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Anomalous condensate fluctuations in strongly interacting superfluids
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We show that the condensate occupation of a superfluid Bose liquid quite generally exhibits anomalously

large fluctuations at finite temperaturesT5” 0. In three dimensions, the variance^dN̂0
2& of the numberN̂0 of

particles in the condensate scales nonlinearly with volumeV like T2V4/3 at low T, generalizing the result
obtained by Giorgini, Pitaevskii, and Stringari for a weakly interacting Bose gas. In two dimensions there is
only a quasicondensate whose fluctuations are of the same order as the mean value.@S1050-2947~99!08612-6#

PACS number~s!: 03.75.Fi, 05.30.Jp, 67.40.Db
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The experimental realization of Bose Einstein conden
tion ~BEC! in alkali-metal vapors has stimulated extensi
theoretical research on the physics of BEC@1#. It is well
known that the standard grand-canonical ensemble use
textbooks gives unphysically large condensate fluctuatio

^dN̂0
2&.^N̂0&

2}V2, even atT50. Much recent theoretica
work has thus been devoted to the investigation of fluct
tions in different statistical ensembles@2–5#. With a fixed
total particle number, the pathologies of the grand-canon
ensemble are removed, however the condensate fluctua
remain anomalously large,̂dN̂0

2&}T2V4/3, at least for an
ideal Bose gas in a box. Exploiting the fact that BEC in
noninteracting gas is described exactly by the spher
model, this was first realized by Fierz@6#. Surprisingly, the
same behavior was found to persist in the presence of w
interactions, as recently shown by Giorgini, Pitaevski, a
Stringari using the Bogoliubov theory@7#.

In this paper, we demonstrate that the anomalous con
sate fluctuations are a general feature of any superfluid B
system, valid for arbitrary interactions. The large fluctuatio
at finite temperature will be shown to be a direct con
quence of Bogoliubov’s well known 1/k2 theorem for the
static susceptibilityxww(kW ) of superfluids@8#. They are thus
related to the existence of gapless modes and corresp
ingly are absent in artificial models with a finite gap in t
spectrum, as introduced recently in this context@9#. We give
a very simple derivation similar to the one employed
prove that the thermal depletion of the condensate in dim
sion d53 is }T2 @10#. For a Bose liquid ind52, there is
only a quasicondensate whose root-mean-square fluctua

^dN̂0
2&1/2 are of the same order as the mean value^N̂0&, both

scaling with volume with a temperature-dependent expon
12h(T)/2. Being a rather general property of a Bose co
densed system, the anomalous scaling with volume or
ticle number will also be present for BEC’s in harmon
traps, where the condensate fluctuations are crucial for de
mining the linewidth of an atom laser@11,12# as recently
shown by Graham@13#.

We restrict ourselves to Bose liquids in a fixed volum
Vd5Ld with periodic boundary conditions. As shown b
Feynman, the spectrum of excitations ask→0 is exhausted
by phononlike modes withvk5ck. For low enough tem-
peratures such thatmc2@kBT, only phase fluctuations ar
relevant@14# and the field operator may be written as@15#
PRA 601050-2947/99/60~6!/5133~3!/$15.00
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Ĉ~xW !5An0ei ŵ(xW ) ~1!

with n0 being the bare condensate density atT50, which
would be observed in a small sample, i.e., in the absenc
low-energy excitations. The operator of phase fluctuation

ŵ~xW !5( 8
kW

S mc

2Vdn\kD 1/2

~ ĉkWe
ikW•xW1 ĉkW

†
e2 ikW•xW !, ~2!

wherem is the particle mass,c the actual velocity of sound
andn the mean particle density. The operatorsĉkW

† and ĉkW are
phonon creation and annihilation operators, respectively.
prime indicates summation over allkWÞ0W with ukW u,L, L
being a momentum cutoff~the termk50 is omitted because
it corresponds to an irrelevant global phase factor which
always be absorbed in the bare condensate densityn0 and
drops out in any gauge-invariant quantity, as calculated
low!. The actual, renormalized condensate density is
tained from the off-diagonal elements of the one-parti
density matrix, which gives

lim
uxW u→`

^Ĉ†~xW !C~0W !&5n0 lim
uxW u→`

e2^[ ŵ(xW )2ŵ(0W )] 2&/2 ~3!

as long as phonon interactions and higher-energy excitat
are neglected. For large systems, limuxW u→`^ŵ(xW )ŵ(0W )& is al-
ways small compared tôŵ2(xW )&, which is independent ofxW .
Separating off the quantum fluctuations ofŵ at T50, the
mean condensate density at temperatureT may be written as

n0~T!5n0~T50!e2[ ^ŵ2(0W )&uT2^ŵ2(0W )&uT50] . ~4!

In a strongly interacting Bose liquid, the condensate den
at zero temperature may be much smaller than the total d
sity n, as is the case in superfluid4He, wheren0(T50)/n
.0.1 @16#.

In d53, the exponent in Eq.~4! is independent of the
system size and proportional toT2, thus describing the wel
known thermal depletion of the condensate@10#,

n0~T!2n0~0!

n0~0!
52

m~kBT!2

12nc\3
. ~5!
5133 ©1999 The American Physical Society
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In d52, the thermal contribution to phase fluctuatio
diverges logarithmically with system size@17#,

^ŵ2~0W !&uT2^ŵ2~0W !&uT50.
mkBT

2pn\2
ln~LL ![h~T!ln~LL !.

~6!

Hence, the condensate density at finite temperature dep
on the system size vian0(T)5n0(0)(LL)2h(T), with h(T)
}T. In particular, for any finiteT the condensate densit
vanishes in the thermodynamic limit, reflecting the fact th
there is no true condensate ind52 in agreement with the
rigorous proof given by Hohenberg@18#.

The operator of fluctuations around the mean field
given by

dĈ~xW !5Ĉ~xW !2An0~T!5An0~ei ŵ(xW )2e2^ŵ2(0W )&/2!. ~7!

In terms ofdĈ(xW ), the number of particles out of the con
densate is

N̂out5E dxWdĈ†~xW !dĈ~xW !. ~8!

Since the total number of particles is fixed, the fluctu
tions of the condensate occupationN̂0 may be calculated
from ^dN̂0

2&5^dN̂out
2 &, i.e., the condensate and nonconde

sate particles act as effectively infinite particle reservoirs
each other@2,6#. Using Eq.~7! one obtains

^dN̂0
2&.2n0

2e22^ŵ2(0W )&E dxWdxW8^ŵ~xW !ŵ~xW8!&2, ~9!

since^ŵ(xW )ŵ(xW8)& is small at large distances both ind52
and ind53, provided that the temperature is low. Evalu
ing the correlation function atT50, we find

^dN̂0
2&uT50.2S n0~T50!

n D 2S mc

2\ D 2

35
1

2p2
LV3 , d53

1

4p
V2ln~L2V2!, d52.

~10!

The fluctuations are thus normal, scaling essentially linea
with the volume of the system.

At finite temperatures, it is convenient to express the
tegral in Eq.~9! in terms of the static susceptibilityxww(kW ).
Using the classical version of the fluctuation dissipat
theorem, which is always applicable at lowk because\vk
!kBT, we find

E dxWdxW8^ŵ~xW !ŵ~xW8!&25(
kW

8 @kBTxww~kW !#2. ~11!

Since the superfluid densityns which usually appears inxww

@8# coincides with the full densityn at zero temperature fo
any translation-invariant superfluid, we havexww(kW )
ds

t

s

-

-
r

-
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-

5m/n\2k2 for k→0, independent of the interaction strengt
Hence, at low temperatures,

^dN̂0
2&uT52S n0~0!

n D 2S mkBT

\2 D 2

(
kW

8
1

k4
. ~12!

For the weakly interacting Bose gas, there is no depletion
the condensate atT50 to lowest order, and thus with
n0(0)/n replaced by one, our result reduces to the one gi
in @7#. The somewhat surprising fact that the velocity
sound does not appear in Eq.~12! may be traced back to th
well known low k divergence@15,19#,

lim
k→0

nk5
n0~0!

n

kBT

2«k
, ~13!

of the momentum distribution at low but finite temperature
which, apart from the ration0(0)/n, only depends on the
bare single-particle energy«k5(\k)2/2m. In order to make
this connection more explicit, we note that the large dista
behavior of the phase correlation function which appears
Eq. ~9! is directly related to the momentum distributionnk of
the noncondensed particles at lowk via @15#

lim
uxW u→`

^Ĉ†~xW !C~0W !&5n0~T!@11^ŵ~xW !ŵ~0!&#

5n0~T!1E d3k

~2p!3
nkexp2 ikWxW .

~14!

This shows that Eq.~9! can be written in the simple form

^dN̂0
2&52(

kW
8 nk

2 , ~15!

which immediately gives Eq.~12! using the result~13! for
the momentum distribution at finite temperature. The anom
lous scaling of the condensate fluctuations with volume
therefore a direct consequence of the 1/k2 divergence of the
momentum distribution or—equivalently—the related slo
1/r decay of the one-particle density matrix at large distan
to its limiting nonzero valuen0(T). Incidentally, this argu-
ment also explains why the result for anideal Bose gas,
wheren0(0)5n trivially, is just twice the result~12!. Indeed,
the momentum distribution for noninteracting bosons
small nonzerok is nk

(0)→kBT/«k @the factor 2 difference
compared with Eq.~13! is due to the fact that at lowk the
quasiparticles of the interacting system are just an eq
weight superposition of a bare particle with momentumk
plus a bare hole with momentum2k @20##. Using the stan-
dard result for the occupation number fluctuations of id
bosons, we have

^dN̂0
2& (0)5(

kW
8 nk

(0)~11nk
(0)!.(

kW
8 ~nk

(0)!2. ~16!

To leading order, the fluctuations in the interacting and
noninteracting case are thus simply related by a fac
2@n0(0)/2n#2. Contrary to the argument in@7#, the similar
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behavior of the fluctuations in an ideal and interacting Bo
gas is therefore not accidental.

As implied by Eq.~12!, at TÞ0 the fluctuations of the
ground-state occupation are anomalous for any interact
Expressing the result in terms of the standard thermal wa
lengthlT5h(2pmkBT)21/2, we have

^dN̂0
2&uT5BS n0~0!

n D 2S L

lT
D 4

}V3
4/3 ~17!

with a universal constantB5(nW
8unW u24/2p250.8375 whose

numerical value is readily obtained from the lattice sum~12!
~this result is roughly a factor 5 smaller than the correspo
ing one given in Ref.@7#!. Note that contributionskW

52pnW /L with one or two of the components ofnW PZ3 being
zero should be included in the sum in the case of perio
boundary conditions as assumed here. For Dirichlet bou
ary conditions in a box with hard walls, the correspondi
constant in an ideal Bose gas is in fact smaller by a fac
0.864@21#.

In d52, the one-particle density matrix decays to ze
like 1/r h(T) at small nonzero temperatures and the associ
momentum distributionnk is thus proportional tok2(22h) as
k→0. The resulting scaling of the condensate fluctuatio
with system size is temperature dependent,
L
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^dN̂0&uT}S n D S lT
D ~LL !22h(T)}V2 , ~18!

increasing like the square of the average condensate num

^dN̂0
2&}^N̂0&

2. The fluctuations ind52 are thus much large
than those ind53. The fact that the rms fluctuations of th
condensate are of the same order as the average is ye
other indication that the condensate ind52 is not well de-
fined.

In conclusion, we have shown that the anomalous fluct
tions of the condensate occupation at finite temperat
found previously for both ideal and weakly interacting Bo
gases, are a general property of any superfluid with arbitr
interactions. The anomalous behavior of these fluctuati
may be traced back via Bogoliubov’s 1/k2 theorem to the
corresponding low-k singularity in the momentum distribu
tion. They are thus expected to appear quite generally for
order parameter of a phase with a broken continuous s
metry. As has been shown in@7#, the condensate fluctuation
in harmonic traps are similarly determined by the associa
low lying collective excitations. As a result, the anomalo
scaling^dN̂0

2&uT}T2N4/3 with the particle numberN is also
present in finite geometries, provided the excitation spectr
is effectively continuous (kBT!\v in harmonic traps!.
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