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Intensity squeezing in a Raman laser
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Quantum noise suppression in a Raman laser is investigated theoretically using a model system of homo-
geneously broadened three-state atoms, driven by an external pump field. Arbitrary pump, Raman, and cavity
detunings are allowed, and the full dynamical response of the system is included in the treatment of quantum
noise. The behavior of the intensity squeezing of both the pump and Raman fields is reported for a wide
parameter regime in which optically bistable switching occ[84.050-29479)03407-1

PACS numbeps): 42.55.Ye, 42.50.Dv, 42.50.Lc

[. INTRODUCTION nance for the Raman field is also an adjustable parameter of
the theory, but the Raman frequency is a system variable that
The phenomenon of Raman lasing has attracted a greig determined by the system behavior. We employ a master
deal of theoretical and experimental study. Much of thisequation treatment which describes the full dynamical re-
work has been concerned with the deterministic behavior o$ponse of the atomic system, and includes the quantum noise
the system, such as fundamental mechanisms of Raman gdha comprehensive manner. The complexities of the model
(e.g., Refs[1-3]), or the nonlinear dynamical and switching are sufficient that the standard techniq{i28,21] for con-
behavior[4—8]. Studies of specifically quantum-mechanical verting the master equation to quantum stochastic differential
properties of the Raman field are fewer and have concerfguations must be replaced by the more general phase-space
trated mainly on the description of initiation, and the analysismethods of Smith and Garding22], and numerical methods
of the large-scale fluctuations observed in the build up ofre required to find the squeezing behavior. We carry out an
Stokes pulsege.g., Refs[9—12)). The possibility of quan- €Xtensive investigation of the squeezing that can occur in the
tum noise suppressidor squeezinghas only recently been transmitted pump field and the Raman field, and give a sys-
recognized and a number of calculations have been madematic summary of the squeezing behavior within the re-
[13—-18 which show that the statistics of the Raman fieldgimes of switching and its dependence on system param-
may deviate from Poissonian. However, in all of those treateters. Previous papers have concentrated on calculating the
ments the models used are quite limited, and in this paper wilandelQ parameter, and in those papers where the squeez-
make significant extensions to the models and find this lead§g spectrum was considered, since the adiabatic limit is as-
to enhanced regimes and quality of squeezing. sumed, the eigenvalues of the drift matrix were taken to al-
In the previous treatments of Raman Squeezing, the pumways be real, yleldlng Lorentzian spectra. We calculate the
laser field is treated as a prescribed classical field, and thequeezing spectrum directly, and find that it can be far from
atomic dynamics are adiabatically eliminated by assumptioh-Orentzian.
of the good cavity limit. However, the Raman laser is a com- The paper is organized as follows. A detailed description
plex dynamical system, and the states of the intracavity@f the system is given in Sec. Il, and the master equation is
pump and Raman fields, including the Raman frequency, areébtained from the Hamiltonian. In Sec. Ill, we derive the
dynamically determined by an interplay between fields and-okker-Planck equation for fields and atoms using the
atoms. Of the previous treatments, only Schernthanner an@éethod of Smith and Gardiner, and the quantum stochastic
Ritsch [18] allow for the possibility of detunings between differential equationsQSDES are then written down in an
fields, atoms, and cavity, but they ignore the dynamical naappropriately scaled form. A method for solving for the
ture of the Raman frequency and make it a prescribed valugteady-state system behavior is outlined in Sec. IV, and in
In the current paper, we retain the atomic dynamics, an@@C. V the stochastic equations are linearized. Some broad
fully incorporate the effect of the field detunings. The issuecategories of possible steady-state deterministic behavior and
of detunings is an important one; for example, the switchinghe dependence on system parameters are discussed in Sec.
and nonlinear dynamica| behavior previous]y observed inVvl. In Sec. VI, the squeezing calculation is outlined, and in
Raman laser§7—19 depend critically on the detunings be- Sec. VIl results are presented.
tween fields, cavity resonances, and atomic transitions. Our
results show that squeezing occurs primarily in the regimes Il. DESCRIPTION OF THE SYSTEM
where S\_Nitch.in_g occurs, as could perhaps have beelj ant!ci— The atomic system is modeled as a collectiorNosta-
pated, since it is here that the effects of system nonhnearlt)gIonary three-state atoms in theconfiguration[19,25. The
are greatest. various processes occurring between the three states are dis-
As in the previous treatments of squeez[1§—18, our  pjaved in Fig. 1. We allow for detunings between the pump

model consists of a collection of homogeneously broadenegldt frequencyw,) and Raman(at frequencyw,) fields and
three-state atoms in the configuration, but we allow the P —

pump field to be detuned both from its atomic transition andN€ir corresponding atomic transitioA = w, — (w3~ w1)
the vacuum cavity resonance. Tlieacuum cavity reso- =w,— w3 and A;=o,—(w3—wy)=w,— w3, respec-
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he various contributions to the Hamiltonian have the fol-
owing meanings.
(i) Hpg is the free Hamiltonian for the pump cavity field
mode, whereuf,is the empty-cavity resonant frequency clos-

FIG. 1. The three-state atom model showing detunings an
population transfer rate@n scaled units

tively]. A’=A,—A is the detuning from exact two-photon ~ )
resonance. All quantities are initially introduced in S.1. units, &St to the actual pump frequeney,, andp is the destruction
but will subsequently be rescaled into dimensionless units?Perator for the pump photon. o
For clarity, those quantities which later appear in dimension- (i) Hrr is the free Hamiltonian for the Raman cavity field
less form are indicated here with a bar. The Hamiltonian fomode, wherev; is the empty-cavity resonant frequency clos-

the system can be written as a sum of free contributiongst to the Raman frequeney, andr is the destruction op-
(Hg), interaction contributionsH,), and decay contribu- erator for the Raman photon. We note thatis not a pre-
tions (Hp), in the electric dipole and rotating wave approxi- determined frequency, but instead is determined by the
mations: operating conditions of the system.

(iii) Hag is the free Hamiltonian for the atoms. The ener-
H=Hg+H+Hp, (1) gies of the three atomic states dre;, % w,, andfws.

(iv) Hap and Hpg describe the dipole coupling of the

where ) .
atoms to the pump and Raman fields, respectively, whgre

He=Hpg+Hget+Hag, (2 and g, are the dipole coupling constants for the-3 and
3—2 transitions, respectively.
H/=HaptHar+Hep. 3 (v) Hep describes the driving of the cavity pump mode by

a classical field of amplitude and frequencyw,, .
Hp=Hpp+HrptHaptHap+HapD, (4) (vi) Hpp andHgp describe leakage of the pump and Ra-
man fields from the cavity. The reservoir operators for en-

and ergy dissipation arép and¢, , respectively.
(Vi) Ha p describes spontaneous emission on both the

_ g cnt .
Her=fwppp, ©) pump and Raman transitions, with reservoir operafs
andZ, .

_z cptr
Hre=haorrT, 6) (viii) Ha,p describes dephasing of the atomic level popu-

N . ~ ~ lations due to elastic collision%.l, 22, 23, are the reservoir
Hap= E (hwofithw05t hwzohs), (7) operators associated with this process.
n=1 (ix) Ha,p describes population transfer between the two

N o lower states due to inelastic collisions. Heyg and 7, are
Hap= E m(gpgfng_g; gjgp), (8) the re_servoir operators. The-42 transition is modeled by a
u=1 negative temperature heat bat8g].

From this Hamiltonian a master equation for the atom-
e A, — A A field systemwhere reservoir operators have been traced out
Har= 2_1 (9,0 T—gF o l4T), (9 can easily be written down using standard technicis

a and is given as follows:

N

Hep=if(pTee st — pe*eivpt), (10) i
=P P P p:T[HPF+HRF+HAF+HAP+HAR+HEP’p] (16)

Hpo=(p'&,+pél), 11
Po= (P&t PEy) (0 +Lppp+ Lropt Lappt Lappt Lapp, (17

HRD:(;T%F";%:): (12 where
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Ill. THE FOKKER-PLANCK EQUATION

We now derive an equation of motion for the quasiprob-

ability function, P(Z), whereZ=(a,a",8,8",3{3,313, 353,

J23,J12,J12,D31, 32 are thec-number equivalents of the
atomic and field operators. The resulting equation has the
form of a Fokker-Planck equatidifPE), and is obtained via
the equation of motion for the characteristic functip(\),
which is defined in terms of the density matrix as

X(M)=Tr{pO(M)} =Tr{pOAN)O (N}, (23

Whel‘e)\=(7\1,7\2,)\3,)\4,)\5,)\6,)\7,)\8,)\9,)\10,)\11,)\12) iS
the Fourier-space equivalent of th@umbersZ, andO(A) is
a product of exponential operators involvikgand the sys-
tem operators.

A derivation of the FPE, using the approach due to Haken
[20], has been commonly used with two-state atomic systems
[21], but gives rise to ambiguities in the operator ordering
when applied to three-level systems. We have therefore ap-
plied the phase-space methods of Smith and Garde@&y
who have shown that the product of exponentials of opera-
tors, O”(\), appearing in the definition gf(A) and used by
Haken, can be written equivalently as a product of a linear
combination of operators,

N
0A<x>=H (Q+0yD4+pDh+ CHSH + ST

n=1

+ ot -a- - o —
354 + €S €135 +€55d), (24

where
DE=oti—at, (25)
As;gﬂz (}fse*ikp'fu, (26)
é;suz ;rg‘ae*ik"r", (27)
ASIZ#E ;.fze*i(kp*kr)'ru, (28

andS,Jj”’“= (Si]”)T. In the above definitions, individual atoms
are labeled by the index, and their positions arg, . The
variablesQ, q;, 0,, ¢", andc™ are combinations of thg;’s.
Since the field operators do not have the ordering problems

The coefficientsy, andy, are the Einsteir rates for the _ F . -
pump and Raman transitions, respectively, and the cavit?‘c the atomic operator£)”(A) retains the original form
decay rates for the pump and Raman fields have been as- I
— ) OF()\)Ze”“‘p girar gihargingp.
sumed tok be equal and are denotedkbyl he atomic dephas-
This description of the atomic part of the system contains
nine variables, of which one is redundant and needs to be
eliminated, since it gives rise to diffusion terms for which
there are no corresponding drift terms. Smith and Gardiner
provide a substitution which eliminates this redundant vari-

able[22],

ing ratesky, «,, and«3 (associated with states 1, 2, and 3,

respectively, and the transfer ratds; (from 1—2) andF
(from 2— 1) incorporate the thermal bath perturber number
The thermal photon numberlsf.p and nr (associated with
leakage of pump and Raman photons from the cavind
n,” and n (associated with spontaneous emission on the

pump and Raman transrnohbave been mcludeq for gener- x=QNF(iNg,iNg,iNg,iNs,01/Q,0/Q,c*/Q,c/Q)
ality, but are small at optical frequencies and will henceforth
be neglected. =QNf(iINg,iNg,iNg,iNg, Y1, Y2, X, X7). (29
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Upon replacingy on both sides of the equation With this substitution, drift terms are independentN\yfsec-
. ) ond derivative terms are proportional td\}/and third-order
x(N)=Tr{pO(N)} terms are proportional to NZ. In the atomic system we con-

sider hereN is large enough that the third-order terms can be
with Eq. (29), the variableQ is eliminated, leaving an equa- neglected. Dropping these terms gives us the FPE which can
tion of motion forf, the reduced characteristic function. The
12-dimensional Fourier transform of the equation of motion
for f will yield an equation of motion foP(Z), and can be Where yi” is an overall decay rate for the dipole between
arrived at via the f0||0W|ng Correspondences states 1 and 2, and its definition in terms of previously intro-

duced quantities is g|ven in Appendix A. All rates and fre-

be made dimensionless by rescaling the timertety'?,

N d J _}; quenmes(mcludmgs andg) are then rescaled in terms of
1T y
da ™ n , and this scaling is indicated by removing the lar
tilde) from each quantity. From this FPE, quantum stochastic
_ 9 F - differential equationsQSDES can be written down, and
INp— ——, W—MB, then transforming to a rotating frame, for which
op  IIh2
;Tefi“’pt—>a‘r, aelwpt_)a
N J J —
| i _ y ~ . ~
3 &BT (9|)\3 18 BTeilw't%ﬂT, Belwrt_)ﬁ,
. d Jd = 3fse_iwptﬂ~]f3’ 31_3eiwptﬂ‘]1_3’
|)\4—>—T, ——a,
ﬂa’Jr 0"”\4 T+ it + T Aot -
Jag€ U —=Jdps,  Jp T — s,
.9 a - oo e e e o
Xj—o = =Y I rm et =3, Il Tt
adi; X
P p D31—D3;, D3—Day,
Yim?—— 19——>D31, we finally obtain the stochastic equations,
&D31 yl
' J—o +igia+ +F“ (32)
d J - a=0gpliz saTigatet —=,
3D32 [?yz
— — = I o T4e* +F o! 32
wherea, ,8 J,J ,andDij arec numbers corresponding to the @ _gp 13 2“ Irate IN' (32)
operatorso r, MSJ“ andDIJ 2 D,J,respectively.

Here the bars simply indicate that thesaumbers are not in . K , I'g
a rotated frame, and they will be dropped later when the B=09rd2s~ §ﬂ+'(¢2+A )IBJFW’ (33
system is transformed into one.

For the sake of completeness and correctness, we have . I
used the positivd? representatiofi23] in writing down the B =g* 35— E,BT—i(¢2+A’),8T+ _BT, (34)
above correspondences, so that we have 12 independent 2 N
complex operators. In this representation, operators and their

adjoints cannot be considered as necessarily being complex [+
conjugate, however for simplicity we will later restrict our le_m I+ ngzsa +0F 8-+ 12, (35)
attention to such a classical subspace. JN

The resulting equation of motion for the distribution func-

tion P(Z) is rather lengthy, and is thus given in Appendix A. _ r, 3L
It contains terms up to third order in the derivatives, however Jp=—1A"J,+ g;Jz*gaJr g,J1’3B —J,+t—, (36
we can show that these third-order terms are small by intro- N
ducing the scaling23]
: Ly
- - E — i \]_Jr Jig= —iAd 3+ gpDa1a’ — g B~ 1Vt — \/N
a=——, —— E= —, J ,
WO TN N @

(30

~ ~ 5 ~ - J13
Jij = i Di; _W 9p= gp\/— ‘]13—'A313+9pD316¥ 9rJpB— ﬂ%ﬁﬁa (38)
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_ Ly Ug+iUs=2BJz,
J55= =033~ gpd e + 0, DB — ¥ 15+ —, . B
N Ug+iUg=28I,
(39 43)
U10=Das,
L 3
J3=1A 353~ 05 I+ 9f DgpB— Yt —=, (40) U11=D3a,
N
U 1= 353353,

D31= —20pJ130" — 2g% Iz~ 9,538 _ o
Ui tiU13=231,53,

Da1

T
—gFJ538+T1o+1rDgr+r,Dgpt _\/N (42 Uis=J7i) 1.

_ The Raman frequency, is not present in these variables
Dap= —gpdise’ — g5 Jiaa—20,J558" and we now have 15 equations and 15 unknowns. These are
given in Appendix C. In converting the scaled QSDEdJto
D, variables, we have ignored the Ito contributid28] which
—29F J338+S9+S1D31+ 5D+ —, (42 arise. This is a valid approximation, since the Ito contribu-
\/ﬁ tions are of ordeM ™! smaller than the dominant QSDE
_ _ contributions. We have used the packageo [27] in order
where ¢,=(w,— wp)/y'? and ¢,=(w,—w;)/y'* and all  to solve the deterministic parts of these equations in the
other definitions of symbolgin their unscaled formhave Steady state, and to perform a stability analysis on the solu-
been given in Appendix A or Sec. Il. TH& represent the tons.
noise terms, whose correlations are given in Appendix B.
The deterministic parts of these equations can be shown V. LINEARIZATION OF STOCHASTIC EQUATIONS
to reduce, in the classical subsp42d] (wherea'=a*), to

those given by Xieet al.[19] as expected. We will be interested in calculating the intensity noise

spectrum of both the pump and the Raman fields, thus we
eliminate the pump field variabled, and U5 in favor of

IV. STEADY-STATE SOLUTIONS intensity and phase variables, using

In the positiveP representation, there are 24 variables in

2,012
our system, for which we need to find steady-state solutions. | = Ust+U;
However, because of the detunings in the problem, it is very “ 4 7
difficult to find steady-state solutions outside the classical

subspace, and so we restrict our attention to the 12 variable 1 |[Ujz+iU,
regime in which a'=a*, g'=pg* (J))*=J;, and b= IN—%—|-

(Dij)* =Djj . Making this assumption gives QSDEs, which

are the same as those that would be obtained if the Glaubewe emphasize that the Raman phase does not appear in the
SudarsharP representation were used. Within a linearizedresulting system of equations, since it has been explicitly
analysis our results should not be affected by limiting oureliminated.

attention to the classical subspace, since departure from these The QSDEs are linearized about the steady-dtatel ,,

solutions is expected only when the quantum noise becomesd ¢,, values to first order in 4N, according to
large. Thus the diffusion matrix remains positive semidefi-

nite and the eigenvalues non-negative, provided we restrict SU
ourselves to the regime in which the linearization is valid. U=u°+ \/——
Even with this simplification, a numerical approach is re- N
quired to solve for the system in steady state.

The first step in solving the equations is to eliminate the |04 ola
unknown Raman frequenay, from the problem, since it is a la N’
determined by the system itself and will change as the lasing
conditions change. The elimination can be accomplished by s
transforming the QSDEs into a new set of fifteen equations b= 0+ ¢“’
in the following variableg25]: “TT N

U,=18l3 and the resulting equations have the form
Us+iU,=2a, dou(t) SU(t)
dol,(t) | =—A| 8lu(t) [dt+BdW(t), (44

Us+iU,=2305, dée (1) S, (1)
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FIG. 3. Pump and Raman input-output curves. Parameters are

FIG. 2. Pump and Raman input-output curves. The intracavitythe same as for Fig. 2 except thit — 300. The range of squeez-

pump and Raman output amplitudés] and|B| respectively, are .~ > X X

plotted on the vertical axes, and the pump input fieddRis plot- g 1S |nd|cated by crosses, and the point of best squeezing by a
; : closed circle.

ted horizontally. The branches corresponding to the nonzero Raman

field are indicated by heavy solid linéstable regionand dashed

lines (unstable region The branches corresponding to the zero Ra- .
man field are indicated by lighter solid linéstable and dotted Fig. 3, where the 20B branch has an S shape, the nonzero

lines (unstabl¢. The threshold points for Raman lasing are indi- Ra_man SO|Ut'0n_ and its associated pump solution show
cated by the open circles. Parameters &fé=1, yf3=1, r, sw_ltct;hlng behavior at both the lower and upper threshold
_ _ _ _ _ _ points.

ngisqsllz: _0'18"¢y2p:10.£5A8':y_r686(_)25' 9,=23.66, 9,=16.73, The physics underlying the Raman switching behavior
seen in Figs. 2 and 3 has been discussed by 26&in terms

of nonlinear coupling termg and », , which are defined for
the pump and Raman fields, respectively, as

(where stableand dashed line&vhere unstabld appear. In

whereA is the drift matrix andBB" the diffusion matrix of
the system, both easily obtained from the FPE.

n= _ng:fS/a
VI. DETERMINISTIC SYSTEM BEHAVIOR d
an
A detailed analysis of the deterministic behavior of this -
Raman system as a function of input driving field has previ- 7 =—0rJ2dB.

ously been carried out by Xig25]. For the convenience of . o

the reader we briefly review the main features of interest. ARe(77) represents theamplitudg loss coefficient and Imf)

rich variety of behavior is found, and examples which reprethe dispersive phase shifir frequency pullingfor the pump
sent typical behavior are shown in Figs. 2 and 3, where théeld, while —Re(»,) is the Ramartamplitude gain coeffi-
output pump and Raman amplitudes are plotted against th@ent and Im¢,) the Raman frequency pulling. Xiet al.
input pump amplitude & «. (We note that all field ampli- [19] have also shown that Raman switching in the context of
tudes plotted are intracavity valupén these figures, stable frequency scanning can be understood in terms of the behav-
solutions are displayed as a solid line, and unstable solutiori§' of 7 and »,. For the reader’s convenience, we briefly
as dashed or dotted lines. It is easy to sHevwg, see Ref. outline the argument here as related to the intensity scans,
[19], Eq.(17)] that the system always has a solution in whichusing Fig. 3 as an example. We begin by describing the
the Raman field is zero and the pump output obeys the equ&Ump behavior. The solution branch for the pump is domi-
tion of two-state optical bistabilitf19]. This “two-state”  nated by the behavior of the pump dispersion 4(since

OB solution(which we call the 20B branglis shown by the  the pump detuning is very large. The resonant cavity fre-
curve made up of a thin solid line and a dotted line. How-quencyw, for the pump is given bywp=w;+1m(7), but
ever, in the region between the open circles, the 20B brancthe pump frequencywhich is externally determingds set

is unstable and an additional, nonzero, Raman solution anldetweerku,‘; and the unsaturated value @ﬁ. In the absence
the corresponding pump solutigshown as thick solid lines of Raman lasing, Im#) bleaches as the pump field intensity
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.................... po AL L V” CALCULATION OF SQUEEZING SPECTRA

______________________ é?,:g‘ Th_e majority of squeezing calculations in the optical bi-
//é%‘. stap|llty context have concentrated on quadrature phase fluc-
‘‘‘‘‘ ////%%% tuations. In the case of a Raman laser, however, w_here the
/M%%a ,=.§§\ fr_e_quency of the output field is dependent on operating con-
; ////////j‘%%‘ﬁ y:.§:§§§§§§§§§§& dltlpqs, the local osc_lllator phase cannot b_e controlle_d, ar_wd
e ///%"x"%i ;§§§§§:§§§§§ o3 so it is more appropriate to study the intensity quctuathns in
/////////%%gi ;§§§§‘§§§:§‘§§§§§ g the pump and Raman fields. Previous Raman squeezing pa-
o %%%%%a’; R 2 g pers have calculated the Mand@lparameter, and inferred a
% %%,W%’gﬁ%‘ SRR 3 Lorentzian squeezing spectrum. Here we calculate directly
g1 o ’4 ------------------------------------------- SR 1 o1 the intensity fluctuation spectrum internal to the cavity ac-
- : : : cording to
Y ) Y P . 1 CVIRRT(AT— i) -1
o 1 Pump amplinde S(w)—E(A-I-Iw) BB'(A'—iw)™ 7,

FIG. 4. Raman gain;-Re(7,), as a function of pump and Ra- iy which A is the drift matrix andBBT is the diffusion ma-
man field amplitudes for the parameters of Fig. 3. trix, given by Eq.(44). We shall find that the spectrum is
often not at all Lorentzian. The normalized variance of in-
increases, causing the cavity to become more resonant a@@hsity fluctuations in mod¢ external to the cavity is ob-

the pump cavity field to grow. This positive feedback situa-tgined from the {,j) element of the spectral matrS(w), as
tion leads (under appropriate conditionsto an upward

switch of the pump intensity. The steady-state behavior has a kSii(@)
simple analytic description on the 20B brand®], V“(w)=1+277“—0.
j
2
|a|2= l&] (45) A value of Vjj(w) of 1 corresponds to the shot-noise
[k/2+Re(7) 1>+ [ 1~ Im (7)]?’ limit. For squeezed lightv;;(w) is between O(perfectly

squeezed lightand 1. In this paper we are only interested in
where 7 is given by Eq.(17) of [19], and ¢, is the vacuum the two components of/j;(w) corresponding to the pump
cavity detuning of the pump field. In the dispersive regimefield and the Raman field, which we will dend#,(») and
we are considering, the switchirige., the bend in the 20B  Vg(w), respectively.
curve occurs where the effective cavity intensity becomes

sufficiently large to bleach the phase shift Ig)(to a value VIIl. SQUEEZING BEHAVIOR
close to¢,, thus allowing the cavity to become near reso- . . . .
nant $1 g Y We have numerically investigated the squeezing of the

The Raman solution is driven by a different mechanism X&man and pump fields for a broad range of parameters, and

Raman lasing occurs when there is sufficient Raman gaiH‘ thi.s s_ection We survey the main behavior trends. This sur-
(for given pump intensityto match the cavity loss, i.e. vey is intended to provide a g.ood_ representation .Of broad
' classes of behavior: an exhaustive listing of all possible types

of behavior is not practicable. We begin with the case shown
in Fig. 3, which represents the most typical system behavior.
o i , i Other types of behavior can be obtained by the systematic
Raman frequency pulling is small in the regime of Fig. 3, arjation of parameters presented below. In Fig. 3, squeezing

and plays no significant role in the deterministic Raman outy, he Raman field occurs in the range between the crosses.
put amplitude behavior. The Raman gain is therefore the keyhe gmgjlest value of the spectral variance for these param-

mechanism, and its behavior in the relevant regime is showgiars was found at the point marked by the filled circle in
in Fig. 4, where it is plotted as a function faf| and| 3|, with Fig. 3 (26/k=1.42), and the squeezing spectrum at this
all other parameters fixed at values corresponding to Fig. 3point is shown in Fig. 5 and is clearly not Lorentzian. The
The contour shows the trajectory tHat| and|g| must fol-  gyajiest value oV 4(w) (which corresponds to the maxi-
low to satisfy Eq.(46), and has endpoints at the lower and mum squeezing isBO.937 at frequencies»=+0.19. The

upper thresholds for Raman lasing. When the Raman fieldh, 5 intensity fluctuations are also presented and show that
first turns on at the lower threshold, it contributes additional, squeezing in the pump field occurs for this choice of

bleaching to the pump phase shift, causing an abrupt increa: ; ;

in pump amplitudglby the dispersive mechanism and feed—%?,Stem operafing point.
back described aboyeand a corresponding jumii.e.,
switch) occurs in the Raman field in order to remain on the
contour of Fig. 3. As the pump input is further increased, the As the cavity decay rate is reduced, Raman squeezing
pump cavity field continues to increase, and the Raman fielthcreases, an effect related to the increased Raman lasing that
adjusts to an appropriate value, following the contour in Figwill then occur. The Raman output occurs over a wider range
4. Eventually at high enough pump field, Raman lasingsince less gain is now required, see E46)], while the
ceases. region of bistable behavior on the 20B curve moves to

—2Re 77) = . (46)

A. Dependence or
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pump amplitude

—

intensity fluctuation spectrum
e
W

e
%

o
FIG. 5. Intensity fluctuation spectrum for pumy, () (solid 'g 0.6

line), and Ramany z(w) (dashed ling output fields at the system =
operating point corresponding to the closed circle in Fig. 3. The 504
dotted line indicates the shot-noise level. g

: . . . : g 02
higher intensitiegbecause the unsaturated cavity pulling has
increased This is illustrated in Fig. 6, where has been set
to 0.04, causing the Raman output curve to become a wider 01
and taller loop than in Fig. 3. The increased stable range of 0 5 10
the Raman output as is decreased leads to a larger range of pump driving field
pump driving field amplitudes over which Raman squeezing ) o
is found to occur. FIG. 7. Pump and Raman input-output curves with indicated

The best squeezing is found for the lower driving field squ_eez_ing ranges f@; =16.73 and 37.42. All other parameters are
amplitudes on the stable part of the Raman branch, and as as in Fig. 3.
decreases from the value of 0.4 used in Fig. 3, the dips in th8n
Raman squeezing spectra become deeper and narrower a’ﬂiﬁ
move in towardsw=0, as expected as the adiabatic limit is
approached. Ak=0.12, the two dips coalesce into a single

centered onw=0, where V4(0)=0.74. No pump
eezing occurs with the choice of parameters in Fig. 3, for
any value ofk. These results indicate that although squeez-
ing is improved by operating in the good cavity limit,
4 squeezing outside of this limit is also possible.

B. Dependence org, and g,

3 As the Raman gaim, increases, Raman squeezing im-
'g proves. The 20B curve is not altered by the changes in
3, but the positions of the Raman threshold points are affected,
g2 moving further apart ag, increasegas shown in Fig. )7 and
g‘ i moving closer together a3 decreases, until Raman lasing
a,

ceases a,=6.93. No pump squeezing occurs for any
change ofg, alone, but Raman squeezing increases in depth
and occurs for a larger range of driving field gsincreases

to the value 118.3Fwhere V4(0)=0.694 at pump field
2e/k=0.552]. The best squeezing is found for the lower
values of the stable part of the pump driving field range.
\ Beyond g,=118.32, Vg(w) appears to saturate. Schern-
\ thanner and Ritsch18] observed similar behavior using a

simplified model of the Raman process.

' As g, is increased from the value used in Fig. 3, the
' Raman squeezing first improves, reaching a minimum vari-
ance of 0.75 forg,=28, and then degrades rapidly as the

—

o

N
[

N
-

—

raman amplitude
&

0.5 '-‘ length of the stable part of the Raman branch diminishes, and
P DS S eventually disappear@t approximatelyg,=28.54). Corre-
0 50 100 150 spondingly, the 20B input-output curve develops increasing
pump driving field nonlinearity asg, increases, which is a well-known result

[28]. Wheng, is decreased from the value used in Fig. 3,
FIG. 6. Pump and Raman input-output curve with indicatedRaman squeezing decreases, and then disappears at a value
squeezing range for=0.04. All other parameters are as in Fig. 3. of g, of about 23. A little below this valuéat g,=22.94),
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regions aSyE increases. For example, at smaﬁ, the Ra-
man threshold points are both on the lower branch of the
20B curve, while fory*=9?*=5 the lower Raman thresh-
old is in the negative slope region of the 20B curve, and the
upper threshold is on the upper 20B branch. At small values
of yis, both pump and Raman squeezing may coexist. For
values ofy’® andy*? above those in Fig. 3, no pump squeez-
ing occurs, and Raman squeezing gradually disappears.

D. Variation of A, ¢4, and ¢»

Raman gain is favored at large pump detuning, and we
have concentrated on this regime in this paper. For large
pump switching is dominated by the dispersive mechanism,

FIG. 8. Pump input-output curve with indicated squeezing rangeand is characterized chiefly by the unsaturated frequency

for g, =16.73. All other parameters are as in Fig. 3.

pump squeezing begins to appear, and occurs only on t
pump branch corresponding to the nonzero Raman fiel
Pump squeezing is maximurfvariance of 0.93B at g,

pulling which in this regime behaves @ !, as does the

Raman gain. The form of the system behavior can thus be
eserved under large changesAinprovided corresponding
odifications are made to the cavity detunings and the pump

and Raman gain coefficients. For example, increasing

=21.27, but persists to lowey, values, even when the 20B  gecreases the unsaturated frequency pulling, which must be
curve is no longer bistable, as illustrated in Fig. 8 wherecompensated by increasing the pump a@in Since the ef-

g,=16.73.

C. Variation of atomic decay rates

fective pump intensity decreases As?, the required in-
crease ing, is more than linear, which in turn requires that
pump frequency be moved further away from the empty cav-

The main sensitivity of the system to the atomic rates idty resonance. For the Raman field, gain is reduced due to the

that positive Raman gain requir€s>1";, and this gain in-

increase inA| and must be compensated by increasing

creases as the difference between these two rates increasé8€ Raman switching behavior is preserved by adjusfing
Changingl', andI'; through the values that allow Raman in the same direction ag,. For example, the input-output
gain causes only minor changes to the curves in Fig. 3, wit®ystem behavior shown in Fig. 3 can be essentially repro-

Raman output increasing as eithiés increases ofl’; de-
creases. Raman squeezing occurs for almost all valuEs of
andI’, that allow Raman gain, providdd, does not become
larger than approximately O[ive note that with the chosen
scaling (in terms of y'%), T';,T', are limited to values be-
tween 0 and R Optimal Raman squeezing occurs fbg
=1 and I'y=0, where for a pump amplitude of&2«
=1.66, V4(*=0.24)=0.8123. Pump squeezing has an opti-
mal value of V,,(w)=0.892 at 2/x=1.57, wherl’ ;=0 and
I'»=1, and may coexist with Raman squeezifpgovided
I';=<0.05 andI', is in the range 0.791

Changing one ofy, or vy, over a large range has only a
minor effect on the deterministic input-output curves. Under
change of y,, Raman squeezing exists for 093,
<0.975 and its optimum value 0f4(0)=0.674 occurs at
the upper end of this rangey,=0.975, and 2/x=1.88.
Pump squeezing, on the other hand, occurs onlyyjf
=<0.02, and achieves a best value of 0.9428+pr0. Un-
der change ofy,, Raman squeezing exists for<Oy,
=<0.942 and its optimum value of ;(w)=0.697 occurs for
v,=0.942, Z2/x=1.806, w=0. We note that pump squeez-
ing does not occur whilg, retains the value it has in Fig. 3
(7p=0.058).

Given the choice of population decay rates in Figy?,
may be reduced to of order 0.1 byf cannot be decreased

1

pump spectral variance
e o

%o o ©

(Y- i

4
%0

=
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—

I
%

e

raman spectral variance
[=,}

o
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8 6 4 -2 0 2
®

o
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below about 0.5. When increasing these rates, it is realistic F|G. 9. Intensity fluctuation spectid,(w) and Vj(w) for the

that both should be increased together, and this causes tBgse in which we found the greatest Raman squeezing of 0.2982.
switching region of the 20B curve to move to smaller valuesParameters arey'®=1.111, y**=1.907, I';=0, I',=1.751, y,

of input field. The Raman branch tends to move to lower=

1.270, ,=0.547, g,=51.810, g,=36.635, k=0.219, ¢;=

regions on the 20B curve ag] decreases, and to higher —2.19, ¢,=3.28, A= —656.814.
g 18 g
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duced for a choice of parametets= —600, g,=47.75, ¢,  ously, and require numerical solution. From the results of an

=-—2.95,0,=18.97, $,=0.2. extensive investigation of the system behavior, in which the
squeezing spectrum is directly calculated, we have found that
E. General observations the model gives enhanced regimes and quality of squeezing

S impl Il ch teristi f th 4R compared to earlier models. Squeezing occurs predominantly
Ome sSimp ebovhera_ characbens 'Ci 0 ed Pumlrl) and Ray, the switching regime, and may also occur outside the good
man squeezing benavior have been observed in a parametg&vity limit. Neither of these regimes have been previously

reﬁymes .fxﬁmmsdh F!rst,. Raman tsquheezmg is only S€€lbnsidered. Both the transmitted pump field and the Raman
when switching behavior IS present, whereas pump Squeegs, 4 may exhibit squeezing behavior, sometimes in coexist-
ing may be found even when no bistability or switching be-

havior is present(e.g., Fig. 8. Both Raman and pump We have explored in some detail the dependence of pump

Squeez“'?g are found only on parts of the input-output CUNV&nd Raman squeezing on the various system parameters and
with positive slope, and the regions may ovgrl.ap, put PUMRye have shown that squeezing improves(iasthe cavity
squeezing generally occurs at lower pump driving fields th‘i"?jecay rate decreasd$,) pump gain increases, ariii) Ra-
Raman squeezing. The lowest valu_e of Rama’? INENSIY an spontaneous decay rage increases. Our results also
spectral variance that we have found in our exten5|ye ParaMionfirm the earlier observatiorl8] that Raman squeezing
eter search is the valueﬁ(0)=0.2982(see Fig. 9 which is increases as the Raman gain increases. By calculating the
greater Raman squeezing than has been previously report ueezing spectrum directly, we have found it need not be
Lorentzian. Finally, although perfect squeezing has not been
IX. CONCLUSION found, we have shown that very low values of the spectral

Previous treatments of squeezing in Raman lafkgs- ~ variance are possible.
18] employed simplified models which only cover a limited
regime of the atomic or figld Qynamics. We have preser_ngd a ACKNOWLEDGMENTS
more complex model which includes a quantum description
of the pump field and treats the effects of the atom and field We thank Crispin Gardiner and Craig Savage for valuable
dynamics on the quantum noise. The equations which arisdiscussions. This work was supported under FRST Contract
are correspondingly more complex than they were previlNo. UOO613.

APPENDIX A

We present the complete equation of motionBgZ) in the positiveP representation obtained using the method of Smith
and Gardinef22]. The first-order terms begin on lifé1a), the second-order terms on litalb), and the third-order terms
on line ( Alc):

A2 ( i wpar ;_+—J_* to)-Lliwal ;_T+_*J—+ = Al
o o fopa— Satgpliste P fwpa’ = Sa’+gy 13t e (Ala)

A A
- _—( —loB— E,B‘Fngza) - TT('wr,BT_ E/f”'gf;'zg)

B B

J I - T TN T ey et
——(—lwzdiz— Y1 J1st gpaDa—0; BI1r) — T+(|w31‘]13_ Y1913+ 9pa'D31— 9, 8'31))

3313 i3

J N T << T Jd o T PR I
— = (—lw3dy= ¥ gy adipt gy BD32)_7+(|¢032~]23_ Y123~ 9pa'J151 9 B'D3o)

dd53 23

J H - _1 2_* _* _+ . _T_* J H _+ _l 2_+ . _T_* _* _+
— = (—lwadp= YVt gy adyst 9,81 — = (1w~ ¥i 1ot Gpar Jpst gy By

331, Mip

0 TR L TD AT oS i
_F(VON+V1D31+V2D32_29pa J13=29pad13- 0,8 I3~ 97 BIzs)

31

J = N N __T_* _*_+ __T_* _*_+

— —(SoN+51D31+5,D3p—~gpr I3~ 9 ady3— 29, 8" I3~ 207 BI53)
P P — P — P —

— Tro\]lg_ — — -"0313— — — I’OJ23— — — r0J23 (Alb)

9D 31013 9D310313 9D 31053 9D 310353
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2 P P 72 .
— =Tl — — ' J ———=ToD31— —=——=(roD3x+SeD31)
P2 o P P 2 A
— ———se) i —==Sodis~ ——=Sodz~ ——SoJ3~ ——="S0)1>
9D 320d13 ID 37015 ‘9D325~]23 9D 320353 07D32¢9~]12
— TS le TSOD32 — ng13+ — ng + : —(N+ D31+ D32)
0"D320\]12 0”D32&D32 (90107D31 12 ﬁa&\]
2 — 72 2 E* 92— 92 —
_T— + == 9 ~]+ - (N+D31+ D32) ——0;Jy3 —=—0:J13
Ja o7D31 Ja 07J12 Ja (9-.]13 0-'B& 32 d 12
i g A _*_+ & ok 1+ 4 :
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L O 7 p313+ T p323 (ALo)
dadd 031, dadd 5031, i 30353
N
OpJ2s OpJd1 (SRNEP) OpP31
— 3 — o 3 | 3 = = 3
aanlsaJ23 dadd 501, dadd 3937, dadd 39D,
. J° 9pD32 7 OpJis 7 QEJIS_'_ 7 OpJ2s
daddigDsy 3 9a'ad0dg da’ 937507, 9’93505,
N »? g;J2+3+ 9 gpJ12 9 9;312_’_ 3 gpDa1
00193035 3 dataipady, 3 9atadnedi, 3 9a'9dgDs 3
N & gp D32 & 9rd13 7 gr‘]1+3+ 7 9rdas
007930 3 9BaILAIL 3 9BadLIYn 3 9Badiddy 3
N 9 gr‘]2+3+ J ngIZ+ P gr‘]1+2+ J 9:D3;
(93&]233323 3 B3I 330d1, 3 9B3I330d1, 3 9B 339D 3 3
N 3 9:D3> & g:‘JI3+ & ngfs_i_ & Ordn
3,3532307[)32 3 9B 93530913 3 9B 9353031 3 9B 93530953
N 9 o5 Jzs P g:‘JI2+ & gf‘]fz_i_ & or D3y
5',3T07323'5'323 3 9B 9353091, 3 9B 9353037, 3 B9 30D 3 3
& 97 D.
L7 r Da2 P(2).
9B 93,590 3,
|
where 1

Z=(a,aT,,B,ﬂT,st,JI3,J2+3,J£3,J1+2,JIZ,D31,D32),

- 1~ ~ _
r0:§(rl_r2_27p_7r)i

r1=§(_2F1_F2_27p_ Ye)s

M= (F1+2F2 27p 7r)

O.)II—‘
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— 1 -~ - = _
50:§(_F1+F2_ Yp—2%),

— 1 ~ ~ = _
51:§(ZF1+ Lo=vp—=2v),

- 1 - I _
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APPENDIX B

The noise correlation terms for the noises appearing in
Egs. (31)—(42) are as follows. These correspond to the
second-order terms of the FPE given in Appendix A, but
have undergone the scaling and transformation to a rotating

frame as described in the text:
(Fa(Op, (1)) = —gpdizd(t—t'),
(Tat(DTp, (1)) =—gpIisd(t—t"),
(Ta(OF (1)) =gpdaad(t—t"),

(Tt (1) =05 Iz8(t—t"),

(To(OT52(t))= %(H Dayt+ D3y S(t—t'),

g*
(Tt (O (1)) =5 (1+Dar+ Dgp a(t—t'),

(PO p (1) =—grIpd(t—t"),

(Par(Dp (1)) = —gF IHa(t—t'),

(Tp(OT (1) = 5 (1+ Dyt Da S(t—1'),

*

O
(Lt (1)) = ?(1+ D31+ D3y a(t—t’),

<Fﬁ(t)FJIZ(t/)>: grJzo(t—t'),

(Tt (t)) =07 Ijsd(t—t"),

(T (DT p (1)) = —rodpd(t—t'),
(T (DT (1)) = = sodppd(t—t'),
(Ta: (DT p ()= —Todfzd(t—t'),
(T3 (O p ()= = sedfad(t—t"),
(T3 (0T o, (') = —Todzd(t—t),
(T (DT b, (1) = —Sodzad(t—t'),
(T (DT, (1)) =—2roDad(t—t"),
(Tp, (DT p (t'))=—(roDsz+SoD3) S(t—t'),
(T (DT (1)) = —Trodpd(t—t"),
(Tp g (D= (t)=—rodpd(t—t),
(T (DT g (1)) = =T odpad(t—t"),
(Tp(OIp (1)) =—250Dad(t—t"),
(To (O (1)) = —sedpd(t—t"),
(To (DT (1)) = —sedyad(t—t"),
(Tp (DT 5 (1)) = —sedpa8(t—t).

APPENDIX C

The fifteen equations obtained using the definiti¢h3)
are as follows. These equations are independent of the Ra-
man frequency:

U U,+g,U fu,
=—«kU,+ +—,
1 17 9;Ug N
. K _ . FU2
U2:_§U2+¢1U3+ng4_|(8_8 )+_._N,

Uz

' K
Us=—5Us= iUt gpUrt(ete™)+ N

. L'y
4
Us=— 71U+ AU;—gUg+ gpU1gUo+ W,

' K, .23
Us=—|5 7 |Ust(¢$2—4)Ug
r
g u
+7 (Usla= Ul +
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g
Ugt+ ¢doUg+ %(U8U2+U5U3)

. K

(UaU;+Uyp) L
+ + +—,
Or 41 13 \/N

. Iy
7
Ury=—91U7—AU,4—g,Ug+ gpU1gUs+ W

' K 2 9p
Ug=— R Us_(¢2_A)U5—§(U6U2+U9U3)
FUB
+29r(U11U1+U12)+W,
. K 9p
Ug=— §+1 U9_¢2U6+7(U8U3—U5U2)
FUQ

+0,(U-U;+U )+ —,
g,(UsU,q 14) \/N

Uio= —dp(UsU+U7U3)—g,Ug+rg

Uio

+riUqot r2U11+_\/N ,

: g
Uy=— ?p(u4u2+ UsU3)—2g,Ug+sp+51Usg

r

: 9p Ugp
Up=—292U — —(UyUs+Uq3Us)+g,UUg+ —,
12 Y1 VY12 2 14Y3 13U2) T 9,U11Vsg N

Uss=—(y2+ 1)U+ AU 14+ gp(U 1o~ Usg)Up

Uig

Or
+ =(UgU,—U:U;)+9g,UUg+—,
2(84 sU7)+9,U1Us \/N

Uss=—(¥2+1)U14~ AUt gp(U1o— Us9)Us

Uis

Or
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: g
Uis=—2U35+ %(U14U3+U13U2)

Uss

+ %(U6U4+ UgU,) + W
where
Ly, =Tgp+T 8",
Ly, ==l +il,r,
Ly, =T+l
Iy,=—ily +ily:,
Py =—i350 p+13pal gt =18y +1B'T 5,
Py,= =1l g+ i3l gt =B +iB'T 5,
FU7=FJ1—3+ FJ1+3,
Lyy=J3l g+ I3l gt + BTy + BTy,
Lyg=Jpl g+ 00 gt + BT+ BT 5,
FU10:FD311
y,=To,,
Fulzer2+3J£3+FJ;3J;3’
Typ,= 13505 4135052 =130 oo +i3 150 52,
Ty, =d2alos,+ 950 5e + 350 + 315505
Ty, =Todio+ T3,
TheI‘Ui cannot be expressed in terms of thg, however
the noise correlationﬁ“ui(t)l“uj(t’» which are used in cal-

culating the spectrum can, by using the correlations in Ap-
pendix B, and the definitions in E¢43).
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