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Intensity squeezing in a Raman laser

A. Eschmann and R. J. Ballagh
Physics Department, University of Otago, Dunedin, New Zealand

~Received 30 June 1998!

Quantum noise suppression in a Raman laser is investigated theoretically using a model system of homo-
geneously broadened three-state atoms, driven by an external pump field. Arbitrary pump, Raman, and cavity
detunings are allowed, and the full dynamical response of the system is included in the treatment of quantum
noise. The behavior of the intensity squeezing of both the pump and Raman fields is reported for a wide
parameter regime in which optically bistable switching occurs.@S1050-2947~99!03407-1#

PACS number~s!: 42.55.Ye, 42.50.Dv, 42.50.Lc
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I. INTRODUCTION

The phenomenon of Raman lasing has attracted a g
deal of theoretical and experimental study. Much of t
work has been concerned with the deterministic behavio
the system, such as fundamental mechanisms of Raman
~e.g., Refs.@1–3#!, or the nonlinear dynamical and switchin
behavior@4–8#. Studies of specifically quantum-mechanic
properties of the Raman field are fewer and have conc
trated mainly on the description of initiation, and the analy
of the large-scale fluctuations observed in the build up
Stokes pulses~e.g., Refs.@9–12#!. The possibility of quan-
tum noise suppression~or squeezing! has only recently been
recognized and a number of calculations have been m
@13–18# which show that the statistics of the Raman fie
may deviate from Poissonian. However, in all of those tre
ments the models used are quite limited, and in this pape
make significant extensions to the models and find this le
to enhanced regimes and quality of squeezing.

In the previous treatments of Raman squeezing, the pu
laser field is treated as a prescribed classical field, and
atomic dynamics are adiabatically eliminated by assump
of the good cavity limit. However, the Raman laser is a co
plex dynamical system, and the states of the intraca
pump and Raman fields, including the Raman frequency,
dynamically determined by an interplay between fields a
atoms. Of the previous treatments, only Schernthanner
Ritsch @18# allow for the possibility of detunings betwee
fields, atoms, and cavity, but they ignore the dynamical
ture of the Raman frequency and make it a prescribed va
In the current paper, we retain the atomic dynamics,
fully incorporate the effect of the field detunings. The iss
of detunings is an important one; for example, the switch
and nonlinear dynamical behavior previously observed
Raman lasers@7–19# depend critically on the detunings be
tween fields, cavity resonances, and atomic transitions.
results show that squeezing occurs primarily in the regim
where switching occurs, as could perhaps have been an
pated, since it is here that the effects of system nonlinea
are greatest.

As in the previous treatments of squeezing@13–18#, our
model consists of a collection of homogeneously broade
three-state atoms in thel configuration, but we allow the
pump field to be detuned both from its atomic transition a
the vacuum cavity resonance. The~vacuum! cavity reso-
PRA 601050-2947/99/60~1!/559~14!/$15.00
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nance for the Raman field is also an adjustable paramete
the theory, but the Raman frequency is a system variable
is determined by the system behavior. We employ a ma
equation treatment which describes the full dynamical
sponse of the atomic system, and includes the quantum n
in a comprehensive manner. The complexities of the mo
are sufficient that the standard techniques@20,21# for con-
verting the master equation to quantum stochastic differen
equations must be replaced by the more general phase-s
methods of Smith and Gardiner@22#, and numerical methods
are required to find the squeezing behavior. We carry ou
extensive investigation of the squeezing that can occur in
transmitted pump field and the Raman field, and give a s
tematic summary of the squeezing behavior within the
gimes of switching and its dependence on system par
eters. Previous papers have concentrated on calculating
MandelQ parameter, and in those papers where the squ
ing spectrum was considered, since the adiabatic limit is
sumed, the eigenvalues of the drift matrix were taken to
ways be real, yielding Lorentzian spectra. We calculate
squeezing spectrum directly, and find that it can be far fr
Lorentzian.

The paper is organized as follows. A detailed descript
of the system is given in Sec. II, and the master equatio
obtained from the Hamiltonian. In Sec. III, we derive th
Fokker-Planck equation for fields and atoms using
method of Smith and Gardiner, and the quantum stocha
differential equations~QSDEs! are then written down in an
appropriately scaled form. A method for solving for th
steady-state system behavior is outlined in Sec. IV, and
Sec. V the stochastic equations are linearized. Some b
categories of possible steady-state deterministic behavior
the dependence on system parameters are discussed in
VI. In Sec. VII, the squeezing calculation is outlined, and
Sec. VIII results are presented.

II. DESCRIPTION OF THE SYSTEM

The atomic system is modeled as a collection ofN sta-
tionary three-state atoms in thel configuration@19,25#. The
various processes occurring between the three states are
played in Fig. 1. We allow for detunings between the pum
~at frequencyvp) and Raman~at frequencyv r) fields and

their corresponding atomic transition@D̄5vp2(v32v1)

5vp2v31 and D̄ r5v r2(v32v2)5v r2v32, respec-
559 ©1999 The American Physical Society
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560 PRA 60A. ESCHMANN AND R. J. BALLAGH
tively#. D̄85D̄ r2D̄ is the detuning from exact two-photo
resonance. All quantities are initially introduced in S.I. uni
but will subsequently be rescaled into dimensionless un
For clarity, those quantities which later appear in dimensi
less form are indicated here with a bar. The Hamiltonian
the system can be written as a sum of free contributi
(HF), interaction contributions (HI), and decay contribu-
tions (HD), in the electric dipole and rotating wave approx
mations:

H5HF1HI1HD , ~1!

where

HF5HPF1HRF1HAF , ~2!

HI5HAP1HAR1HEP , ~3!

HD5HPD1HRD1HA1D1HA2D1HA3D , ~4!

and

HPF5\vp
cp̂†p̂, ~5!

HRF5\v r
cr̂ †r̂ , ~6!

HAF5 (
m51

N

~\v1ŝ11
m 1\v2ŝ22

m 1\v3ŝ33
m !, ~7!

HAP5 (
m51

N

i\~ ḡpŝ13
m p̂†2ḡp* ŝ13

†mp̂!, ~8!

HAR5 (
m51

N

i\~ ḡr ŝ23
m r̂ †2ḡr* ŝ23

†m r̂ !, ~9!

HEP5 i\~ p̂†«̄e2 ivpt2 p̂«̄* eivpt!, ~10!

HPD5~ p̂†ĵp1 p̂ĵp
†!, ~11!

HRD5~ r̂ †ĵ r1 r̂ ĵ r
†!, ~12!

FIG. 1. The three-state atom model showing detunings
population transfer rates~in scaled units!.
,
s.
-
r
s

HA1D5 (
m51

N

~ ŝ13
†mĴp1ŝ13

m Ĵp
†1ŝ23

†mĴ r1ŝ23
m Ĵ r

†!, ~13!

HA2D5 (
m51

N

~ ŝ33
m ẑ31ŝ22

m ẑ21ŝ11
m ẑ1

1 ẑ3
†ŝ33

m 1 ẑ2
†ŝ221 ẑ1

†ŝ11
m !, ~14!

HA3D5 (
m51

N

~ ĥ2
†ŝ12

m 1ŝ12
†mĥ21ĥ1ŝ12

†m1ŝ12
m ĥ1

†!. ~15!

The various contributions to the Hamiltonian have the f
lowing meanings.

~i! HPF is the free Hamiltonian for the pump cavity fiel
mode, wherevp

c is the empty-cavity resonant frequency clo

est to the actual pump frequencyvp , andp̂ is the destruction
operator for the pump photon.

~ii ! HRF is the free Hamiltonian for the Raman cavity fie
mode, wherev r

c is the empty-cavity resonant frequency clo

est to the Raman frequencyv r and r̂ is the destruction op-
erator for the Raman photon. We note thatv r is not a pre-
determined frequency, but instead is determined by
operating conditions of the system.

~iii ! HAF is the free Hamiltonian for the atoms. The ene
gies of the three atomic states are\v1 , \v2, and\v3.

~iv! HAP and HAR describe the dipole coupling of th

atoms to the pump and Raman fields, respectively, whereḡp

and ḡr are the dipole coupling constants for the 3→1 and
3→2 transitions, respectively.

~v! HEP describes the driving of the cavity pump mode

a classical field of amplitude«̄ and frequencyvp .
~vi! HPD andHRD describe leakage of the pump and R

man fields from the cavity. The reservoir operators for e

ergy dissipation areĵp and ĵ r , respectively.
~vii ! HA1D describes spontaneous emission on both

pump and Raman transitions, with reservoir operatorsĴp

andĴ r .
~viii ! HA2D describes dephasing of the atomic level pop

lations due to elastic collisions.ẑ1 , ẑ2 , ẑ3, are the reservoir
operators associated with this process.

~ix! HA3D describes population transfer between the t

lower states due to inelastic collisions. Hereĥ1 and ĥ2 are
the reservoir operators. The 1→2 transition is modeled by a
negative temperature heat bath@23#.

From this Hamiltonian a master equation for the ato
field system~where reservoir operators have been traced o!
can easily be written down using standard techniques@23#
and is given as follows:

ṙ5
2 i

\
@HPF1HRF1HAF1HAP1HAR1HEP ,r# ~16!

1LPDr1LRDr1LA1Dr1LA2Dr1LA3Dr, ~17!

where

d
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LPDr5
k̄

2
~np

l 11!~2p̂r p̂†2 p̂†p̂r2r p̂†p̂!

1
k̄

2
np

l ~2p̂†r p̂2 p̂p̂†r2r p̂p̂†!, ~18!

LRDr5
k̄

2
~nr

l 11!~2r̂r r̂ †2 r̂ †r̂r2r r̂ †r̂ !

1
k̄

2
nr

l ~2r̂ †r r̂ 2 r̂ r̂ †r2r r̂ r̂ †!, ~19!

LA1Dr5 (
m51

N
ḡp

2
~11np

sp!~2ŝ
13

m rŝ
13

m†2ŝ33
m r2rŝ33

m !

1
ḡp

2
np

sp~2ŝ13
m†rŝ13

m 2ŝ11
m r2rŝ11

m !

1
ḡ r

2
~11nr

sp!~2ŝ23
m rŝ23

m†2ŝ33
m r2rŝ33

m !

1
ḡ r

2
nr

sp~2ŝ23
m†rŝ23

m 2ŝ22
m r2rŝ22

m !, ~20!

LA2Dr5 (
m51

N
k̄3

2
~2ŝ33

m rŝ33
m 2ŝ33

m r2rŝ33
m !

1
k̄2

2
~2ŝ22

m rŝ22
m 2ŝ22

m r2rŝ22
m !

1
k̄1

2
~2ŝ11

m rŝ11
m 2ŝ11

m r2rŝ11
m !, ~21!

LA3Dr5 (
m51

N
Ḡ2

2
~2ŝ12

m rŝ12
m†2ŝ22

m r2rŝ22
m !

1
Ḡ1

2
~2ŝ12

m†rŝ12
m 2ŝ11

m r2rŝ11
m !. ~22!

The coefficientsḡp andḡ r are the EinsteinA rates for the
pump and Raman transitions, respectively, and the ca
decay rates for the pump and Raman fields have been

sumed to be equal and are denoted byk̄. The atomic dephas

ing ratesk̄1 , k̄2, and k̄3 ~associated with states 1, 2, and

respectively!, and the transfer ratesḠ1 ~from 1→2) andḠ2
~from 2→1) incorporate the thermal bath perturber numb
The thermal photon numbersnp

l and nr
l ~associated with

leakage of pump and Raman photons from the cavity!, and
np

sp and nr
sp ~associated with spontaneous emission on

pump and Raman transitions! have been included for gene
ality, but are small at optical frequencies and will hencefo
be neglected.
ty
s-

,

r.

e

h

III. THE FOKKER-PLANCK EQUATION

We now derive an equation of motion for the quasipro

ability function, P(Z), whereZ5„ā,ā†,b̄,b̄†,J̄13
1 ,J̄13

2 ,J̄23
1 ,

J̄23
2 ,J̄12

1 ,J̄12
2 ,D̄31,D̄32) are thec-number equivalents of the

atomic and field operators. The resulting equation has
form of a Fokker-Planck equation~FPE!, and is obtained via
the equation of motion for the characteristic functionx(l),
which is defined in terms of the density matrix as

x~l!5Tr$rO~l!%5Tr$rOA~l!OF~l!%, ~23!

where l5(l1 ,l2 ,l3 ,l4 ,l5 ,l6 ,l7 ,l8 ,l9 ,l10,l11,l12) is
the Fourier-space equivalent of thec numbersZ, andO(l) is
a product of exponential operators involvingl and the sys-
tem operators.

A derivation of the FPE, using the approach due to Hak
@20#, has been commonly used with two-state atomic syste
@21#, but gives rise to ambiguities in the operator orderi
when applied to three-level systems. We have therefore
plied the phase-space methods of Smith and Gardiner@22#,
who have shown that the product of exponentials of ope
tors,OA(l), appearing in the definition ofx(l) and used by
Haken, can be written equivalently as a product of a lin
combination of operators,

OA~l!5 )
m51

N

~Q1q1D̂31
m 1q2D̂32

m 1c12
1 Ŝ12

1m1c13
1 Ŝ13

1m

1c23
1 Ŝ23

1m1c12
2 Ŝ12

2m1c13
2 Ŝ13

2m1c23
2 Ŝ23

2m!, ~24!

where

D̂ i j
m[ŝ i i

m2ŝ j j
m , ~25!

Ŝ13
2m[ŝ

13

m e2 ikp•rm, ~26!

Ŝ23
2m[ŝ

23

m e2 ikr•rm, ~27!

Ŝ12
2m[ŝ

12

m e2 i (kp2kr )•rm, ~28!

andŜi j
1m5(Ŝi j

2m)†. In the above definitions, individual atom
are labeled by the indexm, and their positions arerm . The
variablesQ, q1 , q2 , c1, andc2 are combinations of thel i ’s.
Since the field operators do not have the ordering proble
of the atomic operators,OF(l) retains the original form

OF~l!5eil4p
ˆ †

eil3r
ˆ†

eil2r
ˆ
eil1p

ˆ
.

This description of the atomic part of the system conta
nine variables, of which one is redundant and needs to
eliminated, since it gives rise to diffusion terms for whic
there are no corresponding drift terms. Smith and Gardi
provide a substitution which eliminates this redundant va
able @22#,

x5QNf ~ il1 ,il2 ,il3 ,il4 ,q1 /Q,q2 /Q,c1/Q,c2/Q!

5QNf ~ il1 ,il2 ,il3 ,il4 ,y1 ,y2 ,x1,x2!. ~29!



-
e

ion

e

th

ha

d
th
p
r

c-
A.
ve
tro

-
be
can

en
ro-
e-

f

stic

562 PRA 60A. ESCHMANN AND R. J. BALLAGH
Upon replacingx on both sides of the equation

ẋ~l!5Tr$ṙO~l!%

with Eq. ~29!, the variableQ is eliminated, leaving an equa
tion of motion for f, the reduced characteristic function. Th
12-dimensional Fourier transform of the equation of mot
for f will yield an equation of motion forP(Z), and can be
arrived at via the following correspondences:

il1→2
]

]ā
,

]

] il1
→ā,

il2→2
]

]b̄
,

]

] il2
→b̄,

il3→2
]

]b̄†
,

]

] il3
→b̄†,

il4→2
]

]ā†
,

]

] il4
→ā†,

xi j
6→2

]

] J̄i j
6

,
]

]xi j
6
→ J̄i j

6 ,

y1→2
]

]D̄31

,
]

]y
1

→D̄31,

y2→2
]

]D̄32

,
]

]y
2

→D̄32,

whereā, b̄, J̄i j
6 , andD̄ i j arec numbers corresponding to th

operatorsp̂, r̂ , Ŝi j
65(mŜi j

6m , andD̂ i j 5(mD̂ i j
m , respectively.

Here the bars simply indicate that thesec numbers are not in
a rotated frame, and they will be dropped later when
system is transformed into one.

For the sake of completeness and correctness, we
used the positive-P representation@23# in writing down the
above correspondences, so that we have 12 indepen
complex operators. In this representation, operators and
adjoints cannot be considered as necessarily being com
conjugate, however for simplicity we will later restrict ou
attention to such a classical subspace.

The resulting equation of motion for the distribution fun
tion P(Z) is rather lengthy, and is thus given in Appendix
It contains terms up to third order in the derivatives, howe
we can show that these third-order terms are small by in
ducing the scaling@23#

ã5
ā

AN
, b̃5

b̄

AN
, «̃5

«̄

AN
, J̃i j

15
J̄i j

1

N
,

~30!

J̃i j
25

J̄i j
2

N
, D̃ i j 5

D̄ i j

N
, g̃p5ḡpAN.
e

ve

ent
eir
lex

r
-

With this substitution, drift terms are independent ofN, sec-
ond derivative terms are proportional to 1/N, and third-order
terms are proportional to 1/N2. In the atomic system we con
sider here,N is large enough that the third-order terms can
neglected. Dropping these terms gives us the FPE which

be made dimensionless by rescaling the time tot5tḡ'
12,

where ḡ'
12 is an overall decay rate for the dipole betwe

states 1 and 2, and its definition in terms of previously int
duced quantities is given in Appendix A. All rates and fr

quencies~including «̃ and g̃i) are then rescaled in terms o

ḡ'
12, and this scaling is indicated by removing the bar~or

tilde! from each quantity. From this FPE, quantum stocha
differential equations~QSDEs! can be written down, and
then transforming to a rotating frame, for which

ã†e2 ivpt→a†, ãeivpt→a,

b̃†e2 ivr t→b†, b̃eivr t→b,

J̃13
1 e2 ivpt→J13

1 , J̃13
2 eivpt→J13

2 ,

J̃23
1 e2 ivr t→J23

1 , J̃23
2 eivr t→J23

2 ,

J̃12
1 e2 i (vp2vr )t→J12

1 , J̃12
2 ei (vp2vr )t→J12

2 ,

D̃31→D31, D̃32→D32,

we finally obtain the stochastic equations,

ȧ5gpJ13
2 2

k

2
a1 if1a1«1

Ga

AN
, ~31!

ȧ†5gp* J13
1 2

k

2
a†2 if1a†1«* 1

Ga†

AN
, ~32!

ḃ5grJ23
2 2

k

2
b1 i ~f21D8!b1

Gb

AN
, ~33!

ḃ†5gr* J23
1 2

k

2
b†2 i ~f21D8!b†1

Gb†

AN
, ~34!

J̇12
1 5 iD8J12

1 1gpJ23
2 a†1gr* J13

1 b2J12
1 1

GJ
12
1

AN
, ~35!

J̇12
2 52 iD8J12

2 1gp* J23
1 a1grJ13

2 b†2J12
2 1

GJ
12
2

AN
, ~36!

J̇13
1 52 iDJ13

1 1gpD31a
†2grJ12

1 b†2g'
13J13

1 1
GJ

13
1

AN
,

~37!

J̇13
2 5 iDJ13

2 1gp* D31a2gr* J12
2 b2g'

13J13
2 1

GJ
13
2

AN
, ~38!
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J̇23
1 52 iD rJ23

1 2gpJ12
2 a†1grD32b

†2g'
23J23

1 1
GJ

23
1

AN
,

~39!

J̇23
2 5 iD rJ23

2 2gp* J12
1 a1gr* D32b2g'

23J23
2 1

GJ
23
2

AN
, ~40!

Ḋ31522gpJ13
2 a†22gp* J13

1 a2grJ23
2 b†

2gr* J23
1 b1r 01r 1D311r 2D321

GD31

AN
, ~41!

Ḋ3252gpJ13
2 a†2gp* J13

1 a22grJ23
2 b†

22gr* J23
1 b1s01s1D311s2D321

GD32

AN
, ~42!

where f15(vp2vp
c)/ḡ

'

12 and f25(v r2v r
c)/ḡ

'

12 and all
other definitions of symbols~in their unscaled form! have
been given in Appendix A or Sec. II. TheG i represent the
noise terms, whose correlations are given in Appendix B

The deterministic parts of these equations can be sh
to reduce, in the classical subspace@24# ~wherea†5a* ), to
those given by Xiaet al. @19# as expected.

IV. STEADY-STATE SOLUTIONS

In the positive-P representation, there are 24 variables
our system, for which we need to find steady-state solutio
However, because of the detunings in the problem, it is v
difficult to find steady-state solutions outside the class
subspace, and so we restrict our attention to the 12 vari
regime in which a†5a* , b†5b* , (Ji j

1)* 5Ji j
2 , and

(Di j )* 5Di j . Making this assumption gives QSDEs, whic
are the same as those that would be obtained if the Glau
SudarshanP representation were used. Within a lineariz
analysis our results should not be affected by limiting o
attention to the classical subspace, since departure from t
solutions is expected only when the quantum noise beco
large. Thus the diffusion matrix remains positive semide
nite and the eigenvalues non-negative, provided we res
ourselves to the regime in which the linearization is val
Even with this simplification, a numerical approach is r
quired to solve for the system in steady state.

The first step in solving the equations is to eliminate
unknown Raman frequencyv r from the problem, since it is
determined by the system itself and will change as the las
conditions change. The elimination can be accomplished
transforming the QSDEs into a new set of fifteen equati
in the following variables@25#:

U15ubu2,

U31 iU 252a,

U71 iU 452J13
2 ,
n

s.
y
l
le

er-

r
se

es
-
ict
.
-

e

g
y
s

U81 iU 552bJ23
1 ,

U91 iU 652bJ12
2 ,

~43!
U105D31,

U115D32,

U125J23
1 J23

2 ,

U141 iU 1352J12
2 J23

2 ,

U155J12
1 J12

2 .

The Raman frequencyv r is not present in these variable
and we now have 15 equations and 15 unknowns. These
given in Appendix C. In converting the scaled QSDEs toUi
variables, we have ignored the Ito contributions@26# which
arise. This is a valid approximation, since the Ito contrib
tions are of orderN21 smaller than the dominant QSD
contributions. We have used the packageAUTO @27# in order
to solve the deterministic parts of these equations in
steady state, and to perform a stability analysis on the s
tions.

V. LINEARIZATION OF STOCHASTIC EQUATIONS

We will be interested in calculating the intensity noi
spectrum of both the pump and the Raman fields, thus
eliminate the pump field variablesU2 and U3 in favor of
intensity and phase variables, using

I a5
U3

21U2
2

4
,

fa5
1

2i
lnFU31 iU 2

2 G .
We emphasize that the Raman phase does not appear i
resulting system of equations, since it has been explic
eliminated.

The QSDEs are linearized about the steady-stateUi , I a ,
andfa values to first order in 1/AN, according to

U5U01
dU

AN
,

I a5I a
01

dI a

AN
,

fa5fa
01

dfa

AN
,

and the resulting equations have the form

S ddU~ t !

ddI a~ t !

ddfa~ t !
D 52AS dU~ t !

dI a~ t !

dfa~ t !
D dt1B dW~ t !, ~44!
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whereA is the drift matrix andBBT the diffusion matrix of
the system, both easily obtained from the FPE.

VI. DETERMINISTIC SYSTEM BEHAVIOR

A detailed analysis of the deterministic behavior of th
Raman system as a function of input driving field has pre
ously been carried out by Xia@25#. For the convenience o
the reader we briefly review the main features of interest
rich variety of behavior is found, and examples which rep
sent typical behavior are shown in Figs. 2 and 3, where
output pump and Raman amplitudes are plotted against
input pump amplitude 2«/k. ~We note that all field ampli-
tudes plotted are intracavity values.! In these figures, stable
solutions are displayed as a solid line, and unstable solut
as dashed or dotted lines. It is easy to show@e.g, see Ref.
@19#, Eq.~17!# that the system always has a solution in whi
the Raman field is zero and the pump output obeys the e
tion of two-state optical bistability@19#. This ‘‘two-state’’
OB solution~which we call the 2OB branch! is shown by the
curve made up of a thin solid line and a dotted line. Ho
ever, in the region between the open circles, the 2OB bra
is unstable and an additional, nonzero, Raman solution
the corresponding pump solution@shown as thick solid lines

FIG. 2. Pump and Raman input-output curves. The intraca
pump and Raman output amplitudes,uau and ubu respectively, are
plotted on the vertical axes, and the pump input field 2«/k is plot-
ted horizontally. The branches corresponding to the nonzero Ra
field are indicated by heavy solid lines~stable region! and dashed
lines ~unstable region!. The branches corresponding to the zero R
man field are indicated by lighter solid lines~stable! and dotted
lines ~unstable!. The threshold points for Raman lasing are ind
cated by the open circles. Parameters areg

'

1351, g
'

2351, G1

50.065, G250.8, gp50.058, g r50.025, gp523.66, gr516.73,
k50.4, f1521, f251.5, D52600.
i-

A
-
e

he

ns

a-

-
ch
nd

~where stable! and dashed lines~where unstable!# appear. In
Fig. 3, where the 2OB branch has an S shape, the non
Raman solution and its associated pump solution sh
switching behavior at both the lower and upper thresh
points.

The physics underlying the Raman switching behav
seen in Figs. 2 and 3 has been discussed by Xia@25# in terms
of nonlinear coupling termsh andh r , which are defined for
the pump and Raman fields, respectively, as

h52gpJ13
2 /a

and

h r52grJ23
2 /b.

Re(h) represents the~amplitude! loss coefficient and Im(h)
the dispersive phase shift~or frequency pulling! for the pump
field, while 2Re(h r) is the Raman~amplitude! gain coeffi-
cient and Im(h r) the Raman frequency pulling. Xiaet al.
@19# have also shown that Raman switching in the contex
frequency scanning can be understood in terms of the be
ior of h and h r . For the reader’s convenience, we briefl
outline the argument here as related to the intensity sc
using Fig. 3 as an example. We begin by describing
pump behavior. The solution branch for the pump is dom
nated by the behavior of the pump dispersion Im(h), since
the pump detuningD is very large. The resonant cavity fre
quencyvp

o for the pump is given byvp
o5vp

c1Im(h), but
the pump frequency~which is externally determined! is set
betweenvp

c and the unsaturated value ofvp
o . In the absence

of Raman lasing, Im (h) bleaches as the pump field intensi

y

an

-

FIG. 3. Pump and Raman input-output curves. Parameters
the same as for Fig. 2 except thatD52300. The range of squeez
ing is indicated by crosses, and the point of best squeezing b
closed circle.
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PRA 60 565INTENSITY SQUEEZING IN A RAMAN LASER
increases, causing the cavity to become more resonant
the pump cavity field to grow. This positive feedback situ
tion leads ~under appropriate conditions! to an upward
switch of the pump intensity. The steady-state behavior h
simple analytic description on the 2OB branch@19#,

uau25
u«u2

@k/21Re~h!#21@f12Im ~h!#2
, ~45!

whereh is given by Eq.~17! of @19#, andf1 is the vacuum
cavity detuning of the pump field. In the dispersive regim
we are considering, the switching~i.e., the bend in the 2OB
curve! occurs where the effective cavity intensity becom
sufficiently large to bleach the phase shift Im(h) to a value
close tof1, thus allowing the cavity to become near res
nant.

The Raman solution is driven by a different mechanis
Raman lasing occurs when there is sufficient Raman g
~for given pump intensity! to match the cavity loss, i.e.

22Re~h r !5k. ~46!

Raman frequency pulling is small in the regime of Fig.
and plays no significant role in the deterministic Raman o
put amplitude behavior. The Raman gain is therefore the
mechanism, and its behavior in the relevant regime is sho
in Fig. 4, where it is plotted as a function ofuau andubu, with
all other parameters fixed at values corresponding to Fig
The contour shows the trajectory thatuau and ubu must fol-
low to satisfy Eq.~46!, and has endpoints at the lower an
upper thresholds for Raman lasing. When the Raman fi
first turns on at the lower threshold, it contributes additio
bleaching to the pump phase shift, causing an abrupt incr
in pump amplitude~by the dispersive mechanism and fee
back described above! and a corresponding jump~i.e.,
switch! occurs in the Raman field in order to remain on t
contour of Fig. 3. As the pump input is further increased,
pump cavity field continues to increase, and the Raman fi
adjusts to an appropriate value, following the contour in F
4. Eventually at high enough pump field, Raman las
ceases.

FIG. 4. Raman gain,2Re(h r), as a function of pump and Ra
man field amplitudes for the parameters of Fig. 3.
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VII. CALCULATION OF SQUEEZING SPECTRA

The majority of squeezing calculations in the optical b
stability context have concentrated on quadrature phase
tuations. In the case of a Raman laser, however, where
frequency of the output field is dependent on operating c
ditions, the local oscillator phase cannot be controlled, a
so it is more appropriate to study the intensity fluctuations
the pump and Raman fields. Previous Raman squeezing
pers have calculated the MandelQ parameter, and inferred
Lorentzian squeezing spectrum. Here we calculate dire
the intensity fluctuation spectrum internal to the cavity a
cording to

S~v!5
1

2p
~A1 iv!21BBT~AT2 iv!21,

in which A is the drift matrix andBBT is the diffusion ma-
trix, given by Eq.~44!. We shall find that the spectrum i
often not at all Lorentzian. The normalized variance of
tensity fluctuations in modej external to the cavity is ob-
tained from the (j , j ) element of the spectral matrixS(v), as

Vj j ~v!5112p
kSj j ~v!

I j
0

.

A value of Vj j (v) of 1 corresponds to the shot-nois
limit. For squeezed lightVj j (v) is between 0~perfectly
squeezed light! and 1. In this paper we are only interested
the two components ofVj j (v) corresponding to the pump
field and the Raman field, which we will denoteVa(v) and
Vb(v), respectively.

VIII. SQUEEZING BEHAVIOR

We have numerically investigated the squeezing of
Raman and pump fields for a broad range of parameters,
in this section we survey the main behavior trends. This s
vey is intended to provide a good representation of bro
classes of behavior: an exhaustive listing of all possible ty
of behavior is not practicable. We begin with the case sho
in Fig. 3, which represents the most typical system behav
Other types of behavior can be obtained by the system
variation of parameters presented below. In Fig. 3, squee
in the Raman field occurs in the range between the cros
The smallest value of the spectral variance for these par
eters was found at the point marked by the filled circle
Fig. 3 (2«/k51.42), and the squeezing spectrum at t
point is shown in Fig. 5 and is clearly not Lorentzian. T
smallest value ofVb(v) ~which corresponds to the max
mum squeezing! is 0.937 at frequenciesv560.19. The
pump intensity fluctuations are also presented and show
no squeezing in the pump field occurs for this choice
system operating point.

A. Dependence onk

As the cavity decay ratek is reduced, Raman squeezin
increases, an effect related to the increased Raman lasing
will then occur. The Raman output occurs over a wider ran
@since less gain is now required, see Eq.~46!#, while the
region of bistable behavior on the 2OB curve moves
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higher intensities~because the unsaturated cavity pulling h
increased!. This is illustrated in Fig. 6, wherek has been se
to 0.04, causing the Raman output curve to become a w
and taller loop than in Fig. 3. The increased stable rang
the Raman output ask is decreased leads to a larger range
pump driving field amplitudes over which Raman squeez
is found to occur.

The best squeezing is found for the lower driving fie
amplitudes on the stable part of the Raman branch, andk
decreases from the value of 0.4 used in Fig. 3, the dips in
Raman squeezing spectra become deeper and narrowe
move in towardsv50, as expected as the adiabatic limit
approached. Atk50.12, the two dips coalesce into a sing

FIG. 5. Intensity fluctuation spectrum for pump,Va(v) ~solid
line!, and Raman,Vb(v) ~dashed line!, output fields at the system
operating point corresponding to the closed circle in Fig. 3. T
dotted line indicates the shot-noise level.

FIG. 6. Pump and Raman input-output curve with indica
squeezing range fork50.04. All other parameters are as in Fig.
s

er
of
f
g

e
and
one centered onv50, where Vb(0)50.74. No pump
squeezing occurs with the choice of parameters in Fig. 3,
any value ofk. These results indicate that although sque
ing is improved by operating in the good cavity limi
squeezing outside of this limit is also possible.

B. Dependence ongr and gp

As the Raman gaingr increases, Raman squeezing im
proves. The 2OB curve is not altered by the changes ingr ,
but the positions of the Raman threshold points are affec
moving further apart asgr increases~as shown in Fig. 7!, and
moving closer together asgr decreases, until Raman lasin
ceases atgr56.93. No pump squeezing occurs for an
change ofgr alone, but Raman squeezing increases in de
and occurs for a larger range of driving field asgr increases
to the value 118.32@where Vb(0)50.694 at pump field
2«/k50.552]. The best squeezing is found for the low
values of the stable part of the pump driving field rang
Beyond gr5118.32, Vb(v) appears to saturate. Scher
thanner and Ritsch@18# observed similar behavior using
simplified model of the Raman process.

As gp is increased from the value used in Fig. 3, t
Raman squeezing first improves, reaching a minimum v
ance of 0.75 forgp528, and then degrades rapidly as t
length of the stable part of the Raman branch diminishes,
eventually disappears~at approximatelygp528.54). Corre-
spondingly, the 2OB input-output curve develops increas
nonlinearity asgp increases, which is a well-known resu
@28#. When gp is decreased from the value used in Fig.
Raman squeezing decreases, and then disappears at a
of gp of about 23. A little below this value~at gp522.94),

e

FIG. 7. Pump and Raman input-output curves with indica
squeezing ranges forgr516.73 and 37.42. All other parameters a
as in Fig. 3.
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PRA 60 567INTENSITY SQUEEZING IN A RAMAN LASER
pump squeezing begins to appear, and occurs only on
pump branch corresponding to the nonzero Raman fi
Pump squeezing is maximum~variance of 0.933! at gp
521.27, but persists to lowergp values, even when the 2OB
curve is no longer bistable, as illustrated in Fig. 8 whe
gp516.73.

C. Variation of atomic decay rates

The main sensitivity of the system to the atomic rates
that positive Raman gain requiresG2.G1, and this gain in-
creases as the difference between these two rates incre
ChangingG2 and G1 through the values that allow Rama
gain causes only minor changes to the curves in Fig. 3, w
Raman output increasing as eitherG2 increases orG1 de-
creases. Raman squeezing occurs for almost all values oG1
andG2 that allow Raman gain, providedG1 does not become
larger than approximately 0.1@we note that with the chose
scaling ~in terms of g'

12), G1 ,G2 are limited to values be
tween 0 and 2#. Optimal Raman squeezing occurs forG2
51 and G150, where for a pump amplitude of 2«/k
51.66, Vb(60.24)50.8123. Pump squeezing has an op
mal value of Va(v)50.892 at 2«/k51.57, whenG150 and
G251, and may coexist with Raman squeezing~provided
G1&0.05 andG2 is in the range 0.7–1!.

Changing one ofgp or g r over a large range has only
minor effect on the deterministic input-output curves. Und
change of gp , Raman squeezing exists for 0.03<gp
<0.975 and its optimum value ofVb(0)50.674 occurs at
the upper end of this range,gp50.975, and 2«/k51.88.
Pump squeezing, on the other hand, occurs only ifgp
<0.02, and achieves a best value of 0.9428 forgp→0. Un-
der change ofg r , Raman squeezing exists for 0,g r
<0.942 and its optimum value ofVb(v)50.697 occurs for
g r50.942, 2«/k51.806,v50. We note that pump squeez
ing does not occur whilegp retains the value it has in Fig.
(gp50.058).

Given the choice of population decay rates in Fig. 3,g'
13

may be reduced to of order 0.1 butg'
23 cannot be decrease

below about 0.5. When increasing these rates, it is real
that both should be increased together, and this cause
switching region of the 2OB curve to move to smaller valu
of input field. The Raman branch tends to move to low
regions on the 2OB curve asg'

i j decreases, and to highe

FIG. 8. Pump input-output curve with indicated squeezing ra
for gp 516.73. All other parameters are as in Fig. 3.
he
d.

e

s

ses.

th

-
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s
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regions asg'
i j increases. For example, at smallg'

13, the Ra-
man threshold points are both on the lower branch of
2OB curve, while forg'

135g'
2355 the lower Raman thresh

old is in the negative slope region of the 2OB curve, and
upper threshold is on the upper 2OB branch. At small val
of g'

13, both pump and Raman squeezing may coexist.
values ofg'

13 andg'
23 above those in Fig. 3, no pump squee

ing occurs, and Raman squeezing gradually disappears.

D. Variation of D, f1, and f2

Raman gain is favored at large pump detuning, and
have concentrated on this regime in this paper. For largeD,
pump switching is dominated by the dispersive mechani
and is characterized chiefly by the unsaturated freque
pulling which in this regime behaves asD21, as does the
Raman gain. The form of the system behavior can thus
preserved under large changes inD, provided corresponding
modifications are made to the cavity detunings and the pu
and Raman gain coefficients. For example, increasinguDu
decreases the unsaturated frequency pulling, which mus
compensated by increasing the pump gaingp . Since the ef-
fective pump intensity decreases asD22, the required in-
crease ingp is more than linear, which in turn requires th
pump frequency be moved further away from the empty c
ity resonance. For the Raman field, gain is reduced due to
increase inuDu and must be compensated by increasinggr .
The Raman switching behavior is preserved by adjustingf2
in the same direction asf1. For example, the input-outpu
system behavior shown in Fig. 3 can be essentially rep

FIG. 9. Intensity fluctuation spectraVa(v) and Vb(v) for the
case in which we found the greatest Raman squeezing of 0.2
Parameters areg

'

1351.111, g
'

2351.907, G150, G251.751, gp

51.270, g r50.547, gp551.810, gr536.635, k50.219, f15
22.19, f253.28, D52656.814.

e
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duced for a choice of parametersD52600, gp547.75, f1
522.95, gr518.97,f250.2.

E. General observations

Some simple overall characteristics of the pump and
man squeezing behavior have been observed in all param
regimes examined. First, Raman squeezing is only s
when switching behavior is present, whereas pump squ
ing may be found even when no bistability or switching b
havior is present,~e.g., Fig. 8!. Both Raman and pump
squeezing are found only on parts of the input-output cu
with positive slope, and the regions may overlap, but pu
squeezing generally occurs at lower pump driving fields th
Raman squeezing. The lowest value of Raman inten
spectral variance that we have found in our extensive par
eter search is the valueVb(0)50.2982~see Fig. 9!, which is
greater Raman squeezing than has been previously repo

IX. CONCLUSION

Previous treatments of squeezing in Raman lasers@13–
18# employed simplified models which only cover a limite
regime of the atomic or field dynamics. We have presente
more complex model which includes a quantum descript
of the pump field and treats the effects of the atom and fi
dynamics on the quantum noise. The equations which a
are correspondingly more complex than they were pre
-
ter

en
z-

-

e
p
n
ty

-

ed.

a
n
ld
se
i-

ously, and require numerical solution. From the results of
extensive investigation of the system behavior, in which
squeezing spectrum is directly calculated, we have found
the model gives enhanced regimes and quality of squee
compared to earlier models. Squeezing occurs predomina
in the switching regime, and may also occur outside the g
cavity limit. Neither of these regimes have been previou
considered. Both the transmitted pump field and the Ram
field may exhibit squeezing behavior, sometimes in coex
ence.

We have explored in some detail the dependence of pu
and Raman squeezing on the various system parameters
we have shown that squeezing improves as~i! the cavity
decay rate decreases,~ii ! pump gain increases, and~iii ! Ra-
man spontaneous decay rateg r increases. Our results als
confirm the earlier observation@18# that Raman squeezin
increases as the Raman gain increases. By calculating
squeezing spectrum directly, we have found it need not
Lorentzian. Finally, although perfect squeezing has not b
found, we have shown that very low values of the spec
variance are possible.
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APPENDIX A

We present the complete equation of motion forP(Z) in the positive-P representation obtained using the method of Sm
and Gardiner@22#. The first-order terms begin on line~A1a!, the second-order terms on line~A1b!, and the third-order terms
on line ~ A1c!:

]P~Z!

]t
5H 2

]

]ā
S 2 ivpā2

k̄

2
ā1ḡpJ̄13

2 1 «̄ D 2
]

]ā†
S ivpā†2

k̄

2
ā†1ḡp* J̄13

1 1 «̄* D ~A1a!

2
]

]b̄
S 2 iv r b̄2

k̄

2
b̄1ḡr J̄23

2 D 2
]

]b̄†
S iv r b̄

†2
k̄

2
b̄†1ḡr* J̄23

1 D
2

]

] J̄13
2

~2 iv31J̄13
2 2ḡ'

13J̄13
2 1ḡp* āD̄312ḡr* b̄ J̄12

2 !2
]

] J̄13
1

~ iv31J̄13
1 2ḡ'

13J̄13
1 1ḡpā†D̄312ḡr b̄

†J̄12
1 !

2
]

] J̄23
2

~2 iv32J̄23
2 2ḡ'

23J̄23
2 2ḡp* ā J̄12

1 1ḡr* b̄D̄32!2
]

] J̄23
1

~ iv32J̄23
1 2ḡ'

23J̄23
1 2ḡpā†J̄12

2 1ḡr b̄
†D̄32!

2
]

] J̄12
2

~2 iv21J̄12
2 2ḡ'

12J̄12
2 1ḡp* ā J̄23

1 1ḡr b̄
†J̄13

2 !2
]

] J̄12
1

~ iv21J̄12
1 2ḡ'

12J̄12
1 1ḡpā†J̄23

2 1ḡr* b̄ J̄13
1 !

2
]

]D̄31

~ r̄ 0N1 r̄ 1D̄311 r̄ 2D̄3222ḡpā†J̄13
2 22ḡp* ā J̄13

1 2ḡr b̄
†J̄23
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]D̄32
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1 22ḡr b̄
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r̄ 0J̄13
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1 2
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ḡr* J̄23
1 1

]2

]b̄†] J̄12
1
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ḡp* J̄13
2

3
1

]3
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]ā†] J̄13
2 ] J̄12

2
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ḡr J̄12
2

3
1

]3

]b̄] J̄23
1 ] J̄12

1
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]b̄] J̄23
1 ]D̄31

ḡr D̄31

3

1
]3

]b̄] J̄23
1 ]D̄32

ḡr D̄32

3
1

]3

]b̄†] J̄23
2 ] J̄13

2

ḡr* J̄13
2

3
1

]3

]b̄†] J̄23
2 ] J̄13

1

ḡr* J̄13
1

3
1

]3

]b̄†] J̄23
2 ] J̄23

2

ḡr* J̄23
2

3

1
]3

]b̄†] J̄23
2 ] J̄23

1

ḡr* J̄23
1

3
1

]3

]b̄†] J̄23
2 ] J̄12

2

ḡr* J̄12
2

3
1

]3

]b̄†] J̄23
2 ] J̄12

1

ḡr* J̄12
1

3
1

]3

]b̄†] J̄23
2 ]D̄31

ḡr* D̄31

3

1
]3

]b̄†] J̄23
2 ]D̄32

ḡr* D̄32

3 J P~Z!,
where

Z5„ā,ā†,b̄,b̄†,J̄13
1 ,J̄13

2 ,J̄23
1 ,J̄23

2 ,J̄12
1 ,J̄12

2 ,D̄31,D̄32),

r̄ 05
1

3
~ G̃12G̃222ḡp2ḡ r !,
r̄ 15
1

3
~22G̃12G̃222ḡp2ḡ r !,

r̄ 25
1

3
~ G̃112G̃222ḡp2ḡ r !,
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s̄05
1

3
~2G̃11G̃22ḡp22ḡ r !,

s̄15
1

3
~2G̃11G̃22ḡp22ḡ r !,

s̄25
1

3
~2G̃122G̃22ḡp22ḡ r !,

and

ḡ'
125

~ k̄11k̄21Ḡ11Ḡ2!

2
,

ḡ'
135

~ k̄11k̄31Ḡ11ḡp1ḡ r !

2
,

ḡ'
235

~ k̄21k̄31Ḡ21ḡp1ḡ r !

2
.

APPENDIX B

The noise correlation terms for the noises appearing
Eqs. ~31!–~42! are as follows. These correspond to t
second-order terms of the FPE given in Appendix A, b
have undergone the scaling and transformation to a rota
frame as described in the text:

^Ga~ t !GD31
~ t8!&52gpJ13

2 d~ t2t8!,

^Ga†~ t !GD31
~ t8!&52gp* J13

1 d~ t2t8!,

^Ga~ t !GJ
12
1~ t8!&5gpJ23

2 d~ t2t8!,

^Ga†~ t !GJ
12
2~ t8!&5gp* J23

1 d~ t2t8!,

^Ga~ t !GJ
13
1~ t8!&5

gp

3
~11D311D32!d~ t2t8!,

^Ga†~ t !GJ
13
2~ t8!&5

gp*

3
~11D311D32!d~ t2t8!,

^Gb~ t !GD32
~ t8!&52grJ23

2 d~ t2t8!,

^Gb†~ t !GD32
~ t8!&52gr* J23

1 d~ t2t8!,

^Gb~ t !GJ
23
1~ t8!&5

gr

3
~11D311D32!d~ t2t8!,

^Gb†~ t !GJ
23
2~ t8!&5

gr*

3
~11D311D32!d~ t2t8!,

^Gb~ t !GJ
12
2~ t8!&5grJ13

2 d~ t2t8!,

^Gb†~ t !GJ
12
1~ t8!&5gr* J13

1 d~ t2t8!,
in

t
ng

^GJ
12
1~ t !GD31

~ t8!&52r 0J12
1 d~ t2t8!,

^GJ
12
1~ t !GD32

~ t8!&52s0J12
1 d~ t2t8!,

^GJ
13
1~ t !GD31

~ t8!&52r 0J13
1 d~ t2t8!,

^GJ
13
1~ t !GD32

~ t8!&52s0J13
1 d~ t2t8!,

^GJ
23
1~ t !GD31

~ t8!&52r 0J23
1 d~ t2t8!,

^GJ
23
1~ t !GD32

~ t8!&52s0J23
1 d~ t2t8!,

^GD31
~ t !GD31

~ t8!&522r 0D31d~ t2t8!,

^GD31
~ t !GD32

~ t8!&52~r 0D321s0D31!d~ t2t8!,

^GD31
~ t !GJ

12
2~ t8!&52r 0J12

2 d~ t2t8!,

^GD31
~ t !GJ

13
2~ t8!&52r 0J13

2 d~ t2t8!,

^GD31
~ t !GJ

23
2~ t8!&52r 0J23

2 d~ t2t8!,

^GD32
~ t !GD32

~ t8!&522s0D32d~ t2t8!,

^GD32
~ t !GJ

12
2~ t8!&52s0J12

2 d~ t2t8!,

^GD32
~ t !GJ

13
2~ t8!&52s0J13

2 d~ t2t8!,

^GD32
~ t !GJ

23
2~ t8!&52s0J23

2 d~ t2t8!.

APPENDIX C

The fifteen equations obtained using the definitions~43!
are as follows. These equations are independent of the
man frequency:

U̇152kU11grU81
GU1

AN
,

U̇252
k

2
U21f1U31gpU42 i ~«2«* !1

GU2

AN
,

U̇352
k

2
U32f1U21gpU71~«1«* !1

GU3

AN
,

U̇452g'
13U41DU72grU61gpU10U21

GU4

AN
,

U̇552S k

2
1g'

23DU51~f22D!U8

1
gp

2
~U9U22U6U3!1

GU5

AN
,
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U̇652S k

2
11DU61f2U91

gp

2
~U8U21U5U3!

1gr~U4U11U13!1
GU6

AN
,

U̇752g'
13U72DU42grU91gpU10U31

GU7

AN
,

U̇852S k

2
1g'

23DU82~f22D!U52
gp

2
~U6U21U9U3!

12gr~U11U11U12!1
GU8

AN
,

U̇952S k

2
11DU92f2U61

gp

2
~U8U32U5U2!

1gr~U7U11U14!1
GU9

AN
,

U̇1052gp~U4U21U7U3!2grU81r 0

1r 1U101r 2U111
GU10

AN
,

U̇1152
gp

2
~U4U21U7U3!22grU81s01s1U10

1s2U111
GU11

AN
,

U̇12522g'
23U122

gp

2
~U14U31U13U2!1grU11U81

GU12

AN
,

U̇1352~g'
2311!U131DU141gp~U122U15!U2

1
gr

2
~U8U42U5U7!1grU11U61

GU13

AN
,

U̇1452~g'
2311!U142DU131gp~U122U15!U3

1
gr

2
~U5U41U8U7!1grU11U91

GU14

AN
,

U̇15522U151
gp

2
~U14U31U13U2!

1
gr

2
~U6U41U9U7!1

GU15

AN
,

where

GU1
5Gb†b1Gbb†,

GU2
52 iGa1 iGa†,

GU3
5Ga1Ga†,

GU4
52 iGJ

13
2 1 iGJ

13
1 ,

GU5
52 iJ23

1 Gb1 iJ23
2 Gb†2 ibGJ

23
1 1 ib†GJ

23
2 ,

GU6
52 iJ12

2 Gb1 iJ12
1 Gb†2 ibGJ

12
2 1 ib†GJ

12
1 ,

GU7
5GJ

13
2 1GJ

13
1 ,

GU8
5J23

1 Gb1J23
2 Gb†1bGJ

23
1 1b†GJ

23
2 ,

GU9
5J12

2 Gb1J12
1 Gb†1bGJ

12
2 1b†GJ

12
1 ,

GU10
5GD31

,

GU11
5GD32

,

GU12
5GJ

23
1J23

2 1GJ
23
2J23

1 ,

GU13
52 iJ23

2 GJ
12
2 1 iJ23

1 GJ
12
1 2 iJ12

2 GJ
23
2 1 iJ12

1 GJ
23
1 ,

GU14
5J23

2 GJ
12
2 1J23

1 GJ
12
1 1J12

2 GJ
23
2 1J12

1 GJ
23
1 ,

GU15
5GJ

12
1J12

2 1GJ
12
2J12

1 .

TheGUi
cannot be expressed in terms of theUi , however

the noise correlationŝGUi
(t)GU j

(t8)& which are used in cal-
culating the spectrum can, by using the correlations in A
pendix B, and the definitions in Eq.~43!.
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