamiltonian is expressed in the interaction picture. In order to best exploit the method, a study is
accomplished of the well-known Jaynes-Cummings model in the rotating-wave approximation, whose exact
solution is known, comparing the perturbative solutions obtained by the Dyson series and its dual with the
same approximations obtained by Taylor expanding the exact solution. Finally, a full perturbative study of
high-order harmonic generation is given, obtaining, through analytical expressions, a clear account of the
power spectrum using a two-level model, even if the method can be successfully applied to a more general
model that can account for ionization too. The analysis shows that to account for the power spectrum it is
necessary to go to first order in the perturbative analysis. The spectrum obtained gives a way to measure
experimentally the shift of the energy levels of the atom interacting with the laser field by looking at the
shifting of hyper-Raman line$S1050-294{@9)03807-X

PACS numbses): 42.50.Ct, 42.50.Hz, 42.65.Ky, 32.8&

[. INTRODUCTION corresponding dressed states, as currently found in literature,
involves the computation of the eigenstates and the eigenval-
Recent experiments on atoms using strong laser fidlds ues of the term of interaction between the atom and the field
have shown the appearance of a wealth of effects, e.g., higln the Hamiltonian, either the computation of the eigenstates
order harmonics generation, in the interaction between lightf the full Hamiltonian, taking into account in this way the
and atoms. This situation forced researchers to find differerfield too. From a physical standpoint the dressed-atom pic-
approaches to describe the outcomes of those experimentsre is quite general as it assumes that the photons of the
Numerical studies of the time-dependent Sclimger equa- field surround the atom as to modify the way the atom itself
tion [2] have shown that the two-level model still proves toresponds to the field; then it should concern a fully second
be very useful to describe all the features of harmonics genguantized theory. But, the computation of the eigenstates of
eration[3], even if the rotating-wave approximation must bethe full Hamiltonian or just the atom-field interaction term,
abandoned. Indeed, recent wd¥k5] indicates, by compar- which we take to be the dressed states, often reveals itself as
ing results from a two-level model using Floquet states andn approximation scheme whose understanding is the main
numerical work on the Schdinger equation, that the simple aim of this paper. So far, no reason has been known for the
two-level model is fairly effective in describing the physical nice working of such dressed states in applied mathematics.
situation at hand. So far, no perturbative solution seems to b& recently devised approa¢B], the dual Dyson perturbation
known of this two-level model beyond Floquet states for theseries, turns out to be both an explanation and an improve-
case of a strong laser field. But, a study by Meystre of airment of the computation of dressed states permitting the
atom in a Fabry-Perot cavif$] used the same model of Ref. computation of higher-order corrections to a leading-order
[5] and gave a perturbative analytical solution to such asolution obtained through such dressed states. As a by-
model in a strong coupling regime. In fact, the analyticalproduct one has a clear physical understanding of what are
solution given by Meystre and its higher-order correctionsthe parameters involved in such approximate dressed states
has been successfully obtained in Ré&f, showing that the and what is going to be neglected. So, by this improvement
levels of the atom undergoes a shift. Being the same modetf the computation of dressed states, we are able to find an
now we have at hand a way to observe experimentally such analytical perturbative solution to the two-level model to
shift through hyper-Raman lines in harmonic generation, ifanalyze high-order harmonic generation showing that this is
one is able to properly account for the spectrum. a first-order effect, that is, the leading-order solution found
An understanding of interaction between an atom and &y Meystre is not enough to get the right spectrum. Then, the
strong electromagnetic field has been possible in recent yearssult properly accounts for the relevance of population dis-
through the introduction of the dressed-atom picf@leThis  tribution as discussed in Ref5] and an analytical closed
approach assumes that the field couples the levels of thexpression is given.
atom in such a way that the interaction is between this The dual Dyson series that accounts for the dressed states
“dressed” atom and the field itself. The computation of theas defined above can be derived from the time-dependent
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Schralinger equation by using the duality principle in per- +\x*=0. It is easy to see that the duality principle is true
turbation theory and the quantum adiabatic approximatiorindependently by our ability to do the computations of the
[9]. In this way one realizes that the dual Dyson series is thequations one gets from the perturbation series.
same one as Rdf10]. The results one gets from what should  In turn, the existence of a duality principle in perturbation
work just for quantum adiabatic processes can appear som#ieory means that a perturbative analysis is possible in dif-
what unexpected, as it will be shown for the Jaynesderent regions of the parameter space of the given equation.
Cummings model in the rotating wave approximationThis situation could turn out to be very useful in quantum
(RWA) for whom an exact solution is known. But, this just mechanics if one is able to obtain a dual Dyson series. This
agrees with the results of R¢B]. is indeed the case.
So, the existence of a dual Dyson series can improve the So, let us consider the time-dependent Sdhnger equa-
study of atom-field interaction. In fact, one can accomplish &ion,
perturbative analysis of models in quantum optics in differ-
ent regions of the parameter space that for a Jaynes- H(O|g) =i M )
Cummings model can be easily identified, when spontaneous ot ’
emission is neglected, with the ratio between the detuning
and the Rabi frequency. Then, by generalizing the computawhere H(t) is the Hamiltonian andi=1 here and in the
tion of dressed states through the dual Dyson series on orfellowing. The Dyson series is a perturbative solution of this
side and by the standard Dyson series on the other, we cafluation given by
reach the main aim of this paper: A general perturbative ¢
method to study atom-field interaction in quantum optics at |¢(t)>=(|—if dty H(t,)
different values of the parameters of the Hamiltonian. to
The completeness of our approach is strongly tied with t 4
the recent results obtained in quantum optics through the _f dtlf dt, H(t)H(tp)+ - - -
renormalization-group methods for perturbation thepfy to to
These methods permit the resummation of the so-called ) ) _ _
secularities that appear in perturbation theory. Indeed, we a@ by introducing the time-ordering operatsr
able to derive an energy level shift of the atom in high-order ¢
harmonic generation that has an effect on hyper-Raman |¢(t)>=7’exp(—if dt’ H(t’))|¢/(to)>, (4)
lines. As shown in Ref[5], when the two levels of the atom to
are equally populated, only hyper-Raman lines should be ob- ) ) _ _
served. Then, in view of this situation, such an energy-levell Ne dual series can be obtained, through the duality prin-
shift turns out to be significant. ciple, by assuming that the Hamiltoni&i(t) _has a discrete
It should be pointed out that, although the extension ofPectrum, that is,H(t)[n,t)=Eq(t)[n,t) with |n,t) the
this approach to the method of the master equafiéh €igenstate corresponding to the eigenvatijet). Then, the
should be straigthforward, it is not considered in this paperdual Dyson series is the one given in Rf0], that is,
So, e.g., the effect of vacuum fluctuations of the field modes ¢
is neglected. |¢(t)>=UA(t)Texp( —if dt H’(f)) lp(to)) (5
The paper is so structured. In Sec. Il we give a general to
description of the methods and show why the eigenstates of
the perturbation are important for strong fields. In Sec. Il ab€ing
study of the Jaynes-Cummings model in RWA is accom- .
plished in order to have a pedagogical description of the Uat)=2, ei“/n(t)*iftodt’En(t’)|n,t><n,to|, (6)
methods and a comparation with an exact solution. In Sec. n

IV the question of high-order harmonic generation is dis- . ) ) )
cussed through the methods so far introduced. the adiabatic unitary evolution operator, for the Berry phase

ya(t)=(n,tlid/at|n,t) and

[(to)) (3)

Il. A GENERAL METHOD

FOR PERTURBATIVE ANALYSIS Hi()=— > e mO-m®lglfidt [Ent)—Et)]
n,m,n#m
A. General theory
. . — . 9
In Ref'. [9] we have mtroduced the duality pr|n0|ple. in ><<m,t’iﬁ— |n,t>|m,t0)(n,t0|. 7)
perturbation theory. By duality we mean that, for a given at

differential equation, it is possible to compute both a pertur-

bation series in. and 1A, \ being the characteristic param- This result proves that the well-known adiabatic approxima-
eter of the equation. This is accomplished by a proper choicéion and its higher-order corrections can be very effective in
of the leading-order equation. So, e.g., for the Duffing equabuilding asymptotic approximations to the solution of the

tion Schralinger equation, as is, on the other side, the Dyson
. 3 series.
X+X+AX*=0, (2) Let us now consider a perturbed quantum system with

one can compute a seriesinand 1A by taking, at leading Hamiltonian

order, in the former case+x=0 and in the latter case H=Hy+V(t), (8)
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whereHg is the Hamiltonian of the unperturbed system and ' (X)+ a?(X)h(x)=0, (11
V(t) is the perturbation. In the interaction picture one has _ _ _ _ o
H, (1) = Moty (t)e- Hot, ) which can be written in the forntthe i factor is introduced

just for convenience

It is now possible to study the given system in different d [ ¢(x) 0 i\ ([ (%) P(X)
regions of the parameter space through the Dyson series and i&( = = )

L .

its dual. In the former case we have standard textbook time- $(X) —iet(x) 0/ 6(x) $(X) (12)

dependent perturbation theory. In the latter case we have to

compute We can apply Dyson series and its dual. Dyson series is
H,()[n,t), = Eﬁ')(t)ln,t)| _ (10) not normall_y applied to the above equation. Indeed, it gives

the expansion

But H,(t) is just_the interactior\/(_t) transformed by a uni- #(X) X 0 i

tary transformation. Then, the elgenvaIlE#)(t) are those ( )z I—if dx’( C o, )

of the perturbatioV(t) and the eigenstatés,t), are just a $(x) o —la®(x’) 0

unitary transformation away from the corresponding eigen- « "y a?(X") 0

states. These are the dressed states as generally computed in _f dx'f dx”( . ) 4. }

the current literature: It is just the leading-order approxima- X0 X0 0 a“(x’)

tion of a dual Dyson series. But now we have a more general W(Xo)

theory and higher-order corrections can be computed. Be- x( 0 ) (13)

sides, we realize why the dressed states are so effective in a #(Xo)

strong-field regime being obtained from the dual Dyson se- .
ries that has a development parameter exactly inverse of the N order to compute the dual Dyson series, we need to
one of the Dyson series. compute the eigenvectors and eigenvalues of the matrix

It should be pointed out that both Dyson series and itd-(X)- SO, for the eigenvalue(x), one has the eigenvector
dual can have the same kind of problems. One of the most 1 1
important is surely the question of secularities: In any case, [1x)= —( . ) 14
resummation of secular terms can be achieved through the —2ia(x)\ ~ia(X)

renormalization group methods as pointed out, for quantum .
optics, in Ref[7]. and for the eigenvalue- a(x),

1
B. An example |2,X) m( i a(x)) . (15)
To give a clear insight of the working of the above analy-
sis for a differential equation, let us consider the standard’hen, one has for the Berry phase®x|id/dx|2x)
textbook example, =(1x|id/dx|1x)=0 and the unitary evolution operat(),

. a(xo)cos( J:;dx’a(x’)) sin( fx);dx’a(x’))

UA(X,X0) = —————= ) ) (16)
a(¥)a(xo) | _ a(x)a(xo)sin( j dx’a(x’)) a(x)cos< J dx’a(x’))
Xo Xo
|
It is straightforward to see that In this derivation we have omitted the problem connected to
turning points. We just note that, if there are points where
P(X) ¥(Xg) a(x)=0, Berry phases are no more zero as these are degen-
~Ua(X,Xg) (170 eracy points.
$(X) & (Xo)

This example shows the full power of the adiabatic ap-
proximation in finding asymptotic approximations to a given
gives the well-known Wentzel-Kramers-Brillouin-Jeffreys differential equation, without any requirement of slow varia-
(WKBJ) resuilt, tion of the parameters of the equation. In the following we
will show how to find higher-order corrections too.

Cl fxd ! !
Y00~ ‘/a(x)co Xo X' a(x’) C. Duality and Berry’'s asymptotics
c . Duality principle has been introduced in R¢®] to re-
+—2$in< J dxra(xr)>_ (18)  solve problems both with infinitely small and large perturba-
Va(x) Xg tions. As such, there is a region of the parameter space that is
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not possible to analyze by perturbation methods. But, it is

o
not difficult to realize that, as a by-product, an alternative Hyc=wa’a+ —=(|2)(2[ - [1)(1))
solution to the Schidinger equation for its unitary evolution
through Eq.(5) is obtained. This has no trivial consequences +g(]2)(1]a* +|1)(2|a), (21)

as, differently from the Dyson series, a superadiabatic
scheme could be applied instead as devised by Bdrty representing a two-level atom coupled with a single-mode
that could give nonperturbative informations on the dual sefadiation of frequency through the constarg. The reason

ries. to consider it here is that the exact solution is known and can
A superadiabatic scheme proves to be very useful whehe compared with the results of our perturbative analysis.
the full Hamiltonian is considered with re priori large or In the interaction picture one has the Hamiltonian,

small parts, as shown in Refl2] to describe stimulated
Raman adiabatic passage by a three-level model. Indeed, the
idea is to iterate the scheme to compute the adiabatic serie

e , . , , wsnereAzwo—w is the detuning that here we assume dif-
giving UA.(t) a}ndH”(t), by computlngU'A(t) for H'(t) | and ferent from O for the sake of generality. As it can be seen
the HamiltonianH"(t) through the eigenstates d¢'(t).

S from the form ofH{, the critical parameter in the model is
In principle, the procedure can be repeated to the ste : . . .
> . . e ratiog/A. This means that an eventual perturbation series
one wants, giving the wunitary evolution U(t)

~Up()UAD)UL() . . .UD(t) and it is tempting to Stop 0 and its dual will have this parameter and its inverse as a

: ; e . development parameter. Now, we proceed to compute those
a given step to obtain an approximation to the unitary evo-

- : . series from the exact solution.
lution but, actually, the procedure is shown to diverge. Any- 14 exact solution of the Schimger equation in interac-
how, an optimal step exists for which an eigenstate basis tion picture
set can be built by the approximatedt) to approximate the
solution of the Schrdinger equation. Divergence is due to W Al
the fact that off-diagonal terms computed by the Hamilto- Hyely) =i gt
nians are systematically neglected.
Indeed, to address the question of dressed states we cotan be found by looking for a solution in the form
sider a Hamiltonian like

H{¢=g(e2)(1]a* +e "4 1)(2]a), (22)

(23

wo |¢>|:; Cins+1(D[1Ln+1)+con(t)[2,0), (24

H=3%

O'3+V(t)0'1, (19)

wheren is the photon number. So, the probability amplitudes
_ _ _ ~are given by[8]
whereV(t) is a generic perturbationr; and o3 are Pauli

matrices andw, is the level separation of the model. The = 0 fﬁ n E [ Qpt
regimes of interest are fully perturbative ét) is assumed Cin+1(1)=) C1n+1(0)| CO 2 Qnsm 2
to be very large. So, the initial Hamiltonian to apply the .
superadiabatic scheme is given, in interaction picture, by 2igyn+1 Qe
————Cy,(0)sinl —| (e ,
Q, : 2
H,=e'“ot3V(t) oy . (20)

Qt\ A Qg
Con(t)=1)C2n(0) cos{ 5 )—Q—nsm( 5 )

In this case, the superadiabatic scheme just stops to the sec- 2ig\/m Ot e
I > e'?ts, (25

ond step. Indeed, at the first step one hbg(t)
: f t ’
=g (©0steiorfodt" V() and, at the second stefx(t)

it . . .
=U,(t). So, the product of unitary evolution operators 'swhereQn=\/m§ and Rn=29\/m is the Rabi fre-

stopped and nothing new is obtained. Anyhow, the Berry Squency. As expectedy andg are the only parameters, their
scheme can prove to be very useful in a nonperturbativ

fatio enters the only meaningful development parameter. The
regime, that is, whew(t) and wq are of the same order of y g P P

) ) . son series is obtained by expanding the above solution in
magnitude and exponentially small factors can be retaine y y exp 9

; ) aylor series ol =7R,/A giving till second order,
Then, we can conclude that a superadiabatic scheme turnsy RnlA giving

out to be useful in an intermediate regime, being in this way

a bridge between the small and large perturbation theory Cl,n+1(t):[01,n+1(o)
linked in turn by the duality principle. This matter deserves
further investigation.

C1p+1(0)sin

Q,

A2 .
1+i Z[AtJri(l—e"“)]

—%cz,n(oxl—e‘“>+0<x3>},

2

IIl. PERTURBATIVE ANALYSIS A A A
C2n(0)| 11 Z[ALHI (€= 1)] | = Z610.4(0)

OF THE JAYNES-CUMMINGS MODEL Con(t)=

The Jaynes-Cummings model is widely used in quantum _
optics. Its Hamiltonian, in the RWA, is given 4] ><(e'“—1)+0()\3)]. (26)
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It is easy to see that at second order in the development 1 _
parameter a secularity appears, which is a term that grows lb,n,ty=—(|1n+1)—e'2Y2,n)), (29
without bound in the limit—<. In perturbation theory, un- 2

less we are not able to get rid of the secularity, the series is , . . .
not very useful. This can be accomplished through th which are easily recognized as the dressed states of &ef.

renormalization-group methods described in K@ But eTor the Jaynes-Cummings model with a nonzero detuning.

here, the problem can be easily traced back to the Tayloll?>erry phases are then easily computed to give

expansion of the function sifll+€e%t) in e having .
J1+€2=1+ €22+ 0(€%). So, we can eliminate it by simply Ya= < a,n.t
substitutingA  with A+Rﬁ/2A everywhere in the approxi-
mate solution into the exponentials of E@6). : :<b nt
It is not difficult to get back the resul26) through the Yo T
Dyson serieg3). So, as expected, this series gives an analy-
sis of the Jaynes-Cummings model when the detudinig Then, after some algebra using the dressed states computed
larger enough than the Rabi frequerRy. above, the unitary evolution operat@) is given by
Now, let us repeat the above discussion in the oppositho(t):ei(A/z)t—ig\smtla,n,t><a,n,o|
limit with the Rabi frequency larger than the detuning.

ot

A
a,n,t =5 (30

. d
I_
ot

b A
,n,t Z—E. (31)

Again, by Taylor expanding the exact solution, one has +e (AR+IgNET Ky n tY(b n,0|
R i [Rn =co &t (7421 n+1)(1n+1]
C1n+1(t): Cln+1(0) co§ =t |+ —sin| =t 2 ' '
’ : 2 A 2
. R .
1 R, R, R, +e'@22ny(2n|)—i sin 7nt (e 1421 n+1)
———tsin(—t —iC5,(0)4 sin —t)
02 2 2 : 2 .
x(2n|+e@22n)(1n+1|) (32)
1 R R R .
-l ] - Brveod B H that, for| #(0)) = ¢ (0)| 10+ 1) +5,(0)[21), gives
: Ry (R,
lgp(t))~| co S 1] C1n+2(0) —isin 57t |C25(0)
+0| — e*iAt/Z’ (27) .
A3 x e A1 nt1)
. R R
R\ i (R cod B is (_“ )
czyn(t)=(c2,n(0) cos(ft)—xsin(ft) COS( 2 t)cz'”(o) Isinj 57t ) C1a+(0)
x e'(A242 n) (33
Rn, . [Rn : [ Rn . :
T e - tsin ot} =iCyn44(0)) sin -t that is the exact form of Eq$27) when higher-order terms
beyond the leading one are neglected, i.e., when~, as
1 R R R expected from the results of R¢f].
_ sin(—nt) - Cos(—nt) H In order to go to higher orders, we have to compdtét)
2)\2 2 2 2 from Eq. (7). Again, using the above expressions for the
dressed states, one gets
1 .
+0 _) eldt2 A
A3 H'(t)= = S [cod Rat)(|Ln+1){1n+1|=[2n)(2n])
with the same problem of a secularity at second order. In- —isi(R(|1n+1)(2n|—|2n)(1n+1])],
deed, this series can be obtained by the dual Dyson d&jies (34)

showing what could seem an unexpected result from the
adiabatic approximation, but in agreement with the results oo that, the first-order correction to the leading-order evolu-

Ref.[9]. tion operatorUy(t) of Eq. (32) is given by

To compute the dual Dyson series we need the eigenstates .
and eigenvalues d{. Itis e_asily found that for the eigen- Uy(t)=— iUo(t)f dt; H'(ty)
valuegyn+1 we have the eigenstate 0

1 R .
1 =i—sin(—nt (e ' n+1)(1n+1]
la,n,t)= E(e"“|1,n+1>+ |2,n)), (28 A2
—e &2 2n)(2n)) (35

and for the eigenvalue-gyn+1 we have the eigenstate  that gives the first-order correction,
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1 (R, _ where €,(t) is a function taking in account the time to rise

[81(1)), =i XSln(Tt)(eI(A/Z)tcl,n+l(0)|l!n+ 1) the laser field to its maximum valuey,_is the frequency of
the laser field, and/(x) is a simple representative binding
—e'(42c, (0)|2,n)), (36)  potential for the atom. A choice currently found in literature

is V(x)=—1/\J1+x?. Beside numerical methods that are
again in agreement with the Taylor expansion as given irvery computer demanding, other methods as Floguet theory
Egs.(27), to order 1k. So, in the same way we have at the have also been appligd 3] for the full three-dimensional
second order, case. A fruitful understanding of harmonic generation
through semiclassical ideas has also been vyielded in Ref.
[14]. By these semiclassical results, a nonperturbative quan-
tum model has been obtaingth]. Besides, an approach by
second quantization has also been given where a hint was put

t t,
Uz(t):_Uo(t)fodtlH'(tl)fo dt, H'(ty)

1 (R, Rn Rn forward that harmonic generation is a first-order effdd].
=1 2 sin 7" - 7" co 7" Analytical expressions are barely given as all these models
have been solved numerically or nonperturbatively so as to
X (€422 ny(1n+1|+e 1421 n+1)(2n|) require at some step numerical computation. Another model
is a simpler two-level system described by the Hamiltonian
Rn, . [Rn —i(AR2)t [3-5],
—i—tsin -t /(e |1n+1){(1n+1|
H=22(12)(2] - [1)(1)) ~xeol )[ Smet] (40)
, == - —Xeo(t
+eI(A/2)t|2'n><2,n|)] . (37) 2 COSth
and
Then, one has
x=—dg(|1)(2]+[2)(1]), (41
1 . . L .
| 8,0(1)), =i _( sin(&t> - &t cog(&t” whered;, is the matrix element of the atomic dipole. This
2\? 2 2 2 model is well-known in quantum mechanics. A first hint to a

x (a2t (0)[2.n) strong coupling perturbatiye solution was .given by Meystre
in+1 ’ [6] who used it to describe an atom inside a Fabry-Perot

+e 421, (0)]1,n+1)) cavity. The series till first order and the way to compute

’ higher orders for strong coupling were finally obtained in

Ref. [7] where it was shown that a shift of the levels of the

atom occurs.

Indeed, this two-level model seems very effective in de-
scribing high-order harmonic generation too. The two physi-
cal situations of a Fabry-Perot cavity strongly coupled with
an atom and an atom in a strong laser field seems to be
The agreement with the Taylor expansion as given in Eqsdescribed by the same Hamiltonian. But this should not
(27), to order 12, is complete. come as a surprise. What really matters here is the existence

As expected from the results of RgB], the adiabatic ©f the shift of the energy levels of the atom in these situa-
approximation and its higher-order corrections turn out to bdions that, for the case of high-order harmonic generation,
a nice method for asympotic analysis of the Scimger can change the spectrum of hyper-Raman lines and so, can
equation, being the dual of the well-known Dyson series andP€ measured experimentally.
explaining in this way the nice working of the method of  Besides, as we are going to show, the leading-order solu-
dressed states currently used in quantum optics. No slowl{jon found by Meystre is not enough to get the power spec-
varying of the parameters of the Hamiltonian is involved astrum computed through the Fourier transform of the equation
one could expect for the adiabatic approximation.

R R,
—i7ntsin —t

(e” i (A/z)tcl,m 1(0)

X|1n+1)+ ei(A’Z)tcz,n(0)|2,n))} . (39

() =(W(O)[X|¥(1)). (42)
IV. PERTURBATIVE ANALYSIS OF MODELS In fact, by the dual Dyson series one can see that high-order
FOR HIGH-ORDER HARMONIC GENERATION harmonic generation is actually a first-order effect. In this

way we are able to reproduce the results obtained in [Réf.
by the Floquet method, but having an analytical expression
Several models are currently used to account for highto be compared with experiments. As a by-product we have
order harmonic generation. The first model considdi®d that the hyper-Raman lines can be shifted. Through this ap-
has been a one-dimensional model described by the Schrgroach the computation can be pushed to any order, coping
dinger equation, always with definite analytical expressions.
1 5 A (x.t) The model(3.9) can also be _treated b_y this _approach. In-
— 2 — FV(X)—Xeg(t)sinw t | W (x,t) =i iy deed, an appllpauon to multliphoton ionization has been
2 gx? at found by Salamif17]. The leading-order solution should be
(39  written as

A. Models
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~ aiX Edt gt )sin e t/ 1 .
Px,t) = oIshentiyy (), (43 b.t)=5(e2)+]1)), (46)
where ’
1 52 and for the eigenvalue 2 d;,cosw t we get the eigenvector
_§E+V(X) hn(X) =Endn(X). (44) 1
a,ty=—(|2)—e " '0l1)). 4
|a,t) \Ed ) 1)) (47)

It is easy to see that probability transitions given by
Winn(t) = T2dX dr(X) ¢h(x,t) are not trivial and can be These are the dressed states for this model. The correspond-
computed also for the continuous part of the spectrum. Buting Berry phases are given by

as we are going to show using the two-level model and as

can be seen by the look of the leading-order soluti4B), V()= w_’

we need to compute the first-order correction to it to account 2

for high-order harmonic generation. We do not pursue the

study of this model further here, as the two-level model can Yalt)=— ﬂ_ (48)

give a satisfactory account of all this matter in a simpler way. 2

We just note that in this way, more complex models than tha
of Eq. (39), through perturbation methods, could be taken
into account.

}t is interesting to note here that Berry phases originate from
the energies of the levels of the unperturbed atom.
All this gives the unitary evolution

B. Perturbative analysis for high-order harmonic generation Uo(t) =e ' (wodtgl@dioloysineitg ) (g 0f

To fix the ideas, we consider the two-level model of Ref. + el(@o2tgmidploysneLt|h tY(h 0] (49)
[5], that is, Eq.(40) with a cosine perturbation. Dyson series
using probability amplitudes and its dual solution to firstthat yields in terms of the bare statds and|2),
order of this model through operatorial methods were given Qdy,
in Ref.[7]. So, we avoid the analysis by the Dyson series ofUq(t)= cos{ —in w,_t) (e (@ 1) (1| + €'(@2Y2)(2|)
this model discussed in depth fid] and references therein.
Instead, we use the dual Dyson series to show that it is Q0d,,
equivalent to the operatorial method used[#} and pre- —i sm(—smw,_t)(e H(@o/2)t1)(2)
sented initially in Ref[18]. @

The rising of the laser field accounted for by the function +el(@22)(1]). (50)
€o(t) is taken as instantaneous to make the computations
simpler; that is, we take(t) = =const. We can reformulate the above operator as a matrix by taking
In the interaction picture, the Hamiltoni#40) is given by  for the bare states,
H,=Qd,cosw t(e @0 1)(2| +e®d|2)(1]). (45) 0 1
| 12 L | >< | | >< | |1>: , |2>: (51)
Then, computing the dual Dyson series, for the eigenvalue
Qdj,cosw t we get the eigenvector so to have
|
: Qd ‘ Qd
g' (o2t cos{ ” 12sinth) —igl(@o2)t sin( ” 12sinth)
L L
Uo(t)= (52)

—je (w2t sin( (d;
WL

. Qd
2sinth) e'(‘”O’Z)‘cos< wlzsinth)
L

It is not difficult to see that the above operator can be rewritin the same way, we can compute higher-order corrections to

ten through the Pauli matrices; 0,03 as the above by computingl’(t) for the dual Dyson series. In
the bare states, using again the dressed ones, one has
Un(t :ei(wo/2)0'3te*i(rl(lezla)L)Sina)Lt. 53 ® Qd
ol 53 H’(t)=7o cos(Zw—lzsinw,_t)(|2>(2|—|1>(1|)
L

Then, by eliminating the prefactor due to interaction picture,
we are left with the leading-order result of RET] for the —isin
wave function

Qd
22t 12)(11- 132D

|W(t))~eInrl@dlesinetig (), (54 Thatis,
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H' (t)= 70e' 1(Qdgplo))sinoty g-ioi(Qdgplo))sinot

(56)

in agreement with the computation of the first-order correc-

tion computed through operatorial methods in R&l. The
two series are identical as should be expected.

So, the solution for the systefd0) till first order can be
written as[7]

. . 1) 2Qd
|q,(t)>:eIUl(lezle)Slnth|:| —j 70‘]0( 12>t03

- 2le2) sin(2nw t)
g3

_|won§l ‘]2n( anL

L

co§(2n+l)w t]—1
2n+w, 02

(2le2

o]
+i onO Jon+1
n=

+oo - |[W(0)), (57)

where use has been made of the operatorial identity,
e 17N ?=J4(2)+2 Y, Jpn(2)cog2n¢)
n=1
=202, Jana(Dsi(2n+1)¢], (58)

with o, one of the Pauli matrices antj}(z), Bessel func-
tions of integer order. The secular term in E§7) can be

resummed away by renormalization-group methods, as
shown in Ref[7], giving the renormalized levels of the atom
in the laser field. Then, the solution one has to use to com:

pute the power spectrum is

W (1)) =~ ioa@drzlopsinoct] | _j, S Jzn(zﬂdlz)
n=1 |
S|r(2n(,()|_t) . “ Zlez
X—
2nw 0'3+Iw0n§0 Jont1 oL

cog(2n+1)w t]—1
2n+Dw, 027

X @ 1(@0/23(20d1o/w))tos| (). (59
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X(t)=—d,| c,cte "R+ 5 cie' R+ (|cq |2~ col?) wo

- 2Qd,\cog(2n+1)w t]—1
x> ‘]2n+1< ) 1

"o n+ =

e

+i(chc el wrl—c, et e @Rl g

X 2 ‘JZn(
n=1

(O8

Zlez) Sin(2na)|_t) (60)

| nwL

where wor= wgJo(2Q2d 1,/ w ) is the renormalized separa-
tion of the two levels of the atom and introducing the popu-
lation distributionc,; andc, for the bare levels of the atom
through the initial staté¥ (0)). This is exactly the form one
must have for the high-order harmonic generation using this
model, as shown in Ref5] by the Floquet method. In fact,
we have odd harmonics of intensityc(|%—|c,|?)2, while

the latter term is due to the hyper-Raman linescgk
+2nw, of intensity|c,|?|c,|?. But now, an explicit analytic
expression for the power spectrum is given, so that a clear
understanding of all the parameters involved into atom and
strong laser field interaction is obtained. Particularly, we
have an exact expression for the shift of the levels of the
atom that now we know how to measure: If we take initially
|c1|=]|c,| we will be just left with hyper-Raman lines into
the spectrum. These lines can be shifted by varying the ratio
20d,/w , given by the parameters to be controlled into the
experiment. By observing how these lines move we can ob-
tain a measure of the shifts of the atom levels. By the ex-
pression ofx(t), it is clear that the only lines that can be
moved are indeed the hyper-Raman lines.

The advantages above the Floquet method used i Ref.
are evident as we have an explicit analytical formula for the
spectrum with all the functional dependencies on the param-
eters entering into the model explicitly expressed.

V. CONCLUSIONS

The way dressed states are currently treated in quantum
optics becomes to compute the eigenstates and eigenvalues
pertaining to either the full Hamiltonian of a given system or
the interaction term. In this paper we have shown how the
dual Dyson series can give both an understanding of this
approach and a tool to improve it. Indeed, the existence of a
dual Dyson series permits, as we have shown, a perturbative
study of atom-field interaction in different regions of the
parameter space of a given model. The case of the Jaynes-
Cummings model, fully exploited in this paper, is an ex-

It is easy to see that if we just limit our analysis to Eq. ample in this sense. Besides, the dual Dyson series is nothing
(54), we are not able to obtain the spectrum of the harmonelse than the quantum adiabatic approximation and its

ics. In fact, one would have from Eq(42) x(t)

=(V(1)|x|¥(t))=—d1X¥(0)|o1|¥(0))=const. Instead,

using Eqg.(59) one has at first order,

higher-order corrections that in this way prove to be a very
powerful tool to obtain asymptotic approximations to the
Schralinger equation.
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The theory is applied to the analysis of models for high-measures of the energy levels of the atom in interaction in a
order harmonic generation giving an explicit expression forstrong laser field could be accomplished. Besides, a control
the power spectrum. In this way new experiments can ben the amplitudes of the harmonics and the position of the
thought where, properly changing the parameters involved;utoff on the spectrum could be obtained.
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