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Anomalous condensate fluctuations in strongly interacting superfluids
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We show that the condensate occupation of a superfluid Bose liquid quite generally exhibits anomalously
large fluctuations at finite temperatur€s-0. In three dimensions, the varian(:éNﬁ) of the numberN0 of
particles in the condensate scales nonlinearly with volirike T2V*3 at low T, generalizing the result
obtained by Giorgini, Pitaevskii, and Stringari for a weakly interacting Bose gas. In two dimensions there is
only a quasicondensate whose fluctuations are of the same order as the meai51alb@-2947®9)08612-4
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The experimental realization of Bose Einstein condensa- 0o i o(x)
. . . . : W (x)=+/nge'? 1
tion (BEC) in alkali-metal vapors has stimulated extensive (x) 0 @

theoretical research on the physics of BEQ. It is well . no being the bare condensate densityTat0, which

known that the standard grand-canonical ensemble used {jo|d be observed in a small sample, i.e., in the absence of

textbooks gives unphysically large condensate fluctuationge,y.energy excitations. The operator of phase fluctuations is
(8N2y=(Ng)?=V?, even atT=0. Much recent theoretical

work has thus been devoted to the investigation of fluctua- - - , mc |12, oAt e
tions in different statistical ensembl§8—5]. With a fixed P(x)=2> (m) (cke™+ce™™ ), (2
total particle number, the pathologies of the grand-canonical k d
ensemble are removed, however the condensate ﬂuctuation?1 . . .
. {12\ o T2\/4/3 wherem is the particle mass; the actual velocity of sound,

remain anomalously large,6Ng)«T<V*>, at least for an . , - N
ideal Bose gas in a box. Exploiting the fact that BEC in a@"dn the mean particle density. The operatoEsandc!( are
noninteracting gas is described exactly by the sphericadphonon creation and annihilation operators, resﬁpectlvely. The
model, this was first realized by Fief8]. Surprisingly, the prime indicates summation over &k 0 with |k|<A, A
same behavior was found to persist in the presence of wedkeing a momentum cutofthe termk=0 is omitted because
interactions, as recently shown by Giorgini, Pitaevski, andt corresponds to an irrelevant global phase factor which can
Stringari using the Bogoliubov theofy]. always be absorbed in the bare condensate dengitgnd

In this paper, we demonstrate that the anomalous condemdrops out in any gauge-invariant quantity, as calculated be-
sate fluctuations are a general feature of any superfluid Bodew). The actual, renormalized condensate density is ob-
system, valid for arbitrary interactions. The large fluctuationdained from the off-diagonal elements of the one-particle
at finite temperature will be shown to be a direct conse-density matrix, which gives
quence of Bogoliubov's well known &7 theorem for the o
static susceptibilityy,,,(K) of superfluidg8]. They are thus lim ()W (6))=n, lim e ((«—eO1H2 (3
related to the existence of gapless modes and correspond- |X| 0 |X|— 0
ingly are absent in artificial models with a finite gap in the
spectrum, as introduced recently in this confé@jt We give  as long as phonon interactions and higher—;nergy excitations
a very simple derivation similar to the one employed toare neglected. For large systems,btimm(&(x)fp(O)) is al-

prove that the thermal depletion of the condensate in dimen’vays small Compared KQAPZ()Z)>, which is independent 0?

. _ . 2 . . . _ . ~
siond=3 is «T* [10]. For a Bose liquid ind=2, there is ~ gonarating off the quantum fluctuations @fat T=0, the

onIAy a quasicondensate whose root-mean-squa}re fluctuatiopﬁean condensate density at temperaluneay be written as
(6N2)Y2 are of the same order as the mean vdllg), both

scaling with vo_lume with a temperature-dependent exponent no(T) = nO(T:o)e—[(&2(6)>|T—<¢2(6)>\T:0]. (4)
1-»(T)/2. Being a rather general property of a Bose con-

densed system, the anomalous scaling with volume or paj, 4 strongly interacting Bose liquid, the condensate density

ticle number will also be present for BEC's in harmonic 4t ;6o temperature may be much smaller than the total den-
traps, where the condensate fluctuations are crucial for detegity n, as is the case in superflutHe, whereny(T=0)/n

mining the linewidth of an atom lasdd1,12] as recently ~0.1[16].
shown by Grahanm13].

We restrict ourselves to Bose liquids in a fixed volume
V4=L9 with periodic boundary conditions. As shown by
Feynman, the spectrum of excitationskas 0 is exhausted
by phononlike modes witho,=ck. For low enough tem- 2
peratures such thahc®>kgT, only phase fluctuations are No(T) ~No(0) - m(ksT) _
relevant[14] and the field operator may be written [ds] No(0) 12nch3

In d=3, the exponent in Eq4) is independent of the
system size and proportional T, thus describing the well
known thermal depletion of the condensfié],

©)

1050-2947/99/6(®)/51333)/$15.00 PRA 60 5133 ©1999 The American Physical Society



5134

BRIEF REPORTS

PRA 60

In d=2, the thermal contribution to phase fluctuations =m/n%2k? for k—0, independent of the interaction strength.

diverges logarithmically with system sit&7],

~2 A ~2 A mkgT _
(07(0)) 1= (¢%(0))|1=0= 5INCAL)=7n(T)In(AL).
2mnh
(6)

Hence, at low temperatures,

no(0)>2

(ONg) =2 (12

n

2
mkgT , 1
2 ) Z L4
) k k

For the weakly interacting Bose gas, there is no depletion of

Hence, the condensate density at finite temperature depenflfe condensate aT=0 to lowest order, and thus with

on the system size viag(T)=ny(0)(AL) 7T, with 7(T)

ny(0)/n replaced by one, our result reduces to the one given

«T. In particular, for any finiteT the condensate density in [7]. The somewhat surprising fact that the velocity of
vanishes in the thermodynamic limit, reflecting the fact thatsound does not appear in E42) may be traced back to the

there is no true condensate @2 in agreement with the
rigorous proof given by Hohenbefd8].

The operator of fluctuations around the mean field is

given by
SV (X) = (x) — Jno(T) = (e ¢® — (012 (7)

In terms of&\if(i), the number of particles out of the con-
densate is

Noutzf dxsW(x) 6% (). (8)

Since the total number of particles is fixed, the fluctua-

tions of the condensate occupatibhy may be calculated

from (6N3)=(5N2,), i.e., the condensate and nonconden-
sate particles act as effectively infinite particle reservoirs for

each othef2,6]. Using Eq.(7) one obtains
N —2(02(0 A N
(6NZy=2n2e~ ¢ (°)>J’ dxdx’ {e(X)@(x"))2,  (9)

since(@(X)o(x’)) is small at large distances both ih=2

and ind=3, provided that the temperature is low. Evaluat-

ing the correlation function at=0, we find

- no(T=0)\2/mc\?
<5Né>|T_ozz(T o

1

—— AV, d=3

22 *

X (10

1

—\V,In(A2%V,), d=2.

4

well known low k divergencg 15,19,

No(0) kgT
n 2e.’

limn,=
k—0

(13

of the momentum distribution at low but finite temperatures,
which, apart from the rati;g(0)/n, only depends on the
bare single-particle energy = (%k)%/2m. In order to make
this connection more explicit, we note that the large distance
behavior of the phase correlation function which appears in
Eq. (9) is directly related to the momentum distributiop of

the noncondensed particles at léwia [15]

lim ()W (0))=no(T)[L+((X)(0))]

|x]| o

d3k
no(T)+J (2

ngexp— iKX.

(14)

This shows that Eq9) can be written in the simple form

(6N3y=2>" nZ, (15)

K
which immediately gives Eq12) using the resul{13) for
the momentum distribution at finite temperature. The anoma-
lous scaling of the condensate fluctuations with volume is
therefore a direct consequence of thk?Idivergence of the
momentum distribution or—equivalently—the related slow
1/r decay of the one-particle density matrix at large distances
to its limiting nonzero valueny(T). Incidentally, this argu-
ment also explains why the result for aeal Bose gas,
whereng(0)=n trivially, is just twice the resul(12). Indeed,
the momentum distribution for noninteracting bosons at

The fluctuations are thus normal, scaling essentially lineargmail nonzerok is n®—kgT/e, [the factor 2 difference

with the volume of the system.

compared with Eq(13) is due to the fact that at low the

At finite temperatures, it is convenient to express the in'quasiparticles of the interacting system are just an equal

tegral in Eqg.(9) in terms of the static susceptibilit,yW(IZ).

weight superposition of a bare particle with momentim

Using the classical version of the fluctuation dissipationplus a bare hole with momentumk [20]]. Using the stan-

theorem, which is always applicable at Idnbecauséei wy
<kgT, we find

f dxdX'(@(X)@(X"))2= 2" [kaTx,o(K) ]2 (1)
k

Since the superfluid density, which usually appears ig,,,
[8] coincides with the full density at zero temperature for

any translation-invariant superfluid, we haVQW(IZ)

dard result for the occupation number fluctuations of ideal
bosons, we have

(oNHO=>" nO(1+n)=>" (n2.  (16)
k k

To leading order, the fluctuations in the interacting and the
noninteracting case are thus simply related by a factor
2[ny(0)/2n]?. Contrary to the argument if¥], the similar
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12 No(0) 2Lyt —25(T) oo\ 2~ 7(T)
(NG |+ A (AL) "7 VocV5 , (189

behavior of the fluctuations in an ideal and interacting Bose
gas is therefore not accidental. . N
As implied by Eq.(12), at T#0 the fluctuations of the increasing like the square of the average condensate number
ground-state occupation are anomalous for any interactior{.5N3>°<<No>_2- The fluctuations ird =2 are thus much larger
Expressing the result in terms of the standard thermal wavethan those ird=3. The fact that the rms fluctuations of the

lengthAr=h(27mksT) ~ Y2 we have condensate are of the same order as the average is yet an-
other indication that the condensatedrs2 is not well de-
2 4 -
(5R) =B No(0) |/ L RV 17) fined. _
o/1T™ Ar 3 In conclusion, we have shown that the anomalous fluctua-

tions of the condensate occupation at finite temperature,

with a universal constarB=25'|ﬁ|‘4/27r2=0.8375 whose found previously for both ideal and weakly interacting Bose
numerical value is readily obtained from the lattice si®) ~ 9@Ses, are a general property of any superfluid with arbitrary

(this result is roughly a factor 5 smaller than the correspondintéractions. The anomalous b_s:havif)r of these fluctuations
ing one given in Ref.[7]). Note that contributionsk ~ M&Y be traced back via Bogoliubov’sk?/theorem to the

- ) oo corresponding lowk singularity in the momentum distribu-
=2mn/L with one or two of the components ofe Z° being  ion. They are thus expected to appear quite generally for any
zero should be included in the sum in the case of periodig qer parameter of a phase with a broken continuous sym-
boundary conditions as assumed here. For Dirichlet boundyetry. As has been shown ], the condensate fluctuations
ary conditions in a box with hard walls, the corresponding; harmonic traps are similarly determined by the associated
constant in an ideal Bose gas is in fact smaller by a factofq,y ying collective excitations. As a result, the anomalous

0.864[21] scaling( 5N2)|+o T2N*? with the particle numbeN is also

In d=2, the one-particle density matrix decays to zero resent in finite geometries, provided the excitation spectrum
like 1/r 7™ at small nonzero temperatures and the associatel] 9 P P

momentum distributiom, is thus proportional té&~ (>~ ") as Is effectively continuousKgT <A« in harmonic traps

k—0. The resulting scaling of the condensate fluctuations It is a pleasure to thank M. Holthaus, G. Shlyapnikov,
with system size is temperature dependent, and C. Weiss for helpful discussions.
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