PHYSICAL REVIEW A VOLUME 60, NUMBER 1 JULY 1999

Copropagation of two waves of different frequencies and arbitrary initial polarization states
in an isotropic Kerr medium
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Using a circularly polarized basis, we derive the differential equations governing the copropagation of two
waves of different frequencies and arbitrary initial amplitudes and polarizations in an isotropic Kerr medium,
and we give exact analytical solutions for waves that are initially linearly polarized. In this latter case, the
ellipticities and orientations of both polarization ellipses generally vary periodically as the waves propagate
through the medium; when each wave is linearly polarized, the deviation of the orientation of its polarization
ellipse from its initial value is either zero or close to its maximum value. Situations are identified in which this
deviation is close tom/2, thus allowing one wave to switch the other on and off with the aid of a linear
polarizer placed at the exist from the medium. All the results obtained are generalizable to copropagation in
nonbirefringent optical fiber§S1050-29479)02707-9

PACS numbdps): 42.65—k, 42.81.Gs, 42.25.Ja

I. INTRODUCTION steady-state polarization changes induced in each other and
in themselves by two waves of different frequencies, arbi-
When several waves copropagate in a Kerr medium, thergary intensities and arbitrary initial polarization that co-
occur phase shifts that depend on the intensity of each waveropagate in a Kerr medium. Each wave is considered to
This phenomenon is called self-phase modulat®RM) or  induce birefringence affecting the polarization of both. Spe-
cross-phase modulatioXPM) depending on whether the cial attention is paid to waves that are initially linearly po-
phase shift is induced by the self-interaction of each wave olarized, and to the influence of the initial angle between their
by coupling among different waves. Competition betweendirections of polarization; we show that as each wave
the two processes can lead to changes in the polarization #faverses the medium its state of polarization varies with a
the waves. In the case of two interacting waves of the samgeriod that depends on the physical parameters characteriz-
frequency but different polarizatiorgegenerate XPM the ing the process. Th?s eff_ect r_nay_allow light-induced birefrin-
polarization ellipse of the total wave is rotated. In the case off€Nce to be exploited in situations more general than the
an intense linearly polarized wave accompanied by a probBUMP-and-probe configurations explored hitherto.
wave of different frequency, the birefringence induced by the We note that thg results of this paper are Val'd. for bqth
former alters the polarization state of the latter; this effect igsotroplc bulk media and nonpolarizing optical fibers, in

the nonlinear analogue of the linear birefringence effect thaYvhICh the power required for significant polarization changes

X . : Is several orders of magnitude smaller due to light confine-
takes place in a retardation plate, and is generally known a ent

light-induced linear birefringence. Since the pioneering work The organization of the paper is as follows. In Sec. Il we
of Duguay anq Hansefi] on thg opt.lcal Kerr gate' se_vergl derive the equations governing the evolution of the ampli-
all-optical devices based on light-induced linear birefrin-y ,4e and phase of each wave, and we present some conser-
gence have been proposed for purposes such as modulatiQpyion Jaws that are useful for their solution. In Sec. Ill we
sampling, switching and amplificatiof2—7]. Moreover, in  fing analytical solutions for the special case of waves that are
short light pulses nondegenerate XPM causes spectral broagitially linearly polarized; discuss their dependence on the
ening and wavelength shifts leading to timing changes angarameters of the medium, the relative amplitudes of the
pulse shapin¢i8—13]. Finally, XPM can be used to allow an waves and the initial relative orientation of their polarization
intense pump beam to focus or guide a probe ber19,  axes; and identify situations ensuring absolute changes in
and for measurement of nonlinear indices of refraction orgrientation ofx/2 allowing one beam to switch the other on

Kerr coefficientq20-22. and off with the aid of a linear polarizer placed at the exit
Typically, the effects and applications of nondegeneratérom the medium.

XPM or light-induced linear birefringence have been ana-

lyzed or developed for the copropagation of an intense pump

wave and a probe wave weak enough fqr_its self-action and IIl. THE NONLINEAR EQUATIONS

its effects on the pump wave to be negligible. As far as we

know, the only published research on interaction between In this section we derive differential equations describing
waves of similar intensities has concerned waves with mututhe evolution of the amplitudes and phases of two waves of
ally parallel or orthogonal linear polarization used to create drequenciesw; and w, propagating along th& axis of a
bound pair of optical solitong23—27; in these situations, no nonlinear isotropic Kerr medium. We write the electric field
change in polarization occurs. In this paper, we analyze tha the medium as
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E(F,t)=E(z)e 1"+ E,(z)e" 2! +c.c.

)

The third-order nonlinear polarization of the medium at
each frequencw; (j =1,2) may be written as the sum of two

contributions, the first representing the action of the wave ofEj= -~

the same frequendyesponsible for SPMand the second the
action of the other wavéesponsible for XPM

X)((a)(a)j T, 03| ,_(1)3_]') Ej . E3_J" —)g_j y
j=12. 2

To simplify, we neglect the frequency dependence St
and write

_ .3 . _ (3 .
Xiklm_Xi(kI)m(wlrwlvwla_wl)_Xi(kl)m(wbeawZa_wz)!

_ .3 . _ (3 .
Xi,klm_Xi(kl)m(wlvwlvaa_wz)_Xi(kl)m(wZawZ,wl:_wl)-

()
Since in an isotropic medium
4

(see, for example, Ref28]), and since intrinsic permutation
symmetry may be imposed to sgf;,= x1212, EQ. (2) can
now be written in the form

3 3 3 3
Xioim= G OimX 3ozt 8it SkmX 1212+ SimSkiX 1301

ISFI(Z):380[(X1122+X1212)(Ej : EJ*)|§J'7L)(1221(Ej : Ej)éf]
+6e0[ 1104 Ea - E;ffj)éj + X114 B} ngj)é?rj

+X£221(E)j'ésfj)égfj] 5
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numbersk; = w;n;/c, wheren; is the linear refractive index
at frequencyw;, then standard manipulations afford the
coupled equations

97 iKjEj- =i R{[Xuzz“fjﬂ

+(X1122+X1221)|Ej1|2] Ej-
+[(X1122+X1221)|E3—j:|2

+ (X125 X1219 | E3— =1 7IE; =

+ (X1201t X121 (E3—j=E3_j:)Ej=}.  (8)
These equations imply conservation of the quantities

C=|Ej+*+|E;_|%

Ns_

S|Es-
—J

€)

n.
Ct:_J|Ejt|2+
(1)] w3

Conservation ofC; means that the power flow at frequency
o; remains invariant, i.e., that the flux of photons of fre-
quencyw; is conserved, while the conservation ©f and
C_ means that the flux of photons with a given helicity
(left-handedness or right-handedneissalso constant. These
four conserved quantities are related by

n;
+—C,=C,.+C_=I, (10
w2

which states that the total photon flux is also invariant.
The conserved quantiti€s; andl can be used to simplify
the differential equation&d) by replacingE;.. with the nor-

or, relative to the basis composed of the circularly polarizednalized field

states8. = (X=*iy)/v2, in the form

P;ﬂt =650{[ X112 Ej = |*+ (X1125+ X1220 | Ej=|?]E =
+[(X1122T X1220 [E3—j=|?
+ (X112t X1212 |E3-j = |2]Ej1
+ (X122t X121 (E3-j=E3_)Ej=}, (6)

whereE;. is the coefficient ofé.. in the expression oﬁj
with respect to this basis:

E(2)=E;.(2)6,+E;_(2)6_. (7

nj .
th: _Ej:eX —I1

+ (X11227 X1212C3-j)

3(1)J'
ki + R(Xuzzcj

z (11

andz with

. 3w10al (X121 X1207) ,

n,N,C (12

Note that sinces scales with botlz and |, increasing the

total field intensity has the same effect as increasing the

The first term on the right-hand side of each E¢®. length of medium traversed by the same factor. In terms of
corresponds to the SPM of the circularly polarized compol;~ ands, Egs.(8) become
nent, the second to degenerasame-frequengyXPM, the
following two to nondegenerate XPM coupling components
with different frequencies, and the last to four-wave mixing
causing energy exchange among the various field compo-
nents(see below

Equations(6) and (7) can now be introduced into the
wave equation. If we ignore backward-propagating waves,
considering only two forward-propagating waves with wavewhere

&th _ wjng_j

I ——
s (l)3,jnjlu

|Uj:|2Uji+V|U3—ji|2Uji

+(Ug_j2U3;9)Uj5 |, (13
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! !
X1221 _ X12217 X1212

- ! ! i) (14)
X1212T X1221

X1212T X1221
Equation(13) implies conservation of the quantity
1 * * 2 2
I'= E(U1+U17U2+U2—+C-C-)+ y2|Up[*Ug-|

+y9|Uz4 |2 Uy |2, (15

where y;=1/(wjnz_;/wz_jnj)u+v]. Finally, writing
Uj.=a;.€e'?i= (wherea;. and ¢;. are real and defining
0=(¢s+—©2_)— (14— @1_), We obtain the equations

198.'4. .
1+ .
=i(—1)1a(3,j)+a(3,j),aj+ 5|n9,
Js
(9(P'+ wiNg_;
1= 73] 2 2
e = ———uai-a . T vag_ .8«
1" gs ws_jnjr“ 7= @B-pH=dj=*

+a(3-j)+83—j)5aj5 COSH, (16

which can be reduced to the set of five coupled equations

Jag 4 ino
= —asi ady_aq_ SINdg,
s 2+8p-8y
da; - ino
=+a,,a,_a;, sing,
s 2+8p-ay4
dag,
=+a;,a,_a,_siné,
s 1+81-8p
dag- ino
=-—a;,a;_a,, siné,
s 148184
a0 apy a- - ayy
— =C0Ss6# a2+a2, i — +a1+a1, -
s a;_ a;. a,, a,_
2 2 2 2
+2yi(af, —a; ) +2yx(a;-—az,). 17

Note that the magnitudes of and v depend on the nature
of the physical process producing the optical nonlinearity.
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h,+h,=h, +h_=1,

2 .2 2 .2 _
aj+a;-ax a8 Cosf+y,aj,a; +y.az a; =I,
(18

where h;=(n;C;)/(w;l) and h.=C. /I [the last of Egs.
(18) can be obtained from the last of Eq47)].

These relations allow replacement of giand three am-
plitudes in the evolution equation of the remaining ampli-
tude, and hence solution of Eq47) for given initial condi-
tions. The general solution, which can be expressed in terms
of Jacobian elliptic functions, can adopt a great variety of
particular forms depending on the initial polarization states
and, through the parameteyg and y,, on the frequencies
and the optical characteristics of the medium. Typically, en-
ergy exchange between the waves forces changes in the po-
larization state with a periodicity that depends upon the ini-
tial conditions(see Fig. 1L However, there are particular sets
of initial conditions for which no energy exchange takes
place, and hence no polarization changes either. Inspection
of Egs.(17) shows that the;, (o=+,—) remain constant
when the two waves are circularly polarized, and that both
the aj, and ¢ remain constant when they are linearly polar-
ized with #=0 (parallel polarizatiop or 6= 7 (orthogonal
polarization. The invariance of two circularly polarized
waves can be considered as a generalization of the well-
known fact that a single circularly polarized wave does not
undergo degenerate XPM in an isotropic medii&h,32. In
the next section we analyze in greater detail the behavior of
waves that are linearly polarized when they enter the me-
dium.

II. INITIALLY LINEARLY POLARIZED WAVES

In the common case in which both waves are initially
linearly polarized,

a7, (0)=a2_(0)=h,/2,
a2, (0)=a2_(0)=h,/2=(1—h,)/2,

h,=h_=1/2,

For example, if the physical mechanism is the nonresonant

electronic response of bound electropss=1/2 and v=0.

Surprisingly, the same values are taken when the nonlinear-

ity is due to molecular orientatiof29].

Note also that although E¢L3) has been derived for bulk
isotropic materials, it can be modified to apply to single-
mode nonbirefringent optical fibers by introducing, on th
right-hand side, an overlap integral accounting for the effec-
tive area of the mode, as can easily be shown using coupl
mode theory30]. Sinces can be scaled to include the moda
integral, the results of this paper hold for both bulk isotropic

materials and nonpolarizing optical fibers.
Equations(9), (10), and(15) are equivalent to
a§++a§—:h1! ai++a§+:h+ '

as,+a>_=h,, a’_ +a5_=h_,

1
r= Z(hlhz cosby+ y1hi+ y,h3), (19

where 6y= 6(0) is twice the angle between the directions of

epolarization of the two waves at the input plane of the me-

dium. Since Eqgs(17) are invariant under the transformation
——0, aj,+a;_), we can restrict our analysis # val-

| ues between 0 and.

To solve Egs(17), we take the first of these equations
and use Eq918) and(19) to obtain an equation in the single
variable f=h,/2— ai+ involving the constantsh;, h,,
cosfy, and y=y,+ y,. Then

(s) dy
R M e e
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FIG. 1. Squared amplitude of each circular component as a function of the normalized lengths for the following initial condigions:
a?, (0)=a?_(0)=0.25, a3, (0)=0.5, a5_(0)=0; (b) a?,(0)=0.1, a?>_(0)=0.3, a3,(0)=0.2, a5_(0)=0.4; (c) a2, (0)=a?_(0)
=3/8,a3,(0)=a3_(0)=1/8; (d) a2, (0)=a3,(0)=0.4,a;_(0)=a3_(0)=0.1. In all the figuresh(0)= /2, w,/N,=2w,/n;, u=0.5,
andv=0 (so y=5/8). The solid curve corresponds to the left-handed component of wave 1, the dashed curve to its right-handed component,
the dashed-dotted curve to the left-handed component of wave 2, and the dotted curve to the right-handed component of wave 2.

wherey(s)=—f/\p_ andm=p_/p., p. andp_ being
the roots of b3/4—f2)(h3/4—f?)—[(h,h, cosy)/d+ yf?]?
=0 considered as a quadratic fifx

1
E + h1h2( Y COSHO_ 1)

pi:4(1_,y2)

*

1 1/2

Z+h1h2(ycoseo—1)+h§h§(cos€0—7)2} }
(21)

Since the integral on the right-hand side of ERQ) is the

elliptic integral of the first kind with amplitude siri(y) and
modulusym, the amplitudesa; . (s) are given in terms of

p-

lim — =0,

72H1P+

af. (s)=hy/25 \[ " —sd2s\(77- Dip-—plm)

a3 (8)=ha/22 \[ T —sd2s (- D(p-—p)|m).

(23

When y?*=1 we can obtain the solution by taking the
limits of the following parameters involved in ER2):

lim 2\(1—9%)p,=[1+2h;h,(cosfyy—1)]*2

the Jacobian elliptic function sn by ¥21
al.(9)=hy/27 Vp- sn2s\(1=y)p-lp-Ip-), fim o= hah, sin b 24
AV 2[1+2h;h,(cosbyy—1)]*?
a5.(s)=hy/2= \p_sn2s\(1-")p.lp_Ips) (22 , ,
and since sn{|0)=sin(x), Egs.(22) become
so long as &m<1. By the definition ofp.., this condition h h. sin
is satisfied ify?<1, since then &p_<p,. If y*>1, in a2, (s)= = ;usin(ps)),
which casep, <0<p_ and m<Q0, then it is convenient to B 2
express theg;.(s) in terms of the Jacobi elliptic function h h sing
sd=sn/dn of squared modulus’=—-m/(1-m)=p_/(p_ 2 :_2( _Misinbo )
_p+)>0 [33] aZi(S) 2 1% Sm(PS) ) (25)
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FIG. 2. Squared amplituc@+ as a function of the normalized lengtl® 6,= 7/2; (b) 6,=2/3. We have takery="5/8 and the values
of h, are as follows: h;=1/2 (solid curve, h,=2/5 (dashed curve h,=1/3 (dashed-dotted curyeandh,=1/4 (dotted curve

where p=[1+2h;h,(cosbyy—1)]¥2 Finally 6(s) is re- on decreasing to- 6, at s=T/2. If, on the other hand,

trieved from Egs(18) and(19) as cosfy<—+yh;/h,, then 6 increases fromg, at s=0 to 7 at
s=T/4 and finally reaches the valuer2- 6, at s=T/2.
1 h;h, cosfo/a+ yf2(s) If cosby=—vh,/h,, closer analysis is required. In this
6(s)=cos > . (26) ~ h2/4 (th : lUe e und )
J[h2/4—2(s)][hZ/4—f2(s)] casep_= (the maximum value it can attain under varia-

tion of cosf, for fixed y and h;), p,=(h,sing)¥4(1
In Figs. 2 and 3 we plo’a .(s) and ¢(s) for several —+?), and if y?<1 the solutions obtained for the amplitudes
values of the physical parameters involved. All the variablesEds.(22)] reduce to
depend periodically og, with a periodT(cosé,,h,) given by

. . . : h _
the properties of the Jacobian elliptic functions as aii(s): 71[1isn((1—h1)sm( 80)s|m)],

2 h, h
V= j 17y ) 1 my) 83.(s)= 5 = sn(1-hysin(p)sim), (29
—ZK(m) y?<1 wherem=[(1— y?)/y?]cot(6y). Substitution into Eq(26)
= y y = - 7 y 0/-
V(1=9)p. now gives
2 .
=" 2_ cn(s(1—hq)sinfym
= =1, c0SA(S)= — 2| (s( 1) o|. )| (29
Vh3/4—srt(s(1—h;)sin 6| m)
- 2K(m) y2>1 (27) ~ Which means that whes=T/4, ¢ jumps from/2 to — /2.
V2= D(p_—ps) ' This jump coincides with the point at which, . becomes

zero[see Eq(28)] andda,, /ds changes sign from negative
whereK(m) stands for the complete elliptic integral of the to positive[see Eq.(17)]. From this point on,d decreases
first kind. The a’, vary between the extremeshi(2  further to attain the value- 6, at s=T/2. However, ifh;
+/p_). The range of variation of depends on the relatlon =h,, 6 remains constant at its initial value, ¢d¢—1y).
between cog, and — y min(h;,hy)/maxhy,hy). Assuming, As noted above, Eq28) implies that ifs=(2n+1)T/4
without loss of generality, thah;<h,, then if cosf,> (n an intege), one of the two circularly polarized compo-
—hy/h,, 6 varies froméf, at s=0 to 0 ats=T/4 and goes nents of the wave of frequenay, vanishes. However, ifi;
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FIG. 3. Evolution ofé as a function of the normalized length. The parameters are the same as in Fig. 2.

approaches the value 1/2, then @gglecreases te-y (we
are still assuming that cag = —yh; /h,), m goes to 1K(m)

The polarization state of each normalized wave is charac-
terized by the ellipticity and orientation of its polarization

increases without bound, and so too does the period of thellipse. The evolution of the ellipticity e;=|(a’,

waves[see Eq.(27)], with the result that wave 1 only be-
comes circularly polarized at infinity. In fact, ati=1 Eq.
(28) becomes

a’.(s)= %[Lttanh V1—92s/2)] (30)

—a’)/(af, +a’ )| follows immediately from the results
obtained abovee;(s)= fz(s)/hj . The orientation of the ma-
jor axis of the polarization ellipse of wa\jewith respect to
the X axis, i.e., the azimuthy;, is given by ;= (¢
—¢j-)2=A¢;/2. By Egs.(16) and(19),

IA @ 1
and since the hyperbolic tangent tends to 1 as its argument—(P'=2(y1— yz)f(s)+(—1)"1§(h1h2 coséyt+ yhjz)
approaches infinity, both waves evolve asymptotically from
linear polarization towards circular polarization. Since we

have chosen € 6,<mw, wave 1 evolves towards right-

handed circular polarization and wave 2 becomes increas-

ingly left-handed; the reverse would happen if we tomk
< fy=2m.

Similar analyses can be carried out for the cagés 1
andy?=1.

f(s)

" hZa—12(s) D

and these equations can be integrated using the properties
and mutual relationships of the Jacobian elliptic functions
[33,34): for y°<1,

dn(x|m) —m*2cn(x|m)
1— ml/2

Agj(s)=A¢;(0)+

1
ﬁ[(?’l_?@)ln

+(—-1)1t

h1h2 COS@O+ ’thZ

(32

V(hi=4p_)(4p,—h

i)

[tan%( Jm_o—tan-lwm_gcd(xlm))]] ,

wherex=2s\(1-y%)p, and{=(4p, —h?)/(h?—4p_); for y*=1
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FIG. 4. Ellipticity and azimuth of each wave as a function of the normalized length for the lsawvadues as in Figs. (®) and 3b).
[¢1(0)=0; ¢5(0)= p=27/3]

h1h2 Sin 00 L h1h2 00500+ ’yh2 _ _

Aoi(S)=Ao (0 =2 0 —1)i-t i 1rgy— 1 ,

¢i(s)=A¢;(0)+ (y1—72) 2 (1—cosps)+(—1) \/(phj)z—(hlhzsinao)z[tan (§€)—tan (ECOSPS)]]
(33

where ¢=h;h, sin 6y /[(ph;)*—(hsh, sin 6p)7; for y*>1
1 H> ’ H ! !
Aei(9)=8¢i(0)F =1 (1= yalsin H(m' Y% —sin”{(m' Y2 cd(x|m"))]
. h;h, coséy+ yh?
+(—1)71 L__[tan 1(ym¢)—tan L(vmZen(x|m’)) J (34
J(hf—4p_>(hf—4p+>[ )
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1
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eo(radians)

(b)

1
0 0.5 1 1.5 2 25 3
eo(radians)

FIG. 5. Azimuth variation as=T/2 as a function of the input phase differengg for h, as in Fig. 2,w,/n,=2w,/n;, ©=0.5, and
v=0(y=5/8).

where x=2s\(y*—1)(p_—p,) and ¢ and is defined as In typical applications of light-induced linear birefrin-
above. gence a polarizer is placed at the exit from the nonlinear
Figure 4 shows the evolution of ellipticities and azimuthsmedium, so that the amount of light passing the polarizer
under the same conditions as in Figgb)2and 3b). The depends on the light-induced polarization undergone in the
orientations vary with period and the ellipticities with pe- medium. For full optical switching, the polarization ellipse
riod T/2. Whens is an odd multiple ofT/2, each wave is must be rotated byr/2. Figures 5 and 6 suggest that this
linearly polarized and the deviation of its azimuth from its value will be attained byA ;| if 6y~cos *(—yh;/hy) (we
initial value, A ;= ;(T/2)— ;(0), ismaximum or close to assume as before thiaf<h,); this is thed, region in which
its maximum. Because of the periodicity of the elliptic func- the curves foh;<h, in Figs. 5 and 6 show a sharp drop in
tions, Eqs.(32) and(34) imply that in the generic situations A ;. In fact, writing cosfy=—y(1+ §)h,/h,, Taylor expan-

y?’<1 andy?>1, sion of Eq.(35) affords
Yi— 72 i
Agy=——==h(m)+(-1)7* Y1~ 72 ™
1 A~ h(m)+sgn(d) =. 3
hih, coséy+ yh?
>< .
R IVES — 2 Thus A¢; can always be made to achieve the vaiti@
-y )(hi=4p-)(4p.—hj) by suitable choice of the sign @f regardless of the first term
xtan (ymo), (35) on the right of Eq(35). If cos 8, =—h, /h, andh;<h,, we
know already that as=T/4 6 jumps from + /2 to —n/2
where because the left-handed component of wave 1 undergoes a
. L phase shift ofr when it vanishes. This change ¢n, means
tanh }(ym)  if y?<1 that ¢; changes byr/2, and this change is carried forward

(m)= sin }{(y-m’) if y*>1 (36) from s=T/4 to s=T/2, so that
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FIG. 6. As for Fig. 5, except thabt, /n,=4w,/n; and y=17/16.
yi— 75 - (23)], Ag; is constan{Eq. (31)], and Ay; is zero(as we
A¢1=Wh(m)+ 5 (38 have already seen in Sec).lln the neighborhood opf .

Thus if cosfy, =—yh,/h, andh;<h,, the rotation of the
polarization ellipse of wave 1 will be roughby/2 if the first
term on the right of Eq(38) is made small byy, approach-
ing 4, i.e., byw,/n, approachingv,/n;.

Equations(35) and (36) also show that if §;,— v,)/(1
— %12 is not too small, another situation in whi¢h ;|

=0, however,|A¢j| can be very large for both waves, as
Fig. 6 illustrates. We conclude that the configuration in
which the two waves have mutually orthogonal polarization
is highly unstable under perturbation of the angle between
the polarization axes. Since the first term on the right of Eq.
(35 depends ony;— vy,, the above analysis predicts that
|A ;| may be large even though'’ is relatively small. This
will happen if the two waves have very different frequencies.

can attain values close t@2, or at least values large enough |n this case, however, the assumption that the nonlinear sus-

for switching purposes, is whem approaches unity ¥
<1) orm’ approaches unityy*>1). If y°<1, mcan only
approach unity ifh;~h, [becausep, /p_=m~1 implies

1/4+ hhy(y cosfy—1)+hzh3(cosby—7)>~0, and the result

of solving this quadratic in co& must be redl this case is
therefore of little interest, because in this case &ps—y
and soT tends to infinity ash, approache#$ (since cog,

ceptibility is independent of frequency may not be valid.

IV. CONCLUSIONS

Equations(17) are the differential equations governing
the copropagation of two waves of different frequencies and
arbitrary initial amplitudes and polarizations in an isotropic

~—1, this is in fact the limiting case corresponding to the Kerr medium. The exact analytical solutions given in Sec. lll
discussion of the previous paragraph, in consonance witfor the case in which the waves are initially linearly polar-

which Fig. 5 shows that for both waves thgdependence of

ized show that their amplitudes and the ellipticities and ori-

Ay is qualitatively of the same kind as previously discussedentations of their polarization ellipses vary periodically as

for wave 1. If y?>1, m’ approaches unity gs, approaches
zero, which occurs By~ andh{h,(1+y)=0.5. If p, is
exactly zero(which corresponds to waves with mutually o
thogonal polarization:6= 6,= ), then f(s)=0 [by Eq.

the waves propagate through the medium in such a way that

when each wave is linearly polarized, the deviation of the
r- orientation of its polarization ellipse from its initial value is

either zero or close to its maximum value. The periodf
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the propagation pattern depends on the initial values of théength (2n+1)T/2. All the above results are readily gener-
intensities of the waves and of the relative orientation ofalizable to copropagation in nonbirefringent optical fibers.
their polarization axes, as does the valuelaf;, the devia-

tion in the directions of polarization which occurs at dis-

tances (&2+1)T/2 from the start of the mediurn an inte- ACKNOWLEDGMENT
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