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Quantum noise in the position measurement of a cavity mirror undergoing Brownian motion
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We perform a quantum theoretical calculation of the noise power spectrum for a phase measurement of the
light output from a coherently driven optical cavity with a freely moving rear mirror. We examine how the
noise resulting from the quantum back action appears among the various contributions from other noise
sources. We do not assume an ideal~homodyne! phase measurement, but rather consider phase-modulation
detection, which we show has a different shot noise level. We also take into account the effects of thermal
damping of the mirror, losses within the cavity, and classical laser noise. We relate our theoretical results to
experimental parameters, so as to make direct comparisons with current experiments simple. We also show that
in this situation, the standard Brownian motion master equation is inadequate for describing the thermal
damping of the mirror, as it produces a spurious term in the steady-state phase-fluctuation spectrum. The
corrected Brownian motion master equation@L. Diosi, Europhys. Lett.22, 1 ~1993!# rectifies this inadequacy.
@S1050-2947~99!02107-1#
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I. INTRODUCTION

Interferometers provide a very sensitive method for
tecting small changes in the position of a mirror. This h
been analyzed extensively in the context of gravitatio
wave detection@1–6# and atomic force microscopes@7,8#. A
key limit to the sensitivity of such position detectors com
from the Heisenberg uncertainty principle. The reduction
the uncertainty of the position resulting from the measu
ment is accompanied by an increase in the uncertainty
momentum. This uncertainty is then fed back into the po
tion by the dynamics of the object being measured. Thi
called the quantum back action of the measurement, and
limit to sensitivity so imposed is referred to as the stand
quantum limit. Some of the pioneers in this field have be
Braginsky and Vorontsov in various studies of measurem
aspects of the fluctuations of light caused by the mov
mirror @9,10#.

In real devices which have been constructed so far,
quantum back-action noise in the measurement record is
ally small compared to that arising from classical sources
noise. However, as the sensitivity of such devices increas
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is expected that we will eventually obtain displacement s
sors that are quantum limited. The quantum back-act
noise has not yet been seen experimentally for macrosc
devices, so seeing it is a topic of current interest. Once
standard quantum limit has been achieved, this will not
the end of the story, however. Various authors have sho
that it is possible to use contractive states@11#, squeezed
light @3,12#, or squashed light@41#, to reduce the quantum
back action and therefore increase the sensitivity of the m
surement even further.

The interferometer we consider here for measuring po
tion consists essentially of a cavity where one of the mirr
is free to move. This system is also of interest from the po
of view of cavity QED. Usually cavity QED experiment
require optical cavities where the atomic excitations a
photons in the optical modes become entangled. The dyn
ics follows from the interplay between these quantum va
ables. However, a challenging realm for cavity QED expe
ments involves instead anempty cavity ~that is, a cavity
containing no atoms or optical media! where the photons in
the cavity mode interact with the motion of one of the cav
mirrors. In this scheme, the position of at least one mirror
the optical resonator is a dynamic variable. The coupl
between the photons and the mirror position is simply
radiation pressure that stems from the momentum transfe
2\k per one reflected photon with the wave numberk. It has
been shown that this system may be used to generate
Poissonian light in the output from the cavity@13–15#. The
moving mirror alters the photon statistics by changing
optical path length in a way that is proportional to the insta
taneous photon number inside the cavity. This system m
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PRA 60 539QUANTUM NOISE IN THE POSITION MEASUREMENT . . .
also be used to create highly nonclassical states of the ca
field, such as Schro¨dinger cats@16,17#, and might even be
used to create cat states of the mirror@17#. In addition, it has
been shown that such a configuration may be used to
form QND measurements of the light field@18#, and to detect
the decoherence of the mirror, a topic of fundamental inte
in quantum measurement theory@19#. Due to recent techno
logical developments in optomechanics, this area is now
coming experimentally accessible. Dorselet al.have realized
optical bistability with this system@20#, and other experi-
ments, particularly to probe the quantum noise, are now
progress@21,22#.

In order to create displacements that are large enoug
be observed, one is tempted to use a mirror having a w
defined mechanical resonance with a very high-quality fac
Q. Thus, even when excited with weak white noise driv
radiation pressure, the mirror can be displaced by a det
able amount at the mechanical resonance frequencyn. For
such a mirror to behave fully quantum mechanically o
needs to operate at very low temperatures since the the
energy kT very easily exceeds\n. For example, an/2p
5100 kHz resonance is already significantly excited
5 mK. However, it is not necessary to reach the fully qua
tum domain to observe the quantum back action. By sim
taneously combining a high optical quality factor~i.e., by
using a high-finesse cavity! and a specially designed low
mass mirror with very high mechanical quality factor o
can at typical cryogenic temperatures create conditi
where the radiation pressure fluctuations~which are the
source of the quantum mechanical back action referred
earlier! exceed the effects caused by thermal noise. In
paper we discuss considerations for detecting this quan
back-action noise.

There are already a number of publications dealing w
quantum noise in optical position measurements. Our m
purpose here is to extend this literature in two ways wh
are important when considering the detection of the quan
noise. The first is the inclusion of the effects of experimen
sources of noise, such as the classical laser noise and
noise from intracavity losses. The second is to perform
quantum treatment of phase-modulation detection, so tha
results may be compared with those for homodyne detect
While this method of phase detection is often used in pr
tice, it has not previously been given a quantum mechan
treatment, which we show is important because previ
semiclassical treatments have underestimated the shot n
In addition to these main objectives, we also show that
standard Brownian motion master equation is not adequa
describe the thermal damping of the mirror, but that the c
rected Brownian motion master equation derived by Di
@23# rectifies this problem.

In Sec. II we describe the configuration of the system.
Sec. III we perform a quantum mechanical analysis of pha
modulation detection. In Sec. IV we solve the lineariz
equations of motion for the cavity/mirror system, using
non-standard Brownian motion master equation which is
the Lindblad form@23#. In Sec. V we use this solution t
obtain the noise power spectral density~which we refer to
simply as thespectrum! for a measurement of the phas
quadrature using phase-modulation detection. In the first
of this section we discuss each of the contributions and t
ity
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respective forms. Next we compare the spectrum to t
which results if the standard~non-Lindblad! Brownian mo-
tion master equation is used to describe the thermal dam
of the mirror, and also to that which would have been o
tained using homodyne detection rather than pha
modulation detection. Finally we show how the error in
measurement of the position of the mirror may be obtain
easily from the spectrum. We evaluate explicitly the con
bution to this error from various noise sources, and plot th
as a function of the laser power. Sec. VI concludes.

II. THE SYSTEM

The system under consideration consists of a cohere
driven optical cavity with a moving mirror which will be
treated as a quantum mechanical harmonic oscillator.
light driving the cavity reflects off the moving mirror an
therefore fluctuations in the position of the mirror register
fluctuations in the light output from the cavity. In the limit i
which the cavity damping rate is much larger than the rate
the dynamics of the mirror~characterized by the frequenc
of oscillation n and the thermal damping rateG) the phase
fluctuations of the output light are highly correlated with t
fluctuations of the position of the mirror and constitute
continuous position measurement of the mirror@7#.

An experimental realization will therefore involve a co
tinuous phase-quadrature measurement of the light ou
from the cavity to determine the output spectrum of t
phase-quadrature fluctuations. The nature of the detec
scheme used to measure the phase quadrature is of inter
us, as we shall see that it will effect the relationship of t
shot noise to the other noise sources in the measured si
Quantum theoretical treatments usually assume the us
homodyne detection@7,13–15#. However, this is often not
used in practice@24,25#. Many current experiments use in
steadphase-modulationdetection@21#, which was developed
by Bjorklund @26,27#. Before we treat the dynamics of th
cavity field/oscillating mirror system, to determine the effe
of various noise sources, we will spend some time in the n
section performing a quantum mechanical treatment
phase-modulation detection. We will focus on this sche
throughout our treatment, and compare the results with th
for homodyne detection. A diagram of the experimental
rangement complete enough for the theoretical analysi
given in Fig. 1. We note that in practice a feedback sche

FIG. 1. Light output from the laser is phase modulated at f
quencyD in the modulatorM, and from there drives the cavity. Th
front mirror of the cavity is fixed, while the back mirror is a me
chanical harmonic oscillator. The diagonal line is a shorthand r
resentation for the arrangement which isolates the laser from
cavity output, and the light that is reflected back off the front m
ror. All this light falls upon a photodetector PD, and the photod
tection signal is demodulated~to pick out the phase-quadrature si
nal! before going to a spectrum analyzer.
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is used to lock the laser to the cavity so as to stabilize
laser frequency. For an analysis of the method and an exp
sion for the resulting classical phase noise the reader is
ferred to Refs.@24,25#. We do not need to treat this feedba
explicitly, however. Its effect may be taken into account
setting the value of the classical laser phase noise in
analysis to the level it provides.

III. PHASE-MODULATION DETECTION

The laser which drives the cavity is isolated from t
cavity output, and the entirety of this output falls upon
photodetector. In order that the photodetection signal con
information regarding the phase quadrature, the laser fie
modulated at a frequencyD, which is chosen to be muc
greater than the natural frequency of the harmonic mir
The sidebands that result from this modulation are chose
lie far enough off resonance with the cavity mode that th
do not enter the cavity and are simply reflected from
front mirror. From there they fall upon the photodetect
The result of this is that the output phase-quadrature sig
appears in the photodetection signal as a modulation of
amplitude of a ‘‘carrier’’ at frequencyD. This is then de-
modulated~by multiplying by a sine wave at the modulatio
frequency and time averaging! to pick out the phase
quadrature signal, and from there the spectrum may be
culated.

First consider the laser output field, which is essentia
classical; it is a coherent state in which the amplitude a
phase are not completely stable and therefore contain s
noise. This means that the field from the laser actually c
tains frequencies in a small range about its central freque
The laser field may therefore be described by a set of co
ent states with frequencies in this range. As a result i
possible to perform a unitary transformation on the mo
operators such that the amplitude of each of the cohe
states is replaced by a complex number, and the quan
state of the field is simply the vacuum@28–30#. This sepa-
rates out the classical variations in the field from the qu
tum contribution, and allows us to write the output from t
laser as

b1dain~ t !1dx~ t !1 idy~ t !. ~1!

In this expressionb is the average coherent amplitude of t
field, which we choose to be real, andb2 is the photon flux.
The deviations from this average are given bydx(t), being
the classical amplitude noise, anddy(t), being the classica
phase noise. The quantum noise, which may be interprete
arising from the vacuum quantum field, is captured by
correlation function of the field operatordain(t). Here the
subscript refers to the field’s relation to the cavity, and n
the laser. The correlation functions of the various no
sources are

^dain~ t !dain
† ~ t1t!&5d~t!,

^dain
† ~ t !dain~ t1t!&50,

^dx~ t !dx~ t1t!&5Gx~t!,

^dy~ t !dy~ t1t!&5Gy~t!,
e
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where we have left the classical noise sources arbitrary. T
allows them to be tailored to describe the output from a
real laser source at a later time. However, we will assu
that the modulation frequencyD is chosen large enough s
that the classical noise is negligible at this frequency. Thi
what is done in practice. The average values of the th
noise sources,dain , dx, anddy, are zero, as are all the cros
correlations.

Before the laser field enters the cavity, it passes throug
phase modulator. This is a classical device which modula
the phase of the coherent amplitude of the beam, and as
leaves the quantum noise unaffected. The phase is modu
sinusoidally, the result of which is to transform the tim
dependent coherent amplitude, given byb1dx(t)1 idy(t),
into @26,31#

@b1dx~ t !1 idy~ t !# (
n52`

n5`

Jn~M !einDt, ~2!

whereJn is thenth Bessel function,D is the frequency of the
modulation, andM is referred to as the modulation inde
being determined by the amplitude of the sinusoidal mo
lation. For phase-modulation detection, the modulation ind
is typically chosen to be much less than unity so thatJ0
'1, J6156M /2[6«, «!1, and all other terms vanish
The laser field after modulation is then

@b1dx~ t !1 idy~ t !#~11«e2 iDt2«eiDt!1dain~ t !. ~3!

Using now the input-output relations of Collet and Gardin
@32#, the field output from the cavity is

aout~ t !52@b1dx~ t !1 idy~ t !#~11«e2 iDt2«eiDt!

2dain~ t !1Ag@da~ t !1a#, ~4!

in which a(t)5da(t)1a is the operator describing the cav
ity mode, andg is the decay constant of the cavity due to t
input coupling mirror. We are interested in the steady-st
behavior, and we choosea to be the average steady-sta
field strength in the cavity. In addition, in order to solve t
equations of motion for the cavity we will linearize the sy
tem about the steady state, which requires t
^da†(t)da(t)&!uau2. The operator describing the photocu
rent from the photodetector is

I ~ t !5aout~ t !†aout~ t !5ã21ã~dXout22dx!12«b sin~Dt !

3S dYout2
2Agady

b D 1~2«b!2 sin2~Dt !S 11
2dx

b D
~5!

in which

dXout~ t !5AgdX~ t !2dXin~ t !,

dYout~ t !5AgdY~ t !2dYin~ t !,

and

dX~ t !5da~ t !1da†~ t !,

dY~ t !52 i @da~ t !2da†~ t !#,
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PRA 60 541QUANTUM NOISE IN THE POSITION MEASUREMENT . . .
dXin~ t !5dain~ t !1dain
† ~ t !,

~6!

dYin~ t !52 i @dain~ t !2dain
† ~ t !#.

We have also setã5(2b1Aga), and assumed this to b
real. To obtain the phase-quadrature signal we demodu
which involves multiplication by a sine wave at frequencyD,
and subsequent averaging over a timeT. This time must be
long compared to 1/D, but short compared to the time sca
of the phase-quadrature fluctuations. The signal is there
given by

R~ t !5
1

TE0

T

sin~Dt!I ~ t1t!dt. ~7!

We now must evaluate this to obtainR(t) explicitly in terms
of the phase quadrature. Writing out the integral, and dr
ping everything which averages to zero~that is, which is not
passed by the low-pass filtering! we obtain

R~ t !5S «b

T D F E
0

T

dYout~ t1t!dtG
2S 2«Aga

T D F E
0

T

dy~ t1t!dtG1q1~ t !1q2~ t !,

~8!

where

q1~ t !52S b2Aga

T DReF E
0

T

ie2 iD(t1t)dXin~ t1t!dtG ,
~9!

q2~ t !5S «b

T DReF E
0

T

e2 i2D(t1t)dYin~ t1t!dtG . ~10!

In deriving this expression we have assumed that the cla
cal laser noise is only appreciable for frequencies sma
than the modulation frequency. Note that we chooseT to be
much smaller than the time scale upon whichdY and dy
change, so that the integration is essentially equivalen
multiplication byT, an effect which is canceled by the div
sion byT. However, we should also note thatdYout contains
dYin , so that in replacing the first term inR(t) by
«bdYout(t) we must remember that this only contains t
frequency components ofdYin in a bandwidth of 1/T around
zero frequency. The result of this is thatdYout(t) is uncorre-
lated withq1 andq2, being the quantum noise in the ban
width 1/T around the frequenciesD and 2D, respectively.
We need to know the correlation functions of these no
sources, and whether or not they are correlated with an
the other terms inR(t). It is clear thatq1 and q2 are not
correlated over separation times greater than 2T. Using Eq.
~10! to evaluate the correlation function ofq2, for example,
we have
te,

re
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^q2~ t !q2~ t1t!&5H ~«b!2

2 S T2utu

T2 D for utu<T

0 otherwise.
~11!

On the time scale of the fluctuations ofdY we can approxi-
mate this as ad function, so thatq1 andq2 ~and alsodYin)
are still effectively white noise sources. We may therefo
write

R~ t !5«bdYout~ t !1q1~ t !1q2~ t !22«Agady~ t !,
~12!

and the correlation functions ofq1 andq2 are

^q1~ t !q1~ t1t!&5~1/2!~b2Aga!2d~t!,
~13!

^q2~ t !q2~ t1t!&5~1/2!~«b!2d~t!.

The signal therefore contains the phase quadrature of
output field,dYout(t), plus three noise terms. While the la
term, being the input classical phase noise, is correlated
dYout(t), q1 andq2 are not. Taking the Fourier transform o
the signal,

R~v!5
1

A2p
E

2`

`

R~ t !e2 ivtdt, ~14!

we may write

R~v!5«bdYout~v!1(
i 51

2

qj~v!22«Agady~v!.

~15!

This is the Fourier transform of the signal in the case
phase-modulation detection. If we were to use ideal hom
dyne detection this would be instead@36#

Rh~v!5kb̃@dYout~v!22dy~v!#, ~16!

whereb̃ is the amplitude of the local oscillator andk is the
reflectivity of the beam splitter used in the homody
scheme. Thus, in the case of phase-modulation detec
there are two white noise sources which do not appea
homodyne detection. They stem from the fact that the pha
quadrature detection method is demodulating to obtain a
nal at a carrier frequency. Because the quantum nois
broadband~in particular, it is broad compared to the carri
frequency! the demodulation picks up the quantum noise
D and 2D. There is also a term from the classical phase no
in the sidebands. We note that the contribution from
quantum noise at 2D has been omitted from previous sem
classical treatments, with the result that the shot noise
been underestimated by (1/2)(«b)2 @37#. For unbalanced ho-
modyne detection there will also be an extra contribut
from the noise on the local oscillator, which may be su
pressed~in the limit of an intense local oscillator! with the
use of balanced homodyne detection@38#.

Returning to Eq.~15! for the demodulated signal, the ne
step is to solve the equations of motion for the system
erators to obtaindY(v) in terms of the input noise source
We can then readily calculatêR(v)R(v8)&, which appears
in the form

^R~v!R~v8!&5S~v!d~v1v8!. ~17!
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The d function in v andv8 is a result of the stationarity o
R(t), andS(v) is thepower spectral density, which we will
refer to from now on simply as thespectrum. This is useful
because, when divided by 2p, it gives the average of the
square of the signal per unit frequency~the square of the
signal is universally referred to as thepower, hence the name
power spectral density!. Since the noise has zero mean, t
square average is the variance, and thus the spectrum
vides us with information regarding the error in the sign
due to the noise. The spectrum is also a Fourier transform
the autocorrelation function@33#. The specific relation, using
the definitions we have introduced above, is

S~v!5E
2`

`

^R~0!R~t!&e2 ivtdt, ~18!

and as the autocorrelation function has units of s22, the spec-
trum has units of s21. To determine the spectrum experime
tally the phase of the signal is measured for a time lo
compared to the width of the autocorrelation function, a
the Fourier transform is taken of the result. Taking the squ
modulus of this Fourier transform, and dividing by the du
tion of the measurement obtains a good approximation to
theoretical spectrum. We proceed now to calculate this sp
trum.

IV. DYNAMICS OF THE SYSTEM

Excluding coupling to reservoirs, the Hamiltonian for th
combined system of the cavity mode and the mirror is@39#

H5\v0a†a1
p2

2m
1

1

2
mn2q22\ga†aq

1\$ i @E1Agdx~ t !1 iAgdy~ t !#a†1H.c.%. ~19!

In this equationv0 is the frequency of the cavity mode,q
andp are the position and momentum operators for the m
ror, respectively,m and n are the mass and angular fr
quency of the mirror,g5v0 /L is the coupling constant be
tween the cavity mode and the mirror~whereL is the cavity
length!, anda is the annihilation operator for the mode. Th
classical driving of the cavity by the coherent input field
given byE which has dimensions of s21, and is related to the
input laser powerP by E5APg/(\v0)5Agb. The classical
laser noise appears as noise on this driving term.

The moving mirror is a macroscopic object at temperat
T, and as such is subject to thermal noise. While it is s
common to use the standard Brownian motion master eq
tion ~SBMME! @33,40# to model such noise, as it works we
in many situations, it turns out that it is not adequate for o
purposes. This is because it generates a clearly nonsen
term in the spectrum. As far as we know this is the first tim
that it has been demonstrated to fail in the steady state.
cussions regarding the SBMME and non-Lindblad mas
equations may be found in Refs.@34,35#. We will return to
this point once we have calculated the spectrum. We
instead the corrected Brownian motion master equa
~CBMME! derived by Diosi@23#, to describe the therma
damping of the mirror, as this corrects the problems of
SBMME. In particular, we use the CBMME in which th
ro-
l
of
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cutoff frequency of the thermal reservoir is assumed to
much smaller thankBT/\. For current experimentskBT/\ is
greater than 10 GHz, so this assumption appears reason
and leads to the simplest Lindblad-form Brownian moti
master equation. Using this CBMME, and the standard m
ter equation for the cavity losses~both internal and external!,
the quantum Langevin equations of motion for the syst
are given by

ȧ52
i

\
@a,H#2S g1m

2 Da1Agdain~ t !1Ambin~ t !,

~20!

q̇52
i

\
@q,H#1\~G/6mkT!1/2h~ t !, ~21!

ṗ52
i

\
@p,H#2Gp1~2mGkT!1/2j~ t !, ~22!

in which the correlation functions for the Brownian nois
sources are

^j~ t !j~ t8!&5d~ t2t8!, ~23!

^h~ t !h~ t8!&5d~ t2t8!, ~24!

^j~ t !h~ t8!&52 i ~A3/2!d~ t2t8!, ~25!

^h~ t !j~ t8!&5 i ~A3/2!d~ t2t8!. ~26!

In these equationsg is the decay constant describing tran
mission through the input coupling mirror. All ‘‘internal’’
cavity losses including absorption, scattering, and l
through the movable mirror are included separately via
decay constantm, and the corresponding vacuum fluctu
tions via the operatorbin(t). The effect of mechanical damp
ing and thermal fluctuations of the mirror are given by t
noise sourcesj(t) and h(t) and the mechanical dampin
constantG.

We note here that if we were to use the standard Brow
ian motion master equation@40,33#, Eqs. ~21! and ~22!
would instead be given by

q̇52
i

\
@q,H#, ~27!

ṗ52
i

\
@p,H#2Gp1~2mGkT!1/2z~ t !, ~28!

where^z(t)z(t8)&5d(t2t8). These Langevin equations d
not preserve the commutation relations of the quantum
chanical operators, and as a result it is clear that the des
tion cannot be entirely correct.

Calculating the commutators in Eqs.~20!–~22!, we obtain

ȧ5E2S g1m

2 Da1 igaq1Agdain~ t !

1Ambin~ t !1Agdx~ t !1 iAgdy~ t !, ~29!

q̇5
p

m
1\~G/6mkT!1/2h~ t !, ~30!
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ṗ52mn2q1\ga†a2Gp1~2mGkT!1/2j~ t !. ~31!

Introducing a cavity detuningdv ~that is, setting the cavity
resonance frequency in the absence of any cavity field
vc5v01dv), and solving these equations for the stead
state average values we obtain

^a&SS5
2E

g1m
[a, ~32!

^q&SS5
\g

mn2
uau2, ~33!

^p&SS50, ~34!

where we have set the detuning todv5g^x&SS to bring the
cavity on resonance with the driving field in the steady sta
Linearizing the quantum Langevin equations about
steady-state values, and writing the result in terms of
field quadratures, we obtain the following linear equation

S dẊ

dẎ

dQ̇

d Ṗ

D 5S 2
g1m

2
0 0 0

0 2
g1m

2
xa 0

0 0 0 n

xa 0 2n 2G

D S dX

dY

dQ

dP

D
1S AgdXin~ t !1AmdXb, in~ t !12Agdx~ t !

AgdYin~ t !1AmdYb, in~ t !12Agdy~ t !

~G\n/3kT!1/2h~ t !

@4GkT/~\n!#1/2j~ t !

D .

~35!

In this set of equations we have scaled the position and
mentum variables using

dQ5A2mn

\
~q2^q&SS!, ~36!

dP5A 2

m\n
~p2^p&SS!, ~37!

and we have definedx[g(2\/mn)1/2, which has units of
s21. The quadratures for the input noise due to intracav
losses are given by

dXb, in5bin1bin
† , ~38!

dYb, in52 i ~bin2bin
† !. ~39!

Without loss of generality we have chosen the input fi
amplitude to be real (Im@b#50), so that the input phas
quadrature is given byYin . We now solve the dynamics~35!
in the frequency domain in order to obtain the spectrum
rectly from the solution. To switch to the frequency doma
we Fourier transform all operators and noise sources. In
ticular, we have, for example,
to
-

.
e
e

o-

y

i-

r-

da~v![
1

A2p
E

2`

`

da~ t !eivtdt, ~40!

da†~v![
1

A2p
E

2`

`

da†~ t !eivtdt5@da~2v!#†. ~41!

Rearranging the transformed equations, the solution is gi
by

„dX~v!,dY~v!,dQ~v!,dP~v!…T5M ~v!n~v!, ~42!

wheren(v) is the vector of transformed noise sources. If w
write the matrix elements of M (v) as Mi j (v)
5mi j (v)/D(v), then

D~v!5@~g1m!/22 iv#2~n22v22 iGv! ~43!

and the nonzeromi j are given by

m115@~g1m!/22 iv#~n22v22 iGv!5m22,

m215x2a2n,

m235xa~G2 iv!@~g1m!/22 iv#,

m245xan@~g1m!/22 iv#5m31,
~44!

m335~G2 iv!@~g1m!/22 iv#2,

m345n@~g1m!/22 iv#252m43,

m4152 ixav@~g1m!/22 iv#,

m4452 iv@~g1m!/22 iv#2.

We have now solved the equations of motion for the syst
in frequency space. The spectra of the system variables
now be calculated in terms of the input noise sources. Us
the input-output relations, which give the output field
terms of the system variables and the input noise sources
spectra of the output field, and hence of the measured sig
may be obtained. Note that quantum mechanics plays no
in the solution of the motion of the system. The linear equ
tions of motion may as well be equations for classical va
ables. The only part that quantum mechanics plays in de
mining the spectra of the system variables is that some of
input noise sources are quantum mechanical. That is, t
correlation functions are determined by quantum mechan
In fact, if all the noise sources had purely classical corre
tion functions, then the SBMME Langevin equations wou
not lead to any problems, as they are perfectly correct
equations of motion for a classical system.

V. POWER SPECTRAL DENSITY

To calculate the spectrum of the signal, we require
correlation functions of the input noise sources. To reitera
these are

^dXin~v!dXin~v8!&5^dYin~v!dYin~v8!&5d~v1v8!,

^dXin~v!dYin~v8!&52^dYin~v!dXin~v8!&5 id~v1v8!,
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and similarly fordXb, in(v) and dYb, in(v). The correlation
functions for the classical laser noise, and thermal no
sources are

^dx~v!dx~v8!&5G̃x~v!d~v1v8!,

^dy~v!dy~v8!&5G̃y~v!d~v1v8!,

^j~v!j~v8!&5^h~v!h~v8!&5d~v1v8!,

^h~v!j~v8!&52^j~v!h~v8!&5 i ~A3/2!d~v1v8!.
~45!

After some calculation we obtain the spectrum of the sig
for phase-modulation detection as

1

~«b!2
S~v!5

1

2 F31S g2m

«~g1m! D
2G1g$g1m14gG̃x~v!%

3F ~x2a2n!2

uD~v!u2 G14G̃y~v!

3F 4g2

~g1m!2 S v2

@~g1m!/2#21v2D G
1g~xa!2GS 4n2TS1

1

3
~G21v2!TS

21D
3F @~g1m!/2#21v2

uD~v!u2 G , ~46!

where

uD~v!u25@~g1m!2/41v2#2@~n22v2!21G2v2#,
~47!

and TS is a dimensionless scaled temperature given byTS
5@kB /(\n)#T. This phase-fluctuation spectrum may
thought of as arising in the following way. The mechanic
harmonic oscillator, which is the moving mirror, is driven b
various noise sources, both quantum mechanical and cl
cal in origin, and the resulting position fluctuations of t
mirror are seen as fluctuations in the phase of the light ou
from the cavity.

Let us examine the origin of the various terms in t
spectrum in turn. The first two terms, which appear in
first set of square brackets, are independent of the freque
and are the contribution from the~quantum mechanical! shot
noise of the light. The first term has the factor of 3~rather
than a factor of 2 which would be the case for homody
detection! due to the contribution fromq2(t). The second
term is the contribution fromq1(t).

The next three terms, which multiply the second set
square brackets, are the back action of the light on the p
tion of the mirror, noise from internal cavity losses, and t
classical amplitude noise on the laser, respectively. Note
the only distinction between the back action and the inter
losses is that the former is proportional to the loss rate du
the front mirror, and the latter is proportional to the intern
loss rate. It is easily seen that these noise sources sh
have the same effect upon the position of the mirror:
e
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back action is due to the random way in which photo
bounce off the mirror, whereas the internal losses are du
the similarly random way in which photons are absorbed
the mirror ~or anything else in the cavity!. The amplitude
fluctuations of the laser also affect the mirror in the sa
manner, but since these fluctuations are not white noise~as is
the case with the quantum noise which comes from the p
ton ‘‘collisions’’ !, the response function of the mirror is mu
tiplied by the spectrum of the amplitude fluctuations.

The term which appears in the third set of square brack
is due to the classical phase fluctuations of the laser. Cle
this has quite a different form from that due to the quant
noise and the classical amplitude fluctuations. In particula
is not dependent upon the coupling constantg, because it is
derived more or less directly from the input phase noi
Conversely, the noise that derives from the amplitude fl
tuations has its origin from the fact that the amplitude flu
tuations first drive the mirror, and it is the resulting positio
fluctuations which cause the phase fluctuations in the out
The classical phase noise term includes a contribution fr
the laser phase noise reflected from the cavity@that is, the
term given explicitly in Eq.~15!#, and a contribution from
the phase noise on the light which has passed through
cavity ~being a part ofYout).

The final two terms, which multiply the fourth set o
square brackets, are due to the thermal fluctuations of
mirror. Note that these terms are only valid in the region
which kBT@\n.

Finally we note that we do not see squeezing in the sp
trum of phase-quadrature fluctuations. This is beca
squeezing is produced when the cavity detuning is chose
that the steady-state detuning is nonzero@14#. We have cho-
sen to set the steady-state detuning to zero in this treatm
as we are not concerned here with reducing the quan
noise.

In what follows we examine various aspects of the sp
trum which are of particular interest. Before discussing co
siderations for detecting the back-action noise, we comp
the spectrum with that which would have been obtained
ing the SBMME, and for that which would result from th
use of homodyne detection. We then write the spectrum
resonance as a function of the laser power, and plot this
current experimental parameters. So far we have been
sidering the noise power spectrum, and have made no
ticular reference to the limit this implies for a measureme
of the position of the mirror. In Sec. V C we show how th
spectrum tells us the limit to the accuracy of position me
surement in the presence of the noise sources.

A. Comparison with the standard treatment
of Brownian motion

To obtain the spectrum we have used the correc
Brownian motion master equation@23#. This is essential be-
cause the spectrum which results from the standard Bro
ian motion master equation contains a term which is asy
metric in v, and therefore clearly incorrect. In particular,
obtain the spectrum given by the SBMME from that giv
by the CBMME, the term proportional toTS

21 must be re-
placed by

2vgGx2a2nF @~g1m!/2#21v2

uD~v!u2 G . ~48!
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That the spectrum must be symmetric inv follows readily
from the stationarity of the output field, and the fact that t
output field commutes with itself at different times. In pa
ticular, the stationarity of the output field means that t
correlation function of the signal only depends on the ti
difference, so that

^R~ t !R~ t1t!&5G~t!. ~49!

As the output field commutes with itself at different times,R
commutes with itself at different times, and we have

G~2t!5^R~ t !R~ t2t!&5^R~ t2t!R~ t !&5G~t!.
~50!

The correlation function is therefore symmetric int. As the
spectrum is the Fourier transform of the correlation functi
it follows from the properties of the Fourier transform th
the spectrum is symmetric inv.

It was shown in Ref.@35# that for realistic systems at hig
temperatures the SBMME has a stationary density ma
which is positive. The non-Lindblad nature of the mas
equation appears only to cause problems at short times
our problem we are calculating spectra at steady state
might seem surprising that the non-Lindbad nature d
cause problems for us. On reflection, however, this is
surprising. The spectra we calculate are for continuou
measured quantities. Making such measurements con
ously reprepares the system in aconditionedstate which is
different from the stationary state. Thus if one is observ
the system then it is never really at steady state and
‘‘initial slip’’ problem of Ref. @35# never goes away.

Diosi’s corrected Brownian motion master equation
moves the term asymmetric inv by adding a noise source t
the position@see Eq.~22!# which is correlated with the nois
source for the momentum. In doing so it produces an ad
tional term in the spectrum proportional to 1/T, an effect
which, it should be noted, is independent of the phase de
tion scheme. For temperatures~and frequencies! for which
this new term is much smaller than the standard term, wh
is proportional toT, this new term can be neglected. How
ever, the question of observing this term experimentally
very interesting one, because it would allow the CBMME
be tested. Comparing the new term with the term prop
tional to T we find that the new term begins to domina
when

T,S \

12kB
DAG21v2. ~51!

For temperatures of the order of a few Kelvin, the additio
term therefore becomes apparent in the spectrum at freq
cies of a few gigahertz. Note that for such high frequenc
phase modulation may no longer be practical, however,
ing to the fact thatD must be much larger than the frequen
range of the signal. In that case the use of alternative ph
detection schemes would be required

B. Comparison with homodyne detection

Let us now briefly compare the spectrum derived abo
for phase-modulation detection to that which would be o
tained with homodyne detection. First, if homodyne det
e
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tion had been used, the overall scaling of the spectrum wo
be different, as it would be proportional to the strength of t
local oscillator. Thus the factor of 1/(«b)2 would be re-
placed by 1/(b̃k)2, in which b̃ andk are as defined in Eq
~16!. This overall factor aside, two terms in the spectru
would change. The shot noise component would be redu
to unity, and the classical phase noise contribution wo
become

4G̃y~v!F @~g2m!/2#21v2

@~g1m!/2#21v2G . ~52!

C. The error in a measurement of position

So far we have been considering the noise spectrum of
phase quadrature, as this is what is actually measured. In
section we show how the error in a measurement of the
sition of the mirror may be obtained in a simple manner fro
the spectrum, Eq.~46!, and give an example by calculating
explicitly for some of the terms. As explained above, t
reason for performing the phase measurement is that it c
stitutes essentially a measurement of the position of the m
ror.

We can choose to measure the amplitude of position
cillations at any frequency, but for the purposes of disc
sion, a measurement of a constant displacement is the
plest. First we must see how the position of the mirr
appears in the signal, which is the phase-quadrature mea
ment ~that is, convert from the units of the signal into uni
of the position fluctuations!. This is easily done by calculat
ing the contribution to the spectrum of the position fluctu
tions due to one of the noise sources~for the sake of defi-
niteness we will take the thermal noise!, and comparing this
to the equivalent term in the spectrum of the signal. T
gives us the correct scaling. Performing this calculation,
find that the spectrum of position fluctuations of the mirr
due to thermal noise is given by the thermal term in t
spectrum@Eq. ~46!#, multiplied by the factor

\

2m~«b!2gnx2a2 F S g1m

2 D 2

1v2G . ~53!

From this we see that the scaling factor is frequency dep
dent. This means that the spectrum of the position fluct
tions is somewhat different from the spectrum of the res
ing phase-quadrature fluctuations. For the measuremen
the phase to correspond to a true measurement of the p
tion the two spectra should be the same. This is true t
good approximation wheng is much larger than the range o
v over which the spectrum of position fluctuations is no
zero, and this is why the scheme can be said to constitu
measurement of position wheng@n,G.

In performing a measurement of a constant displacem
of the mirror~achieved by some constant external force!, the
signal ~after scaling appropriately so that it corresponds
position rather than photocurrent! is integrated over a time
tm . The best estimate of the displacement is this integra
signal divided by the measurement time. The error,Dx, in
the case that the measurement time is much greater tha
correlation time of the noise, is given by
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Dx2~0!5E
2`

`

^Rx~0!Rx~t!&dt/tm5Sx~0!/tm . ~54!

In this equationRx andSx are the appropriately scaled sign
and spectrum. To calculate the error in the measurement
constant displacement, all we have to do, therefore, is
scale the spectrum using the expression Eq.~53!, evaluate
this at zero frequency, and divide by the measurement ti
In general, the spectrum evaluated at a given frequency, o
divided by the measurement time, gives the error in a m
surement of the amplitude of oscillations at that frequen
We calculate now the contribution to the error in a measu
ment at zero frequency and at the mirror resonance
quency, from the shot noise, thermal, and quantum ba
action noise. In the following we write the expressions
terms of the parameters usually used by experimentalists
laser powerP, cavity finesseF, and the quality factor for the
mirror oscillator,Q5n/G. We chose the cavity to be imped
ance matched, since this is usually the case in practice.
means that the decay rate due to the input coupler,g, is
chosen equal to the internal cavity decay ratem. The total
decay rate of the cavity is therefore 2g, so that the finesse i
given byF5pc/(2Lg). We also assume thatg@n, which is
certainly true in current experiments. Performing the cal
lation we find that the contribution due to the shot noise
the same at all frequencies, and is given by

DxSN
2 5

3p2

32 S \c2

v0
D 1

F 2Ptm

. ~55!

The contribution from the quantum back action for a me
surement of a constant displacement is

DxBA
2 ~0!5

4

p2 S \v0

c2 D S 1

m2n4DF 2P

tm
, ~56!

and for a measurement at the resonance frequencyn it is
DxBA

2 (n)5Q2DxBA
2 (0). Note that sincem5g, the contribu-

tion from the internal cavity losses is also given by this e
pression. In a sense, the internal cavity loss noise can als
regarded as a back-action term, although the back actio
from a measurement process due to the interaction with
environment that is not being observed. The total error wh
can be said to arise from the random ‘‘photon impacts’’
the mirror~in the absence of classical laser noise! is the sum
of the back action and internal loss noise, and is there
given by

DxPN
2 ~0!5

8

p2 S \v0

c2 D S 1

m2n4DF 2P

tm
. ~57!

The contribution from the thermal noise is

Dxth
2 ~0!5S 2kBT

mn3Qtm
D 1S \2

6mnkBTQ3tm
D , ~58!

for a constant displacement, and is
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Dxth
2 ~n!5S 2kBQT

mn3tm
D 1S \2Q

6mnkBTtm
D , ~59!

for an oscillation at the mirror frequency. In obtaining th
second term in this last expression we have also usedn@G.
The contribution from the other noise sources may also
readily evaluated from the terms in the spectrum Eq.~46!.

Let us examine the total error in a position measurem
resulting from these four contributions~shot noise, back ac
tion, internal losses, and thermal noise! for state-of-the-art
experimental parameters. Reasonable values for such pa
eters are as follows@21#. The laser frequency isv052p
32.8231014 rad s21 @assuming a Nd:YAG~YAG denotes
yttrium aluminum garnet! laser with a wavelength of 1064
nm#, the cavity length isL51 cm, the mass of the oscillat
ing mirror ism51025 kg, and the resonant frequency of th
mirror is n52p323104 rad s21. The quality factor of the
mirror is 43106, which givesG'331022 s21. With these
parameters for the cavity we havex52.2931024 s21. The
cavity damping rate through the front mirror isg54.7
3105 s21, and we assume impedance matching so tham
5g. The cavity may be cooled to a temperature ofT
54.2 K, so thatTS5kBT/(\n)54.373106, which is cer-
tainly in the high-temperature regime (TS@1). The Diosi
term ~of orderTS

22 at resonance! is thus totally negligible.
In Fig. 2 we plot the position measurement error as

function of the laser power, both for the measurement o
constant displacement, and for a displacement at the m
resonance frequency. The expressions for the measure
error derived above are valid in the limit where the measu
ment time is much greater than the correlation time of
noise. As the cavity-mirror system is driven by white nois
this correlation time is given approximately by the longe
decay time of the system. In our case this is the decay tim

FIG. 2. Error in a measurement of the position of the mirror,
a measurement time oftm5300 s. The dashed curve correspon
to a measurement of a constant displacement, and the dot-
curve to a measurement at the mirror resonance frequency.
combined contribution of the quantum back action and internal c
ity loss noise to both curves is the sloping section to the right. T
quantum back-action noise may be observed at reasonable
power levels. For parameters see the text.
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the moving mirror, given by 1/G'30 s. In view of this we
have chosen a measurement time of 300 s~5 min! for the
plot in Fig. 2.

The uncertainty due to the shot noise falls off with las
power, while that due to thermal noise is independent
laser power, and that due to the quantum back action
creases with laser power. These results are already
known. The thermal and back-action contributions are m
greater at the resonance frequency of the mirror, due to
high mechanicalQ factor. The optimal regime for detectin
the quantum back-action noise is at resonance, as the a
lute magnitude of this noise is largest in this case. Reas
able experimental values for laser power lie between
solid lines, where the increase in noise due to the back ac
is visible. However, our analysis of the spectrum shows
that the full situation is more complicated. We have sho
that the noise due to internal cavity losses and the class
laser amplitude noise have the same dependence on
quency as the quantum back action. In order to reach
back-action dominated regime, the laser amplitude no
must be at the shot noise level, and the frequency noise m
be extremely low.

VI. CONCLUSION

We have examined the optomechanical system consis
of a Fabry-Pe´rot cavity containing a moving mirror to se
how the quantum mechanical back action appears among
various sources of classical noise. We have shown a num
of things regarding this question. First of all, the relations
of the shot noise to the noise resulting from the oscillat
mirror, and hence the limit on a position measurement du
the shot noise, is dependent on the phase measure
ys
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scheme. In particular, the result for phase-modulation de
tion, which is commonly used in experiments of this kind,
not the same as that for homodyne detection. We have fo
that while the signature of the classical phase noise is q
different for that of the quantum back action, the noise due
intracavity losses and classical amplitude noise has a v
similar signature to the back action. As far as the parame
of the cavity and oscillating mirror are concerned, realiza
experiments are beginning to fall in the region where
quantum back action may be observed.

In our treatment of the system we have shown that
standard quantum Brownian motion master equation p
duces a clearly spurious term in the steady-state noise s
trum for the phase-quadrature measurement. We have sh
that the corrected Brownian motion master equation, deri
by Diosi, corrects this error. However, it also produces a n
term in the spectrum which is small for present experimen
systems. Testing for the existence of this term poses an
perimental challenge that might be met using miniatu
high-frequency oscillators and ultralow temperatures.
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