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Quantum noise in the position measurement of a cavity mirror undergoing Brownian motion
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We perform a quantum theoretical calculation of the noise power spectrum for a phase measurement of the
light output from a coherently driven optical cavity with a freely moving rear mirror. We examine how the
noise resulting from the quantum back action appears among the various contributions from other noise
sources. We do not assume an iddadmodyné phase measurement, but rather consider phase-modulation
detection, which we show has a different shot noise level. We also take into account the effects of thermal
damping of the mirror, losses within the cavity, and classical laser noise. We relate our theoretical results to
experimental parameters, so as to make direct comparisons with current experiments simple. We also show that
in this situation, the standard Brownian motion master equation is inadequate for describing the thermal
damping of the mirror, as it produces a spurious term in the steady-state phase-fluctuation spectrum. The
corrected Brownian motion master equat[an Diosi, Europhys. Lett22, 1 (1993] rectifies this inadequacy.
[S1050-294{@9)02107-1

PACS numbg(s): 42.50.Lc, 42.50.Dv, 03.65.Bz, 06.30.Bp

I. INTRODUCTION is expected that we will eventually obtain displacement sen-

sors that are quantum limited. The quantum back-action

Interferometers provide a very sensitive method for deoise has not yet been seen experimentally for macroscopic
tecting small changes in the position of a mirror. This hasdevices, so seeing it is a topic of current interest. Once the
been analyzed extensively in the context of gravitationaft@ndard quantum limit has been achieved, this will not be

. ; . the end of the story, however. Various authors have shown
wave detectiofj1—6] and atomic force microscopgs,s]. A that it is possible to use contractive stafdd], squeezed

key limit to the sensitivity of such position detectors comesIight [3,12], or squashed lighf41], to reduce the quantum

from the Heisenberg uncertainty principle. The reduction inya ey action and therefore increase the sensitivity of the mea-
the uncertainty of the position resulting from the measurey rement even further.

ment is accompanied by an increase in the uncertainty in The interferometer we consider here for measuring posi-
momentum. This uncertainty is then fed back into the position consists essentially of a cavity where one of the mirrors
tion by the dynamics of the object being measured. This igs free to move. This system is also of interest from the point
called the quantum back action of the measurement, and th§ view of cavity QED. Usually cavity QED experiments
limit to sensitivity so imposed is referred to as the standardequire optical cavities where the atomic excitations and
quantum limit. Some of the pioneers in this field have beerphotons in the optical modes become entangled. The dynam-
Braginsky and Vorontsov in various studies of measuremerits follows from the interplay between these quantum vari-
aspects of the fluctuations of light caused by the movingbles. However, a challenging realm for cavity QED experi-
mirror [9,10]. ments involves instead aempty cavity (that is, a cavity
In real devices which have been constructed so far, theontaining no atoms or optical megiahere the photons in
quantum back-action noise in the measurement record is usthe cavity mode interact with the motion of one of the cavity
ally small compared to that arising from classical sources omirrors. In this scheme, the position of at least one mirror in
noise. However, as the sensitivity of such devices increasesthe optical resonator is a dynamic variable. The coupling
between the photons and the mirror position is simply the
radiation pressure that stems from the momentum transfer of

*Present address: T-8, Theoretical Division, MS-B285, Los Ala-2#k per one reflected photon with the wave numket has
mos National Laboratory, Los Alamos, NM 87545. Electronic ad-been shown that this system may be used to generate sub-
dress: k.jacobs@lanl.gov Poissonian light in the output from the cavity3—15. The

"Present address: Helsinki University of Technology, Metrologymoving mirror alters the photon statistics by changing the
Research Institute, P.O. Box 3000, FIN-02015 HUT, Finland. Elec-optical path length in a way that is proportional to the instan-
tronic address: ilkka.titonen@hut.fi taneous photon number inside the cavity. This system may
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also be used to create highly nonclassical states of the cavity

field, such as Schdinger catg{16,17, and might even be Laser M 4_—(/\/\/\/\)mrv|
used to create cat states of the mifrdr]. In addition, it has

been shown that such a configuration may be used to per-

form QND measurements of the light fidl@i8], and to detect M D

the decoherence of the mirror, a topic of fundamental interest Spect.

in ntum m rement th .D recen hno- : .
o ?g; ctjltjaveloe;Seuntes ir?ot ioﬁ[ﬁamz: t&isegfe; Egcnov(\)/ be- FIG. 1. Light output from the laser is phase modulated at fre-
9 . 'p P . ’ . guencyA in the modulatoM, and from there drives the cavity. The

coming experimentally accessible. Dorsehl. have realized

. . - - . - front mirror of the cavity is fixed, while the back mirror is a me-
optical bistability with this systeni20], and other experi- panical harmonic oscillator. The diagonal line is a shorthand rep-

ments, particularly to probe the quantum noise, are Now ifesentation for the arrangement which isolates the laser from the
progresg21,22. cavity output, and the light that is reflected back off the front mir-

In order to create displacements that are large enough . All this light falls upon a photodetector PD, and the photode-
be observed, one is tempted to use a mirror having a welkection signal is demodulateitb pick out the phase-quadrature sig-
defined mechanical resonance with a very high-quality factonal) before going to a spectrum analyzer.

Q. Thus, even when excited with weak white noise driven

radiation pressure, the mirror can be displaced by a detectespective forms. Next we compare the spectrum to that
able amount at the mechanical resonance frequendyor  which results if the standarthon-Lindblad Brownian mo-
such a mirror to behave fully quantum mechanically onetion master equation is used to describe the thermal damping
needs to operate at very low temperatures since the thermaf the mirror, and also to that which would have been ob-
energykT very easily exceedév. For example, av/2m  tained using homodyne detection rather than phase-
=100 kHz resonance is already significantly excited atmodulation detection. Finally we show how the error in a
5 uK. However, it is not necessary to reach the fully quan-measurement of the position of the mirror may be obtained
tum domain to observe the quantum back action. By simuleasily from the spectrum. We evaluate explicitly the contri-
taneously combining a high optical quality facttre., by  bution to this error from various noise sources, and plot these
using a high-finesse cavityand a specially designed low as a function of the laser power. Sec. VI concludes.

mass mirror with very high mechanical quality factor one

can at typical cryogenic temperatures create conditions Il. THE SYSTEM

where the radiation pressure fluctuatioqshich are the

source of the quantum mechanical back action referred to The system under consideration consists of a coherently
earliep exceed the effects caused by thermal noise. In thislriven optical cavity with a moving mirror which will be
paper we discuss considerations for detecting this quanturmeated as a quantum mechanical harmonic oscillator. The
back-action noise. light driving the cavity reflects off the moving mirror and

There are already a number of publications dealing withtherefore fluctuations in the position of the mirror register as
guantum noise in optical position measurements. Our maifluctuations in the light output from the cavity. In the limit in
purpose here is to extend this literature in two ways whichwhich the cavity damping rate is much larger than the rate of
are important when considering the detection of the quanturthe dynamics of the mirrofcharacterized by the frequency
noise. The first is the inclusion of the effects of experimentalof oscillation » and the thermal damping raié) the phase
sources of noise, such as the classical laser noise and tflactuations of the output light are highly correlated with the
noise from intracavity losses. The second is to perform dluctuations of the position of the mirror and constitute a
qguantum treatment of phase-modulation detection, so that theontinuous position measurement of the mirréy.
results may be compared with those for homodyne detection. An experimental realization will therefore involve a con-
While this method of phase detection is often used in practinuous phase-quadrature measurement of the light output
tice, it has not previously been given a quantum mechanicdtom the cavity to determine the output spectrum of the
treatment, which we show is important because previouphase-quadrature fluctuations. The nature of the detection
semiclassical treatments have underestimated the shot noiseheme used to measure the phase quadrature is of interest to
In addition to these main objectives, we also show that thais, as we shall see that it will effect the relationship of the
standard Brownian motion master equation is not adequate thot noise to the other noise sources in the measured signal.
describe the thermal damping of the mirror, but that the corQuantum theoretical treatments usually assume the use of
rected Brownian motion master equation derived by Dioshomodyne detectiofi7,13—19. However, this is often not
[23] rectifies this problem. used in practicg24,25. Many current experiments use in-

In Sec. Il we describe the configuration of the system. Insteadphase-modulatiodetection21], which was developed
Sec. Il we perform a quantum mechanical analysis of phasesy Bjorklund [26,27]. Before we treat the dynamics of the
modulation detection. In Sec. IV we solve the linearizedcavity field/oscillating mirror system, to determine the effect
equations of motion for the cavity/mirror system, using aof various noise sources, we will spend some time in the next
non-standard Brownian motion master equation which is okection performing a quantum mechanical treatment of
the Lindblad form[23]. In Sec. V we use this solution to phase-modulation detection. We will focus on this scheme
obtain the noise power spectral densftyhich we refer to  throughout our treatment, and compare the results with those
simply as thespectrum for a measurement of the phase for homodyne detection. A diagram of the experimental ar-
guadrature using phase-modulation detection. In the first parangement complete enough for the theoretical analysis is
of this section we discuss each of the contributions and theigiven in Fig. 1. We note that in practice a feedback scheme
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is used to lock the laser to the cavity so as to stabilize thevhere we have left the classical noise sources arbitrary. This
laser frequency. For an analysis of the method and an expreallows them to be tailored to describe the output from any
sion for the resulting classical phase noise the reader is re@eal laser source at a later time. However, we will assume
ferred to Refs[24,25. We do not need to treat this feedback that the modulation frequendy is chosen large enough so

explicitly, however. Its effect may be taken into account bythat the classical noise is negligible at this frequency. This is
setting the value of the classical laser phase noise in owvhat is done in practice. The average values of the three

analysis to the level it provides. noise sourcesya;,, 6Xx, anddy, are zero, as are all the cross
correlations.
. PHASE-MODULATION DETECTION Before the laser field enters the cavity, it passes through a

. . o phase modulator. This is a classical device which modulates

The laser which drives the cavity is isolated from thethe phase of the coherent amplitude of the beam, and as such

cavity output, and the entirety of this output falls upon ajeayes the quantum noise unaffected. The phase is modulated
photodetector. In order that the photodetection signal Contaiginusoidally, the result of which is to transform the time

information regarding the phase quadrature, the laser field igependent coherent amplitude, given By ox(t) +idy(t),
modulated at a frequencd, which is chosen to be much jnig [26,31]

greater than the natural frequency of the harmonic mirror.
The sidebands that result from this modulation are chosen to ,
lie far enough off resonance with the cavity mode that they [B+ox(D)+idy(1)] 2 Jn(M)emt, 2
do not enter the cavity and are simply reflected from the =T

front mirror. From there they fall upon the photodetector.WhereJn is thenth Bessel functionA is the frequency of the
The result of this is that the output phase-quadrature signaf,oqylation, andM is referred to as the modulation index,
appears in the photodetection signal as a modulation of thgeing determined by the amplitude of the sinusoidal modu-
amplitude of a “carrier” at frequencyA. This is then de- |5ti0n. For phase-modulation detection, the modulation index
modulated(by multiplying by a sine wave at the modulation g typically chosen to be much less than unity so that
frequency and time averagingo pick out the phase- _j 'y  =+M/2=+¢, g<1, and all other terms vanish.
quadrature signal, and from there the spectrum may be cale |aser field after modulation is then
culated.
First consider the laser output field, which is essentially  [B+ ox(t)+idy(t)](1+ee ' 2—ege®) + saj(t). (3)
classical; it is a coherent state in which the amplitude and
phase are not completely stable and therefore contain somésing now the input-output relations of Collet and Gardiner
noise. This means that the field from the laser actually conE32], the field output from the cavity is
tains frequencies in a small range about its central frequency. . _ ;
The laser field may therefore be described by a set of coher-  douf)=~[B+8x() +idy(1)](1+ee - et
ent states with frequencies in this range. As a result it is _ sa.
possible to perform a unitary transformation on the mode 5a|n(t)+\/;[ sa(t)+al, @
operators such that the amplitude of each of the coherent which a(t) = da(t) + « is the operator describing the cav-
states is replaced by a complex number, and the quantuffy mode, andy is the decay constant of the cavity due to the
state of the field is simply the vacuuf@8-30. This sepa- input coupling mirror. We are interested in the steady-state
rates out the classical variations in the field from the quanpehavior, and we choose to be the average Steady_state
tum contribution, and allows us to write the output from thefield strength in the cavity. In addition, in order to solve the
laser as equations of motion for the cavity we will linearize the sys-
. tem about the steady state, which requires that

B+ dain(t) + Sx(1) +1y(t). @ (sa’(t)sa(t))<| 2. The operator describing the photocur-

rent from the photodetector is

n=c

In this expressiorB is the average coherent amplitude of the
field, which we choose to be real, apd is the photon flux.
The deviations from this average are given &(t), being
the classical amplitude noise, a@gi(t), being the classical 2 5%
phase noise. The quantum noise, which may be interpreted as X You———F— 1+ —)
arising from the vacuum quantum field, is captured by the B B
correlation function of the field operatafa;,(t). Here the (5)
subscript refers to the field’s relation to the cavity, and not,
the laser. The correlation functions of the various noise"

Sourees At X oul 1) = VIX() — K1),
(Say(t) dal(t+1)=8(7),

[(t) = agu(t) Tagu(t) = a?+ a( SXou— 20X) + 2& B Sin(At)
2\yady

+(2&8)? sirA(At)

which

8Yoult) = \y8Y(1) ~ 8Yin(1),
(8af (1) da(t+1))=0, and

(Ox(t) ox(t+ 7)) =G,(7), SX(t)=da(t)+ sa'(t),

(8y(1)dy(t+7))=Gy(7), 8Y(t)=—i[sa(t)—sa'(1)],
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SXin(t) = Sain(t) + daf (1), (£B)? T—|7'|> for |r<T
© (Ga(Da(t+7))=1 2 T2 or 7=
0 otherwise.

8Yin(t)=—i[ Sain(t) = sap(t)].
11
We have also sei=(—B+1/ya), and assumed this to be oy, the time scale of the fluctuations 8¥ we can approxi-

real. To obtain the phase-quadrature signal we demodulatgate this as a function, so thaty; andg, (and alsodY;,)

which involves multiplication by a sine wave at frequenty  are still effectively white noise sources. We may therefore
and subsequent averaging over a timeThis time must be  \yrite

long compared to I, but short compared to the time scale
of the phase-quadrature fluctuations. The signal is therefore ~ R(t)=&B8Yut) +du(t) +0z(t) —2¢ Vyasdy(t), 1
given by

and the correlation functions aof; andq, are
1
R(O= 7 [ simani(t+ndr U (DGt 1) = (1D (B~ ya)?8(n),

(Q2(t)aa(t+ 7)) =(112) (e B)? (7).

We now must evaluate this to obtai{t) explicitly in terms  The signal therefore contains the phase quadrature of the
of the phase quadrature. Writing out the integral, and dropeutput field, 5Y,(t), plus three noise terms. While the last
ping everything which averages to zdthat is, which is not term, being the input classical phase noise, is correlated with

(13

passed by the low-pass filteringze obtain oY ult), g1 andq, are not. Taking the Fourier transform of
the signal,
_(2B|| [T 1 (= .
R(t)= T fo OY qut+7)d7 R(w)= ?T i R(t)e ietdt, (14)
2 T i
_( 8-\|/-;a> f Sy(t+ Ddr|+qu(t) + aub), we may write
0 2

®) R(w):€ﬂ5Yout(w)+i21 q;(w) —2e\yady(w).
(15)

This is the Fourier transform of the signal in the case of
phase-modulation detection. If we were to use ideal homo-
dyne detection this would be instef@b|

) Ri(@) = kB 8Y ou @) =20y (w)], (16

where is the amplitude of the local oscillator andis the
reflectivity of the beam splitter used in the homodyne
. (10 scheme. Thus, in the case of phase-modulation detection,
there are two white noise sources which do not appear in
homodyne detection. They stem from the fact that the phase-
In deriving this expression we have assumed that the classiiuadrature detection method is demodulating to obtain a sig-
cal laser noise is only appreciable for frequencies smallepal at a carrier frequency. Because the quantum noise is
than the modulation frequency. Note that we chobde be broadbandin particular, it is broad compared to the carrier
much smaller than the time scale upon whiéd and sy  frequency the demodulation picks up the quantum noise at
change, so that the integration is essentially equivalent t¢ and 2A. There is also a term from the classical phase noise
multiplication by T, an effect which is canceled by the divi- In the sidebands. We note that the contribution from the
sion by T. However, we should also note thé,, contains  duantum noise at& has been omitted from previous semi-
8Y,, so that in replacing the first term imR(t) by classical treatments, with the rgsult that the shot noise has
eB6Yqu(t) we must remember that this only contains thePeen underestimated by (1/2)§)“ [37]. For unbalanced ho-

frequency components @Y, in a bandwidth of IF around ][nodynhe det_ectlon t?]er? W”II alsp” be an he_x;ra conglbutlon
zero frequency. The result of this is th8lY ,(t) is uncorre- rom the noise on the loca oscillator, which may be Sup-
lated with .d being th i out.®/ ™= the band pressedin the limit of an intense local oscillatpmwith the
a'deth VXI/T di an dqtzl"l ?mg € qeuAan ug] &mse In t('a fm " use of balanced homodyne detect{@8)].
w d ?roll(m tﬁ reque:uil_ ?n " ! resfptehc Ively. Returning to Eq(15) for the demodulated signal, the next
e nee Od nﬁv‘;h € corr? ?hlon unc |0ns|, (t) d e_?ﬁ nois tep is to solve the equations of motion for the system op-
sources, and whether or not they are correlated with any ol 544 1o obtaiY(w) in terms of the input noise sources.
the other terms irR(t). It is clear thatq; and g, are not

T . We can then readily calculat®(w)R(w')), which appears
correlated over separation times greater than Using Eq. y &R(@)R(e")) bp

. . in the form
(10) to evaluate the correlation function qf, for example,
we have (R(w)R(0"))=Fw)8(w+w"). (17)

where

qi(t)= —(B_Tﬂ) Re[ JOTie_iA(‘+T)6Xin(t+ 7)dr

qz(t):(i) Re{ fOTe*iZA@*f)aYm(tﬂ)dr
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The § function inw andw’ is a result of the stationarity of cutoff frequency of the thermal reservoir is assumed to be
R(t), andS(w) is thepower spectral densitywhich we will  much smaller thakgT/%. For current experimentssT/7 is

refer to from now on simply as thgpectrum This is useful greater than 10 GHz, so this assumption appears reasonable,
because, when divided by#2 it gives the average of the and leads to the simplest Lindblad-form Brownian motion
square of the signal per unit frequentthe square of the master equation. Using this CBMME, and the standard mas-
signal is universally referred to as thewer, hence the name ter equation for the cavity lossésoth internal and external
power spectral density Since the noise has zero mean, thethe quantum Langevin equations of motion for the system
square average is the variance, and thus the spectrum prare given by

vides us with information regarding the error in the signal | N
due to the noise. The spectrum is also a Fourier transformof . _ ' (YT
the autocorrelation functiof83]. The specific relation, using a=-zlaH] ( 5 |at Vydan(t) + Vibin(t),

the definitions we have introduced above, is (20

sw)= [ (ROR(Me o, a8 g= - [aHI+ATBMKD (), (@21)

and as the autocorrelation function has units of, she spec-
trum has units of s*. To determine the spectrum experimen-
tally the phase of the signal is measured for a time long
compared to the width of the autocorrelation function, andn which the correlation functions for the Brownian noise
the Fourier transform is taken of the result. Taking the squarsources are

modulus of this Fourier transform, and dividing by the dura-

p=—+[p.H]-Tp+@mIkD (1), (22

tion of the measurement obtains a good approximation to the (§(DE&())=o(t=t"), (23

theoretical spectrum. We proceed now to calculate this spec-

romeop P P () ()= B(t—t"), (24)
(&) n(t))=—i(\312) 8(t—1"), (25)

IV. DYNAMICS OF THE SYSTEM

Excluding coupling to reservoirs, the Hamiltonian for the {n(DE) |(\/§/2) at=t). (29)
combined system of the cavity mode and the mirrdr3i] In these equationy is the decay constant describing trans-
mission through the input coupling mirror. All “internal”
cavity losses including absorption, scattering, and loss
through the movable mirror are included separately via the
decay constani, and the corresponding vacuum fluctua-

+H{i[E+ydx(1)+iydy(H)]aT+H.c}. (19  tions via the operatds;(t). The effect of mechanical damp-
] ) ) _ ing and thermal fluctuations of the mirror are given by the
In this equationw, is the frequency of the cavity modg, poise sources(t) and »(t) and the mechanical damping
andp are the position and momentum operators for the mir+qnstant.
ror, respectivelym and » are the mass and angular fre-  \ye note here that if we were to use the standard Brown-

quency of the mirrorg=w,/L is the coupling constant be- jan motion master equatiof40,33, Egs. (21) and (22)
tween the cavity mode and the mirravhereL is the cavity  \ould instead be given by

length, anda is the annihilation operator for the mode. The
classical driving of the cavity by the coherent input field is . i
given byE which has dimensions of §, and is related to the a=- g[qu]v (27)
input laser poweP by E= P y/(fiwg) = JyB. The classical
laser noise appears as noise on this driving term. , i

The moving mirror is a macroscopic object at temperature p=—z[p.H]-Tp+ (2mIkT)Y%(t), (28
T, and as such is subject to thermal noise. While it is still
common to use the standard Brownian motion master equavhere(£(t)£(t'))=8(t—t"). These Langevin equations do
tion (SBMME) [33,4() to model such noise, as it works well not preserve the commutation relations of the quantum me-
in many situations, it turns out that it is not adequate for ourchanical operators, and as a result it is clear that the descrip-
purposes. This is because it generates a clearly nonsensiggn cannot be entirely correct.

term in the spectrum. As far as we know this is the first time  Calculating the commutators in Eq20)—(22), we obtain
that it has been demonstrated to fail in the steady state. Dis-

2

p 1
_ t T 2A2 t
H=%Awea'a+ 5 +2mv g-—fga'aq

cussions regarding the SBMME and non-Lindblad master . vt u )

equations may be found in Ref84,35. We will return to a=E—( > |atigaq+ Vyda(t)

this point once we have calculated the spectrum. We use

instead the corrected Brownian motion master equation +\/;bm(t)+ \/;b)((t)Jri\/;/éy(t), (29
(CBMME) derived by Diosi[23], to describe the thermal

damping of the mirror, as this corrects the problems of the - P 2

SBMME. In particular, we use the CBMME in which the a= E+h(l“/6mk'|‘) (0, (30
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a2 ta_ 1/2 .
p mveq+hrga'a—I'p+(2mIkT)Y<£(t). (31 (w)zi sa(tyeidt, (40
Introducing a cavity detunindw (that is, setting the cavity Vam) =
resonance frequency in the absence of any cavity field to
w.=wo+ dw), and solving these equations for the steady-

o

sal(w)= 1 sa'(t)e'“ldt=[sa(—w)]". (41

state average values we obtain [ -
(a)s= 2E =g, (32) Rearranging the transformed equations, the solution is given
rtu by
hg (X(),6Y(®),6Q(w),6P(w))'=M(w)n(w), (42
(Wss=—lal*, (33 . .
w .
mv wheren(w) is the vector of transformed noise sources. If we
write the matrix elements of M(w) as Mj;(w)
(P)ss=0, (34 =m;(w)/D(w), then
ij(0)/D(w)
where we have set the detuning d@=g(x)ss to bring the D(w)=[(y+wm)2—iw]?(v?— w’—iTw) (43

cavity on resonance with the driving field in the steady state.
Linearizing the quantum Langevin equations about theand the nonzeran;; are given by
steady-state values, and writing the result in terms of the

field quadratures, we obtain the following linear equations: my=[(y+p)2=i0](r*- 0’ —iTw)=my,

_’y+_’u“ 0 0 0 m21=)(20121/,
6X 2 56X . .
Mys=xa(I'—iw)[(y+u)2-iw],
I O L R I
50| 2 N 5Q Myg= xav[(y+ p)l2—iw]=my,
. 44
5P 0 g 0 Vr oP Mas= (T — i )[(y+ w)/2—i ]2, 49
Xa -V -
= 2—iw]?=—
V7 Xin(0)+ i 8% (D) + 247 X(1) Myt pfemio =M,
. VYY) + VoY, (D) +23ydy(t) M= —ixeo[(y+p)2-io],
(TAVI3KT) (1) ' May= —iw[(y+w)/2—iw]2.
[4TKT/(hv)]Y2E(t)

We have now solved the equations of motion for the system
(39 in frequency space. The spectra of the system variables may
10w be calculated in terms of the input noise sources. Using
he input-output relations, which give the output field in
terms of the system variables and the input noise sources, the
2mp spectra of the output field, and hence of the measured signal,
0Q= \/T(q—(q>ss), (36)  may be obtained. Note that quantum mechanics plays no role
in the solution of the motion of the system. The linear equa-
tions of motion may as well be equations for classical vari-
SP= /i(P—QD)ss), (37) able_s. The only part that quantum n_wechan_ics plays in deter-
mh v mining the spectra of the system variables is that some of the
] B " ) ) input noise sources are quantum mechanical. That is, their
and we have defineg=g(27/mv)™ which has units of correlation functions are determined by quantum mechanics.
s™!. The quadratures for the input noise due to intracavityn fact, if all the noise sources had purely classical correla-

In this set of equations we have scaled the position and m
mentum variables using

losses are given by tion functions, then the SBMME Langevin equations would
s —b bt 38 not Ie_ad to any _problems, as _they are perfectly correct as
b,in™ in™" Vin equations of motion for a classical system.
= _i(b.—bf
8Yp,in=—1(bin—Dyy). (39) V. POWER SPECTRAL DENSITY

Without loss of generality we have chosen the input field T calculate the spectrum of the signal, we require the
amplitude to be real (IB]=0), so that the input phase correlation functions of the input noise sources. To reiterate,
quadrature is given by;,. We now solve the dynamid85)  these are

in the frequency domain in order to obtain the spectrum di-

rectly from the solution. To switch to the frequency domain {8Xj\(®) SXin(w'))=(8Yin(®)8Yin(@'))=8(w+ '),

we Fourier transform all operators and noise sources. In par-

ticular, we have, for example, (Xin(0) Y in(@0"))=—{(8Yin(w) Xin(w' )y =i S(w+ '),
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and similarly for 6X;, i,(w) and Yy, in(w). The correlation back action is due to the random way in which photons
functions for the classical laser noise, and thermal noiséounce off the mirror, whereas the internal losses are due to

sources are the similarly random way in which photons are absorbed by
the mirror (or anything else in the cavity The amplitude
(5X(a))5x(w')>=éx(w)5(w+ w'), fluctuations of the laser also affect the mirror in the same
manner, but since these fluctuations are not white neisés
I — R , the case with the quantum noise which comes from the pho-
(dy(w)dy(e") Gy(@)dlwta), ton “collisions™), the response function of the mirror is mul-
(E(w)E(w0))=(n(0)p(0"))=8w+e’), tiplied by the spectrum of the amplitude fluctuations.

The term which appears in the third set of square brackets
N I , is due to the classical phase fluctuations of the laser. Clearly
(n(@)&(0)=—(&w)n(0))=i(V3R)dw+ o )'(45) this has quite a different form from that due to the quantum
noise and the classical amplitude fluctuations. In particular, it
After some calculation we obtain the spectrum of the signalS N°t dependent :Jpon the clou]E)Img crc])ngt@ribecar\]use Itis
for phase-modulation detection as derived more or ess directly from the input phase noise.
Conversely, the noise that derives from the amplitude fluc-
1 1 y—p |2 tuations has its origin from the fact that the amplitude fluc-
w)=5|3+| ——
(8,3)25( 2{ (8(7+M))

+ Yy + u+4yGy(w)} tuations first drive the mirror, and it is the resulting position
fluctuations which cause the phase fluctuations in the output.
The classical phase noise term includes a contribution from

~ the laser phase noise reflected from the caliibpat is, the

+4Gy(w) term given explicitly in Eq.(15)], and a contribution from

the phase noise on the light which has passed through the

(x?a?v)?

|D(w)|?

452 w2 cavity (being a part ofY ).
X 5 CR The final two terms, which multiply the fourth set of
(y+w \[(y+w)/2]*t o square brackets, are due to the thermal fluctuations of the

1 mirror. Note that these terms are only valid in the region in
+y(Xa)zr(4v2T5+—(r2+w2)Tg1) which kgT>%v.
3 Finally we note that we do not see squeezing in the spec-
trum of phase-quadrature fluctuations. This is because
, (46) squeezing is produced when the cavity detuning is chosen so
that the steady-state detuning is nonzgré]. We have cho-
sen to set the steady-state detuning to zero in this treatment
where as we are not concerned here with reducing the quantum
noise.
D(@)*=[(y+p)?A+ o® P (v*~ 0?)?+T20?], In what follows we examine various aspects of the spec-
(47) trum which are of particular interest. Before discussing con-

and Ts is a dimensionless scaled temperature giverTgy siderations for detecting the back-action noise, we compare
=[kg/(fv)]T. This phase-fluctuation spectrum may be the spectrum with that which would have been obtained us-

thought of as arising in the following way. The mechanicaliNd the SBMME, and for that which would result from the

harmonic oscillator, which is the moving mirror, is driven by US€ of homodyne detection. We then write the spectrum at
various noise sources, both quantum mechanical and clas§gSonance as a function of the laser power, and plot this for
cal in origin, and the resulting position fluctuations of the Current experimental parameters. So far we have been con-

mirror are seen as fluctuations in the phase of the light outpuiidering the noise power spectrum, and have made no par-
from the cavity. ticular reference to the limit this implies for a measurement

Let us examine the origin of the various terms in the©f the position of the mirror. In Sec. VC we show how the

spectrum in turn. The first two terms, which appear in theSPECtrum tells us the limit to the accuracy of position mea-
first set of square brackets, are independent of the frequenc§Urément in the presence of the noise sources.
and are the contribution from tHiguantum mechanicashot
noise of the light. The first term has the factor ofrather
than a factor of 2 which would be the case for homodyne
detection due to the contribution frong,(t). The second To obtain the spectrum we have used the corrected
term is the contribution frong(t). Brownian motion master equatid@3]. This is essential be-
The next three terms, which multiply the second set ofcause the spectrum which results from the standard Brown-
square brackets, are the back action of the light on the posian motion master equation contains a term which is asym-
tion of the mirror, noise from internal cavity losses, and themetric in w, and therefore clearly incorrect. In particular, to
classical amplitude noise on the laser, respectively. Note thatbtain the spectrum given by the SBMME from that given
the only distinction between the back action and the internaby the CBMME, the term proportional tﬁigl must be re-
losses is that the former is proportional to the loss rate due tplaced by
the front mirror, and the latter is proportional to the internal
loss rate. It is easily seen that these noise sources should
have the same effect upon the position of the mirror: the

[(y+w)/2]*+ ?
ID(w)|?

A. Comparison with the standard treatment
of Brownian motion

[(y+ )2+ o?
ID(w)|*

20yl x%a?y (48
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That the spectrum must be symmetricanfollows readily  tion had been used, the overall scaling of the spectrum would
from the stationarity of the output field, and the fact that thebe different, as it would be proportional to the strength of the
output field commutes with itself at different times. In par- local oscillator. Thus the factor of ¥)? would be re-

ticular, the stationarity of the output field means that thepjaced by 1/B«)?2, in which 3 and « are as defined in Eq.
correlation function of the signal only depends on the time(16). This overall factor aside, two terms in the spectrum

difference, so that would change. The shot noise component would be reduced
(ROOR(t+ 7)) =G (7). (49) Loeéjonrlr?é, and the classical phase noise contribution would

As the output field commutes with itself at different times,

_ 2 2
commutes with itself at different times, and we have 4(~3y(w) [(y—m)2]"+ o

[(y+m)/2]?+ w?

. (52

G(=n=(R(OR(t—7))=(R(t=7)R(1))=G(7).

. . o C. The error in a measurement of position
The correlation function is therefore symmetricinAs the

spectrum is the Fourier transform of the correlation function, SO far we have been considering the noise spectrum of the
it follows from the properties of the Fourier transform that Phase quadrature, as this is what is actually measured. In this
the spectrum is symmetric ia. section we show how the error in a measurement of the po-
It was shown in Ref[35] that for realistic systems at high sition of the mirror may be qbtalned in a simple manner frqm
temperatures the SBMME has a stationary density matrifh€ Spectrum, Eq46), and give an example by calculating it
which is positive. The non-Lindblad nature of the master€XPlicitly for some of the terms. As explained above, the
equation appears only to cause problems at short times. f§ason for performing the phase measurement is that it con-
our problem we are calculating spectra at steady state so fitutes essentially a measurement of the position of the mir-

might seem surprising that the non-Lindbad nature doe&0': , .
cause problems for us. On reflection, however, this is not W can choose to measure the amplitude of position os-

surprising. The spectra we calculate are for continuouslhfillations at any frequency, but for the purposes of discus-
measured quantities. Making such measurements contingion, @ measurement of a constant displacement is the sim-
ously reprepares the system ircanditionedstate which is  Plest. First we must see how the position of the mirror
different from the stationary state. Thus if one is observing2PPears in the signal, which is the phase-quadrature measure-

the system then it is never really at steady state and thgent(that is, convert from the units of the signal into units
“initial slip” problem of Ref. [35] never goes away. of the position fluctuations This is easily done by calculat-

Diosi’s corrected Brownian motion master equation re_ing the contribution to the spectrum of the position quc_tua-
moves the term asymmetric in by adding a noise source to tions due to one of the noise sourdésr the sake of defi-
the position[see Eq(22)] which is correlated with the noise Niteness we will take the thermal nojsand comparing this
source for the momentum. In doing so it produces an addit® the equivalent term in the spectrum of the signal. This
tional term in the spectrum proportional toTl/an effect 9IVeS US the correct scaling. I_D_erformlng t_hls calculatlon, we
which, it should be noted, is independent of the phase detedlnd that the spectrum of position fluctuations of the mirror
tion scheme. For temperaturéand frequencigsfor which due to thermal noise is given by the thermal term in the
this new term is much smaller than the standard term, whic§PeCtrumEq. (46)], multiplied by the factor
is proportional toT, this new term can be neglected. How-
ever, the question of observing this term experimentally is a h
very interesting one, because it would allow the CBMME to 2m(eB)?yvxla?
be tested. Comparing the new term with the term propor-

tic;]nal to T we find that the new term begins to dominate grom this we see that the scaling factor is frequency depen-
when dent. This means that the spectrum of the position fluctua-

y+u\?

+ w?|.
2 w

(53

tions is somewhat different from the spectrum of the result-
T<( )x/r2+ w?, (51 ing phase-quadrature fluctuations. For the measurement of
1% the phase to correspond to a true measurement of the posi-

For temperatures of the order of a few Kelvin, the additionaltIon the two spectra should be the same. This is true to a

term therefore becomes apparent in the spectrum at frequeﬂpOd apqumeit|on whep is n;uch I.a_rge:clthan the range of
cies of a few gigahertz. Note that for such high frequencies’ over which the spectrum of position fluctuations is non-
phase modulation may no longer be practical, however, owZero, and this is Why. 'Fhe scheme can be said to constitute a
ing to the fact that\ must be much larger than the frequency measurement of position wheyp v, I.

range of the signal. In that case the use of alternative phasef tlr? pe(formlngh_a m(;absurement of "’; cct)nst?nt dﬁpli;ement
detection schemes would be required of the mirror(achieved by some constant external fgrt¢ee

signal (after scaling appropriately so that it corresponds to

position rather than photocurrens integrated over a time

Tm- The best estimate of the displacement is this integrated
Let us now briefly compare the spectrum derived abovesignal divided by the measurement time. The ertox, in

for phase-modulation detection to that which would be ob-the case that the measurement time is much greater than the

tained with homodyne detection. First, if homodyne detec-correlation time of the noise, is given by

B. Comparison with homodyne detection
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Ax2(0)=ch (RY(O)R(7))d 7/ 7y=5,(0)/ 7. (54)

L

In this equatiorR, andS, are the appropriately scaled signal N
and spectrum. To calculate the error in the measurementof s~
constant displacement, all we have to do, therefore, is tc N
scale the spectrum using the expression &8), evaluate E ~
this at zero frequency, and divide by the measurement timex } N
In general, the spectrum evaluated at a given frequency, onc® R
divided by the measurement time, gives the error in a mea AN
surement of the amplitude of oscillations at that frequency. ; : AN
We calculate now the contribution to the error in a measure- 0 | P SO0 ]
ment at zero frequency and at the mirror resonance fre : : N .
qguency, from the shot noise, thermal, and quantum back : ; B S
action noise. In the following we write the expressions in 107 s s - o
terms of the parameters usually used by experimentalists: th P (W)
laser powelP, cavity finesseF, and the quality factor for the
mirror oscillator,Q= »/I". We chose the cavity to be imped-  F|G. 2. Error in a measurement of the position of the mirror, for
ance matched, since this is usually the case in practice. Thig measurement time of,=300 s. The dashed curve corresponds
means that the decay rate due to the input couplens  to a measurement of a constant displacement, and the dot-dash
chosen equal to the internal cavity decay rateThe total curve to a measurement at the mirror resonance frequency. The
decay rate of the cavity is therefore/2so that the finesse is combined contribution of the quantum back action and internal cav-
given byF=mc/(2Ly). We also assume that>v, whichis ity loss noise to both curves is the sloping section to the right. The
certainly true in current experiments. Performing the calcuguantum back-action noise may be observed at reasonable laser
lation we find that the contribution due to the shot noise isPower levels. For parameters see the text.
the same at all frequencies, and is given by
72Q
+( ) (59

6mvkgT 1,

2kgQT

372 (hc?| 1 AX?MW:( 3

R . (55) mv=7,
.7:2P7m

Mev=3z

w
° for an oscillation at the mirror frequency. In obtaining the
second term in this last expression we have also wsel.
The contribution from the other noise sources may also be
readily evaluated from the terms in the spectrum &§).
) Let us examine the total error in a position measurement
AX2,(0)= 4 hwg 1 \7°P (56) resulting from these four contributiorishot noise, back ac-

BA 720 2 [\ m2v4] ™ tion, internal losses, and thermal ngider state-of-the-art
experimental parameters. Reasonable values for such param-

and for a measurement at the resonance frequenityis  Ste€rs are as f0||°ﬂ$21]- The laser frequency io=2m
AX2A(v)=Q2Ax2,(0). Note that sincew= 1, the contribu- X2.82<10" rad s'* [assuming a Nd:YAGYAG denotes

tion from the internal cavity losses is also given by this ex-Yitrium aluminum gametlaser with a wavelength of 1064

pression. In a sense, the internal cavity loss noise can also (&1 the cavity Ienggh ig =1 cm, the mass of the oscillat-
regarded as a back-action term, although the back action |89 mirrorism=10"° kg, andEkle resonant frequency of the
from a measurement process due to the interaction with afirTor is »=2mx2x10" rads'*. The 9‘2“"‘“}3{ factor of the
environment that is not being observed. The total error whicHMIor IS 4X 10°, which givesI'~3x10 2 s 7.4\N|t7hlthese
can be said to arise from the random “photon impacts” onParameters for the cavity we haye=2.29<10"" s™*. The
the mirror(in the absence of classical laser noisethe sum ~ cavity damping rate through the front mirror ig=4.7

. . . . —1 H ;
of the back action and internal loss noise, and is thereforé¢10° s %, and we assume impedance matching so fhat
given by =v. The cavity may be cooled to a temperature f

=4.2 K, so thatTs=kgT/(fv)=4.37x1C°, which is cer-
tainly in the high-temperature regim&@ {&1). The Diosi

The contribution from the quantum back action for a mea
surement of a constant displacement is

2
AX%N(O): E( ﬁwo) 1 \7 P_ (570  term(of orderTg2 at resonanaeis thus totally negligible.

m?\ ¢ J\m?v*) Tm In Fig. 2 we plot the position measurement error as a

function of the laser power, both for the measurement of a

The contribution from the thermal noise is constant displacement, and for a displacement at the mirror
resonance frequency. The expressions for the measurement

2kgT 72 error derived above are valid in the limit where the measure-

Ax2(0)= 3 ) ( 3 ) (58) ment time is much greater than the correlation time of the

mr°Q7 6mvkgTQ 1y, noise. As the cavity-mirror system is driven by white noise,

this correlation time is given approximately by the longest
for a constant displacement, and is decay time of the system. In our case this is the decay time of
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scheme. In particular, the result for phase-modulation detec-
have chosen a measurement time of 30® snin) for the  tion, which is commonly used in experiments of this kind, is
plot in Fig. 2. not the same as that for homodyne detection. We have found
The uncertainty due to the shot noise falls off with laserthat while the signature of the classical phase noise is quite
power, while that due to thermal noise is independent oflifferent for that of the quantum back action, the noise due to
laser power, and that due to the quantum back action inintracavity losses and classical amplitude noise has a very
creases with laser power. These results are already wedimilar signature to the back action. As far as the parameters
known. The thermal and back-action contributions are muclef the cavity and oscillating mirror are concerned, realizable
greater at the resonance frequency of the mirror, due to thexperiments are beginning to fall in the region where the
high mechanical factor. The optimal regime for detecting quantum back action may be observed.
the quantum back-action noise is at resonance, as the abso-In our treatment of the system we have shown that the
lute magnitude of this noise is largest in this case. Reasorstandard quantum Brownian motion master equation pro-
able experimental values for laser power lie between theluces a clearly spurious term in the steady-state noise spec-
solid lines, where the increase in noise due to the back actiotium for the phase-quadrature measurement. We have shown
is visible. However, our analysis of the spectrum shows ughat the corrected Brownian motion master equation, derived
that the full situation is more complicated. We have shownby Diosi, corrects this error. However, it also produces a new
that the noise due to internal cavity losses and the classicé¢rm in the spectrum which is small for present experimental
laser amplitude noise have the same dependence on freystems. Testing for the existence of this term poses an ex-

the moving mirror, given by 1/=30 s. In view of this we

quency as the quantum back action. In order to reach thperimental challenge that might be met using miniature,
back-action dominated regime, the laser amplitude noisdigh-frequency oscillators and ultralow temperatures.
must be at the shot noise level, and the frequency noise must

be extremely low.

VI. CONCLUSION
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