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Copropagation of two waves of different frequencies and arbitrary initial polarization states
in an isotropic Kerr medium

E. López Lago and R. de la Fuente
Escola Universitaria de Optica e Optometria, Departamento de Fı´sica Aplicada, Universidade de Santiago de Compostela,

Galicia, Spain
~Received 27 October 1998!

Using a circularly polarized basis, we derive the differential equations governing the copropagation of two
waves of different frequencies and arbitrary initial amplitudes and polarizations in an isotropic Kerr medium,
and we give exact analytical solutions for waves that are initially linearly polarized. In this latter case, the
ellipticities and orientations of both polarization ellipses generally vary periodically as the waves propagate
through the medium; when each wave is linearly polarized, the deviation of the orientation of its polarization
ellipse from its initial value is either zero or close to its maximum value. Situations are identified in which this
deviation is close top/2, thus allowing one wave to switch the other on and off with the aid of a linear
polarizer placed at the exist from the medium. All the results obtained are generalizable to copropagation in
nonbirefringent optical fibers.@S1050-2947~99!02707-9#

PACS number~s!: 42.65.2k, 42.81.Gs, 42.25.Ja
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I. INTRODUCTION

When several waves copropagate in a Kerr medium, th
occur phase shifts that depend on the intensity of each w
This phenomenon is called self-phase modulation~SPM! or
cross-phase modulation~XPM! depending on whether th
phase shift is induced by the self-interaction of each wave
by coupling among different waves. Competition betwe
the two processes can lead to changes in the polarizatio
the waves. In the case of two interacting waves of the sa
frequency but different polarizations~degenerate XPM!, the
polarization ellipse of the total wave is rotated. In the case
an intense linearly polarized wave accompanied by a pr
wave of different frequency, the birefringence induced by
former alters the polarization state of the latter; this effec
the nonlinear analogue of the linear birefringence effect t
takes place in a retardation plate, and is generally known
light-induced linear birefringence. Since the pioneering wo
of Duguay and Hansen@1# on the optical Kerr gate, severa
all-optical devices based on light-induced linear birefr
gence have been proposed for purposes such as modula
sampling, switching and amplification@2–7#. Moreover, in
short light pulses nondegenerate XPM causes spectral br
ening and wavelength shifts leading to timing changes
pulse shaping@8–13#. Finally, XPM can be used to allow a
intense pump beam to focus or guide a probe beam@14–19#,
and for measurement of nonlinear indices of refraction
Kerr coefficients@20–22#.

Typically, the effects and applications of nondegener
XPM or light-induced linear birefringence have been an
lyzed or developed for the copropagation of an intense pu
wave and a probe wave weak enough for its self-action
its effects on the pump wave to be negligible. As far as
know, the only published research on interaction betw
waves of similar intensities has concerned waves with mu
ally parallel or orthogonal linear polarization used to creat
bound pair of optical solitons@23–27#; in these situations, no
change in polarization occurs. In this paper, we analyze
PRA 601050-2947/99/60~1!/549~10!/$15.00
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steady-state polarization changes induced in each other
in themselves by two waves of different frequencies, ar
trary intensities and arbitrary initial polarization that c
propagate in a Kerr medium. Each wave is considered
induce birefringence affecting the polarization of both. Sp
cial attention is paid to waves that are initially linearly p
larized, and to the influence of the initial angle between th
directions of polarization; we show that as each wa
traverses the medium its state of polarization varies wit
period that depends on the physical parameters charact
ing the process. This effect may allow light-induced birefri
gence to be exploited in situations more general than
pump-and-probe configurations explored hitherto.

We note that the results of this paper are valid for bo
isotropic bulk media and nonpolarizing optical fibers,
which the power required for significant polarization chang
is several orders of magnitude smaller due to light confi
ment.

The organization of the paper is as follows. In Sec. II w
derive the equations governing the evolution of the am
tude and phase of each wave, and we present some co
vation laws that are useful for their solution. In Sec. III w
find analytical solutions for the special case of waves that
initially linearly polarized; discuss their dependence on
parameters of the medium, the relative amplitudes of
waves and the initial relative orientation of their polarizati
axes; and identify situations ensuring absolute change
orientation ofp/2 allowing one beam to switch the other o
and off with the aid of a linear polarizer placed at the e
from the medium.

II. THE NONLINEAR EQUATIONS

In this section we derive differential equations describi
the evolution of the amplitudes and phases of two waves
frequenciesv1 and v2 propagating along theZ axis of a
nonlinear isotropic Kerr medium. We write the electric fie
in the medium as
549 ©1999 The American Physical Society
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550 PRA 60E. LÓPEZ LAGO AND R. de la FUENTE
EW ~rW,t !5EW 1~z!e2 iv1t1EW 2~z!e2 iv2t1c.c. ~1!

The third-order nonlinear polarization of the medium
each frequencyv j ( j 51,2) may be written as the sum of tw
contributions, the first representing the action of the wave
the same frequency~responsible for SPM! and the second the
action of the other wave~responsible for XPM!:

PW j
nl~z!53«0x~3!~v j ;v j ,v j ,2v j !]EW j•EW j•EW j* 16«0

3x~3!~v j ;v j ,v32 j ,2v32 j !]EW j•EW 32 j•EW 32 j* ,

j 51,2. ~2!

To simplify, we neglect the frequency dependence ofx (3)

and write

x iklm5x iklm
~3! ~v1 ;v1 ,v1 ,2v1!5x iklm

~3! ~v2 ;v2 ,v2 ,2v2!,

x iklm8 5x iklm
~3! ~v1 ;v1 ,v2 ,2v2!5x iklm

~3! ~v2 ;v2 ,v1 ,2v1!.
~3!

Since in an isotropic medium

x iklm
~3! 5d ikd lmx1122

~3! 1d i l dkmx1212
~3! 1d imdklx1221

~3! ~4!

~see, for example, Ref.@28#!, and since intrinsic permutatio
symmetry may be imposed to setx11225x1212, Eq. ~2! can
now be written in the form

PW j
nl~z!53«0@~x11221x1212!~EW j•EW j* !EW j1x1221~EW j•EW j !EW j* #

16«0@x11228 ~EW 32 j•EW 32 j* !EW j1x12128 ~EW j•EW 32 j* !EW 32 j

1x12218 ~EW j•EW 32 j !EW 32 j* # ~5!

or, relative to the basis composed of the circularly polariz
stateseW 65(xW6 iyW )/&, in the form

Pj 6
nl 56«0$@x1122uEj 6u21~x11221x1221!uEj 7u2#Ej 6

1@~x11228 1x12218 !uE32 j 6u2

1~x11228 1x12128 !uE32 j 7u2#Ej 6

1~x12218 1x12128 !~E32 j 6E32 j 7* !Ej 7%, ~6!

whereEj 6 is the coefficient ofeW 6 in the expression ofEW j
with respect to this basis:

EW j~z!5Ej 1~z!eW 11Ej 2~z!eW 2 . ~7!

The first term on the right-hand side of each Eqs.~6!
corresponds to the SPM of the circularly polarized com
nent, the second to degenerate~same-frequency! XPM, the
following two to nondegenerate XPM coupling compone
with different frequencies, and the last to four-wave mixi
causing energy exchange among the various field com
nents~see below!.

Equations~6! and ~7! can now be introduced into th
wave equation. If we ignore backward-propagating wav
considering only two forward-propagating waves with wa
t

f

d

-

s

o-

s,

numberskj5v jnj /c, wherenj is the linear refractive index
at frequencyv j , then standard manipulations afford th
coupled equations

]Ej 6

]z
2 ik jEj 65 i

3v j

njc
$@x1122uEj 6u2

1~x11221x1221!uEj 7u2]Ej 6

1@~x11228 1x12218 !uE32 j 6u2

1~x11228 1x12128 !uE32 j 7u2#Ej 6

1~x12218 1x12128 !~E32 j 6E32 j 7* !Ej 7%. ~8!

These equations imply conservation of the quantities

Cj5uEj 1u21uEj 2u2,

C65
nj

v j
uEj 6u21

n32 j

v32 j
uE32 j 6u2. ~9!

Conservation ofCj means that the power flow at frequenc
v j remains invariant, i.e., that the flux of photons of fr
quencyv j is conserved, while the conservation ofC1 and
C2 means that the flux of photons with a given helici
~left-handedness or right-handedness! is also constant. Thes
four conserved quantities are related by

n1

v1
C11

n2

v2
C25C11C2[I , ~10!

which states that the total photon flux is also invariant.
The conserved quantitiesCj andI can be used to simplify

the differential equations~8! by replacingEj 6 with the nor-
malized field

U j 65A nj

v j I
Ej 6 expF2 i S kj1

3v j

njc
„x1122Cj

1~x11228 1x12128 !C32 j…D zG ~11!

andz with

s5
3v1v2I ~x12128 1x12218 !

n1n2c
z. ~12!

Note that sinces scales with bothz and I, increasing the
total field intensity has the same effect as increasing
length of medium traversed by the same factor. In terms
U j 6 ands, Eqs.~8! become

]U j 6

]s
5 i Fv jn32 j

v32 jnj
muU j 7u2U j 61nuU32 j 6u2U j 6

1~U32 j 6U32 j 7* !U j 7G , ~13!

where
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m5
x1221

x12128 1x12218
, n5

x12218 2x12128

x12128 1x12218
. ~14!

Equation~13! implies conservation of the quantity

G5
1

2
~U11U12* U21* U221c.c.!1g1uU11u2uU12u2

1g2uU21u2uU22u2, ~15!

where g j51/2@(v jn32 j /v32 jnj )m1n#. Finally, writing
U j 65aj 6eiw j 6 ~whereaj 6 and w j 6 are real! and defining
u5(w212w22)2(w112w12), we obtain the equations

]aj 6

]s
56~21! ja~32 j !1a~32 j !2aj 1 sinu,

aj 6

]w j 6

]s
5

v jn32 j

v32 jnj
maj 7

2 aj 61na~32 j !6
2 aj 6

1a~32 j !6a~32 j !7aj 7 cosu, ~16!

which can be reduced to the set of five coupled equation

]a11

]s
52a21a22a12 sinu,

]a12

]s
51a21a22a11 sinu,

]a21

]s
51a11a12a22 sinu,

]a22

]s
52a11a12a21 sinu,

]u

]s
5cosuFa21a22S a11

a12
2

a12

a11
D1a11a12S a22

a21
2

a21

a22
D G

12g1~a11
2 2a12

2 !12g2~a22
2 2a21

2 !. ~17!

Note that the magnitudes ofm andn depend on the natur
of the physical process producing the optical nonlinear
For example, if the physical mechanism is the nonreson
electronic response of bound electrons,m51/2 and n50.
Surprisingly, the same values are taken when the nonlin
ity is due to molecular orientation@29#.

Note also that although Eq.~13! has been derived for bulk
isotropic materials, it can be modified to apply to sing
mode nonbirefringent optical fibers by introducing, on t
right-hand side, an overlap integral accounting for the eff
tive area of the mode, as can easily be shown using cou
mode theory@30#. Sinces can be scaled to include the mod
integral, the results of this paper hold for both bulk isotrop
materials and nonpolarizing optical fibers.

Equations~9!, ~10!, and~15! are equivalent to

a11
2 1a12

2 5h1 , a11
2 1a21

2 5h1 ,

a21
2 1a22

2 5h2 , a12
2 1a22

2 5h2 ,
.
nt

r-

-

-
ed

h11h25h11h251,

a11a12a21a22 cosu1g1a11
2 a12

2 1g2a21
2 a22

2 5G,
~18!

where hj5(njCj )/(v j I ) and h65C6 /I @the last of Eqs.
~18! can be obtained from the last of Eqs.~17!#.

These relations allow replacement of sinu and three am-
plitudes in the evolution equation of the remaining amp
tude, and hence solution of Eqs.~17! for given initial condi-
tions. The general solution, which can be expressed in te
of Jacobian elliptic functions, can adopt a great variety
particular forms depending on the initial polarization sta
and, through the parametersg1 and g2 , on the frequencies
and the optical characteristics of the medium. Typically, e
ergy exchange between the waves forces changes in the
larization state with a periodicity that depends upon the
tial conditions~see Fig. 1!. However, there are particular se
of initial conditions for which no energy exchange tak
place, and hence no polarization changes either. Inspec
of Eqs.~17! shows that theaj s (s51,2) remain constant
when the two waves are circularly polarized, and that b
the aj s andu remain constant when they are linearly pola
ized with u50 ~parallel polarization! or u5p ~orthogonal
polarization!. The invariance of two circularly polarized
waves can be considered as a generalization of the w
known fact that a single circularly polarized wave does n
undergo degenerate XPM in an isotropic medium@31,32#. In
the next section we analyze in greater detail the behavio
waves that are linearly polarized when they enter the m
dium.

III. INITIALLY LINEARLY POLARIZED WAVES

In the common case in which both waves are initia
linearly polarized,

a11
2 ~0!5a12

2 ~0!5h1/2,

a21
2 ~0!5a22

2 ~0!5h2/25~12h1!/2,

h15h251/2,

G5
1

4
~h1h2 cosu01g1h1

21g2h2
2!, ~19!

whereu05u(0) is twice the angle between the directions
polarization of the two waves at the input plane of the m
dium. Since Eqs.~17! are invariant under the transformatio
(u↔2u, aj 1↔aj 2), we can restrict our analysis tou0 val-
ues between 0 andp.

To solve Eqs.~17!, we take the first of these equation
and use Eqs.~18! and~19! to obtain an equation in the singl
variable f 5h1/22a11

2 involving the constantsh1 , h2 ,
cosu0 andg5g11g2 . Then

22sA~12g2!r15E
0

y~s! dy

@~12y2!~12my2!#1/2, ~20!
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FIG. 1. Squared amplitude of each circular component as a function of the normalized lengths for the following initial condition~a!
a11

2 (0)5a12
2 (0)50.25, a21

2 (0)50.5, a22
2 (0)50; ~b! a11

2 (0)50.1, a12
2 (0)50.3, a21

2 (0)50.2, a22
2 (0)50.4; ~c! a11

2 (0)5a12
2 (0)

53/8, a21
2 (0)5a22

2 (0)51/8; ~d! a11
2 (0)5a21

2 (0)50.4, a12
2 (0)5a22

2 (0)50.1. In all the figuresu(0)5p/2, v2 /n252v1 /n1 , m50.5,
andn50 ~sog55/8). The solid curve corresponds to the left-handed component of wave 1, the dashed curve to its right-handed co
the dashed-dotted curve to the left-handed component of wave 2, and the dotted curve to the right-handed component of wave
e

where y(s)52 f /Ar2 and m5r2 /r1 , r1 and r2 being
the roots of (h1

2/42 f 2)(h2
2/42 f 2)2@(h1h2 cosu0)/41g f 2#2

50 considered as a quadratic inf 2:

r65
1

4~12g2! H 1

2
1h1h2~g cosu021!

6F1

4
1h1h2~g cosu021!1h1

2h2
2~cosu02g!2G1/2J .

~21!

Since the integral on the right-hand side of Eq.~20! is the
elliptic integral of the first kind with amplitude sin21(y) and
modulusAm, the amplitudesaj 6(s) are given in terms of
the Jacobian elliptic function sn by

a16
2 ~s!5h1/27Ar2 sn„2sA~12g2!r1ur2 /r1…,

a26
2 ~s!5h2/26Ar2 sn„2sA~12g2!r1ur2 /r1… ~22!

so long as 0<m,1. By the definition ofr6 , this condition
is satisfied ifg2,1, since then 0<r2,r1 . If g2.1, in
which caser1<0<r2 and m,0, then it is convenient to
express theaj 6(s) in terms of the Jacobi elliptic function
sd5sn/dn of squared modulusm852m/(12m)5r2 /(r2

2r1).0 @33#:
a16
2 ~s!5h1/27A r2r1

r12r2
sd„2sA~g221!~r22r1!um8…,

a26
2 ~s!5h2/26A r2r1

r12r2
sd„2sA~g221!~r22r1!um8….

~23!

When g251 we can obtain the solution by taking th
limits of the following parameters involved in Eq.~22!:

lim
g2→1

r2

r1
50,

lim
g2→1

2A~12g2!r15@112h1h2~cosu0g21!#1/2,

lim
g2→1

Ar25
h1h2 sinu0

2@112h1h2~cosu0g21!#1/2 ~24!

and since sn(xu0)5sin(x), Eqs.~22! become

a16
2 ~s!5

h1

2 S 17
h2 sinu0

r
sin~rs! D ,

a26
2 ~s!5

h2

2 S 16
h1 sinu0

r
sin~rs! D , ~25!
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FIG. 2. Squared amplitudea11
2 as a function of the normalized length.~a! u05p/2; ~b! u052p/3. We have takeng55/8 and the values

of h1 are as follows: h151/2 ~solid curve!, h152/5 ~dashed curve!, h151/3 ~dashed-dotted curve!, andh151/4 ~dotted curve!.
le

e

n

s
a-

s

e

-

where r5@112h1h2(cosu0g21)#1/2. Finally u(s) is re-
trieved from Eqs.~18! and ~19! as

u~s!5cos21S h1h2 cosu0/41g f 2~s!

A@h1
2/42 f 2~s!#@h2

2/42 f 2~s!#
D . ~26!

In Figs. 2 and 3 we plota16
2 (s) and u(s) for several

values of the physical parameters involved. All the variab
depend periodically ons, with a periodT(cosu0,h1) given by
the properties of the Jacobian elliptic functions as

T5
2

A~12g2!r1

E
0

1 dy

~12y2!~12my2!

5
2K~m!

A~12g2!r1

, g2,1,

T5
2p

r
, g251,

T5
2K~m!

A~g221!~r22r1!
, g2.1, ~27!

whereK(m) stands for the complete elliptic integral of th
first kind. The aj 6

2 vary between the extremes (hj /2
6Ar2). The range of variation ofu depends on the relatio
between cosu0 and 2g min(h1,h2)/max(h1,h2). Assuming,
without loss of generality, thath1<h2 , then if cosu0.
2gh1 /h2, u varies fromu0 at s50 to 0 ats5T/4 and goes
s

on decreasing to2u0 at s5T/2. If, on the other hand,
cosu0,2gh1 /h2, thenu increases fromu0 at s50 to p at
s5T/4 and finally reaches the value 2p2u0 at s5T/2.

If cosu052gh1 /h2, closer analysis is required. In thi
caser25h1

2/4 ~the maximum value it can attain under vari
tion of cosu0 for fixed g and h1), r15(h2 sinu0)

2/4(1
2g2), and ifg2,1 the solutions obtained for the amplitude
@Eqs.~22!# reduce to

a16
2 ~s!5

h1

2
@17sn„~12h1!sin~u0!sum…#,

a26
2 ~s!5

h2

2
6

h1

2
sn„~12h1!sin~u0!sum…, ~28!

where m5@(12g2)/g2#cot2(u0). Substitution into Eq.~26!
now gives

cosu~s!52g
ucn„s~12h1!sinu0um…u

Ah2
2/42sn2

„s~12h1!sinu0um…

, ~29!

which means that whens5T/4, u jumps fromp/2 to 2p/2.
This jump coincides with the point at whicha11 becomes
zero@see Eq.~28!# and]a11 /]s changes sign from negativ
to positive @see Eq.~17!#. From this point on,u decreases
further to attain the value2u0 at s5T/2. However, if h1
5h2 , u remains constant at its initial value, cos21(2g).

As noted above, Eq.~28! implies that if s5(2n11)T/4
~n an integer!, one of the two circularly polarized compo
nents of the wave of frequencyv1 vanishes. However, ifh1
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FIG. 3. Evolution ofu as a function of the normalized length. The parameters are the same as in Fig. 2.
t
-

e
m
e

-
a

ac-
n

rties
ns
approaches the value 1/2, then cosu0 decreases to2g ~we
are still assuming that cosu0 52gh1 /h2), m goes to 1,K(m)
increases without bound, and so too does the period of
waves@see Eq.~27!#, with the result that wave 1 only be
comes circularly polarized at infinity. In fact, atm51 Eq.
~28! becomes

aj 6
2 ~s!5

1

2
@17tanh~A12g2s/2!# ~30!

and since the hyperbolic tangent tends to 1 as its argum
approaches infinity, both waves evolve asymptotically fro
linear polarization towards circular polarization. Since w
have chosen 0<u0<p, wave 1 evolves towards right
handed circular polarization and wave 2 becomes incre
ingly left-handed; the reverse would happen if we tookp
<u0<2p.

Similar analyses can be carried out for the casesg2.1
andg251.
he

nt

s-

The polarization state of each normalized wave is char
terized by the ellipticity and orientation of its polarizatio
ellipse. The evolution of the ellipticity ej5u(aj 1

2

2aj 2
2 )/(aj 1

2 1aj 2
2 )u follows immediately from the results

obtained above:ej (s)5 f 2(s)/hj . The orientation of the ma-
jor axis of the polarization ellipse of wavej with respect to
the X axis, i.e., the azimuthc j , is given by c j5(w j 1
2w j 2)/2[Dw j /2. By Eqs.~16! and ~19!,

]Dw j

]s
52~g12g2! f ~s!1~21! j 21

1

2
~h1h2 cosu01ghj

2!

3
f ~s!

hj
2/42 f 2~s!

~31!

and these equations can be integrated using the prope
and mutual relationships of the Jacobian elliptic functio
@33,34#: for g2,1,
Dw j~s!5Dw j~0!1
1

A12g2 H ~g12g2!lnFdn~xum!2m1/2cn~xum!

12m1/2 G
1~21! j 21

h1h2 cosu01ghj
2

A~hj
224r2!~4r12hj

2!
@ tan21~Amz!2tan21

„Amzcd~xum!…#J , ~32!

wherex52sA(12g2)r1 andz5(4r12hj
2)/(hj

224r2); for g251
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Dw j~s!5Dw j~0!1H ~g12g2!
h1h2 sinu0

r2 ~12cosrs!1~21! j 21
h1h2 cosu01ghj

2

A~rhj !
22~h1h2 sinu0!2

@ tan21~j!2tan21~j cosrs!#J ,

~33!

wherej5Ah1h2 sinu0 /@(rhj)
22(h1h2 sinu0)

2#; for g2.1

Dw j~s!5Dw j~0!1
1

Ag221
H ~g12g2!@sin21~m81/2!2sin21

„m81/2cd~xum8!…#

1~21! j 21
h1h2 cosu01ghj

2

A~hj
224r2!~hj

224r1!
@ tan21~Amz!2tan21

„Amzcn~xum8!…#J , ~34!

FIG. 4. Ellipticity and azimuth of each wave as a function of the normalized length for the sameh1 values as in Figs. 2~b! and 3~b!.
@w1(0)50; w2(0)5u052p/3.#
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FIG. 5. Azimuth variation ats5T/2 as a function of the input phase differenceu0 , for h1 as in Fig. 2,v2 /n252v1 /n1 , m50.5, and
n50(g55/8).
hs

its

c-
s

-
ear
zer
the
e
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d

where x52sA(g221)(r22r1) and z and is defined as
above.

Figure 4 shows the evolution of ellipticities and azimut
under the same conditions as in Figs. 2~b! and 3~b!. The
orientations vary with periodT and the ellipticities with pe-
riod T/2. Whens is an odd multiple ofT/2, each wave is
linearly polarized and the deviation of its azimuth from
initial value,Dc j5c j (T/2)2c j (0), ismaximum or close to
its maximum. Because of the periodicity of the elliptic fun
tions, Eqs.~32! and ~34! imply that in the generic situation
g2,1 andg2.1,

Dc j5
g12g2

A12g2
h~m!1(21) j 21

3
h1h2 cosu01ghj

2

A~12g2!~hj
224r2!~4r12hj

2!

3tan21~Amz!, ~35!

where

h~m!5H tanh21~Am!

sin21~A2m8!

if g2,1
if g2.1. ~36!
In typical applications of light-induced linear birefrin
gence a polarizer is placed at the exit from the nonlin
medium, so that the amount of light passing the polari
depends on the light-induced polarization undergone in
medium. For full optical switching, the polarization ellips
must be rotated byp/2. Figures 5 and 6 suggest that th
value will be attained byuDc j u if u0'cos21(2gh1 /h2) ~we
assume as before thath1<h2); this is theu0 region in which
the curves forh1,h2 in Figs. 5 and 6 show a sharp drop
Dc1 . In fact, writing cosu052g(11d)h1 /h2, Taylor expan-
sion of Eq.~35! affords

Dc j'
g12g2

A12g2
h~m!1sgn~d!

p

2
. ~37!

Thus Dc j can always be made to achieve the valuep/2
by suitable choice of the sign ofd, regardless of the first term
on the right of Eq.~35!. If cosu0 52gh1 /h2 andh1,h2 , we
know already that ats5T/4 u jumps from1p/2 to 2p/2
because the left-handed component of wave 1 undergo
phase shift ofp when it vanishes. This change inw11 means
that c j changes byp/2, and this change is carried forwar
from s5T/4 to s5T/2, so that
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FIG. 6. As for Fig. 5, except thatv2 /n254v1 /n1 andg517/16.
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Dc15
g12g2

A12g2
h~m!1

p

2
. ~38!

Thus if cosu0 52gh1 /h2 andh1,h2 , the rotation of the
polarization ellipse of wave 1 will be roughlyp/2 if the first
term on the right of Eq.~38! is made small byg2 approach-
ing g1 , i.e., byw2 /n2 approachingw1 /n1 .

Equations~35! and ~36! also show that if (g12g2)/(1
2g2)1/2 is not too small, another situation in whichuDc j u
can attain values close top/2, or at least values large enoug
for switching purposes, is whenm approaches unity (g2

,1) or m8 approaches unity (g2.1). If g2,1, m can only
approach unity ifh1'h2 @becauser1 /r25m'1 implies
1/41h1h2(g cosu021)1h1

2h2
2(cosu02g)2'0, and the result

of solving this quadratic in cosu0 must be real#; this case is
therefore of little interest, because in this case cosu0'2g
and soT tends to infinity ash2 approachesh1 ~since cosu0
'2g, this is in fact the limiting case corresponding to t
discussion of the previous paragraph, in consonance
which Fig. 5 shows that for both waves theu0 dependence o
Dc j is qualitatively of the same kind as previously discuss
for wave 1!. If g2.1, m8 approaches unity asr1 approaches
zero, which occurs ifu0'p andh1h2(11g)>0.5. If r1 is
exactly zero~which corresponds to waves with mutually o
thogonal polarization:u5u05p), then f (s)50 @by Eq.
th

d

~23!#, Dw j is constant@Eq. ~31!#, and Dc j is zero ~as we
have already seen in Sec. II!. In the neighborhood ofr1

50, however,uDc j u can be very large for both waves, a
Fig. 6 illustrates. We conclude that the configuration
which the two waves have mutually orthogonal polarizati
is highly unstable under perturbation of the angle betwe
the polarization axes. Since the first term on the right of E
~35! depends ong12g2 , the above analysis predicts th
uDc j u may be large even thoughm8 is relatively small. This
will happen if the two waves have very different frequencie
In this case, however, the assumption that the nonlinear
ceptibility is independent of frequency may not be valid.

IV. CONCLUSIONS

Equations~17! are the differential equations governin
the copropagation of two waves of different frequencies a
arbitrary initial amplitudes and polarizations in an isotrop
Kerr medium. The exact analytical solutions given in Sec.
for the case in which the waves are initially linearly pola
ized show that their amplitudes and the ellipticities and o
entations of their polarization ellipses vary periodically
the waves propagate through the medium in such a way
when each wave is linearly polarized, the deviation of t
orientation of its polarization ellipse from its initial value
either zero or close to its maximum value. The periodT of
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the propagation pattern depends on the initial values of
intensities of the waves and of the relative orientation
their polarization axes, as does the value ofDc j , the devia-
tion in the directions of polarization which occurs at d
tances (2n11)T/2 from the start of the medium~n an inte-
ger!. Situations can occur in whichDc j is close top/2, thus
allowing one wave to switch the other on and off with the a
of a linear polarizer placed at the exit from a medium
l.

.

H

o

pl

n,

n

J

t.
e
f

f

length (2n11)T/2. All the above results are readily gene
alizable to copropagation in nonbirefringent optical fibers
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