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Ground state of a homogeneous Bose gas: A diffusion Monte Carlo calculation
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We use a diffusion Monte Carlo method to calculate the lowest-energy state of a uniform gas of bosons
interacting through different model potentials, both strictly repulsive and with an attractive well. We explicitly
verify that at low density the energy per particle follows a universal behavior fixed by the gas paraateter
In the regime of densities typical for experiments in trapped Bose-condensed gases, the corrections to the
mean-field energy greatly exceed the differences due to the details of the pof&1@80-294©9)04811-9

PACS numbd(s): 03.75.Fi. 02.70.Lq, 05.30.Jp

The achievement of Bose-Einstein condensation in magg .
netically trapped atomic vapof$] has revived interest in the =4mna
theoretical study of Bose gases. Mean-field methods provide

us with relatively simple predictions both for the equilibrium 128 8(4m—3 J§)

properties of these systerfesnergy per particle, density pro- X1+ 15\/—\/E§+ Tné In(na®)+-- - |.
files, and condensate fractioand for the dynamic behavior &

(frequency of collective excitations and interference effects (1)

which have been found in close agreement with experiments
(for a review, see Ref.2]). In fact, the atomic clouds real-

ized in experiments are very dilute, the average distance berhe first term corresponds to the mean-field prediction and
tween particles being significantly larger than the range ofvas already calculated by Bogoliubpx]. The corrections to
interatomic forces, and mean-field approaches are welhean field have been obtained using perturbation theory; the
suited. However, the investigation of effects beyond meaneoefficient of the fia®)®? term was first calculated by Lee,
field theory is an important task, which would make theseHuang, and Yand8], while the coefficient of the last term
systems even more interesting from the point of view ofwas first obtained by W{i9]. Both of them were originally
many-body physics. Theoretical studies of these effects hawderived for hard spheres, but it was shown that the same
already been proposed, either by analytic inclusion of flucexpansion is valid for any repulsive potential with scattering
tuations around mean fie[@,4] or through numerical calcu- length a [10,11. Furthermore, Hugenholtz and Pinfkl]
lations based on quantum Monte Carlo methg8k and, have shown that the higher-order terms in the expan&ipn
more recently, also on correlated basis function approachedepend on the “shape” of the interatomic potential. It is
[6]. All of these investigations are based on the idea that, folVorth pointing out that, for the values ofa’® relevant in

the values of density relevant in experiments, the details ofXPeriments, the corrections to the mean-field energy are
the interatomic potential can be neglected and one can safe}f’y Small &=3%). In arecent paper, Lieb and Yngvason

use the hard-sphere model in numerical simulations, and t 2] h;ve also providfed Ba rigoroui Ilg\_/verfbound for the
expansion in powers of the gas parametar, fixed by the ?r%un -state er;lergy Io ta 833 gast Ot' Ilnchr:r r;on—negaﬂvg,
number densityr and thes-wave scattering length, in ana- Nt range, spherical, wo-body potentiais. “he lower boun

lytic corrections beyond mean field. The main motivation Ofcoincides with the Bogoliubov mean-field ternk/N
ey . L ) =4m(na’)h?/2ma?. However, what is not well established
the present work is to verify the validity of this approach. By

. e up to now is the range of validity of the universal ld®).
using a diffusion Monte Carl¢DMC) method we calculate In realistic systems, the above restrictions for the inter-

the ground-state energy of a system of bosons interacting;,mic notential do not hold because an attractive tail is gen-
through different two-body model potentials. We explicitly gr4)y present. In this case the situation for the ground state is
show that for the values of the gas parameter reached ifjfferent. If the potential does not sustain any many-body
magnetic trapsr(a®=10"°-10“), the behavior is universal pound states and the scattering length is positive, the ground
and fixed byna® and the corrections to the mean-field en-state of the system still behaves like a gas and the expansion
ergy are much larger than the differences due to the details gfl) should hold. Conversely, in the case of potentials that
the interatomic potential. have two-, three-, or more-body bound states, the ground-
The ground state of a homogeneous dilute Bose gas wasate of the system is no longer a homogeneous gas, but a
intensively studied in the 1950s and early 1960s. One of thetate with clusters of atoms formed. However, if the scatter-
main results of this investigation is that the ground-state ening length is positive, a uniform gas can still exist as a meta-
ergy can be expanded in powers gha®. In units of stable state, which will be long lived at very low densities.
#2/2ma?® the energy per particle takes the form Our results for a simple model of interatomic potential with

1050-2947/99/6(®)/51294)/$15.00 PRA 60 5129 ©1999 The American Physical Society



5130 BRIEF REPORTS PRA 60

an attractive part show that the energy of the gaslike metaas in 8’Rb and °Na) the scattering length is much larger

stable state still follows the universal law given by Ef).  than the size of the atom. To reproduce this situation we
We consider a system ™ spinless bosons with mass  pgye choserR=5R, and a=10R with only one two-body

described by the many-body HamiltonianH=  bound state in the well.

—(ﬁ2/2m)2iN:1Vi2+ Zi<;V(ri—r|), where V(r) is the In the case of purely repulsive potentials, we directly ap-

two-body, spherical, interatomic potential. The DMC algo-ply the DMC algorithm to obtain the ground-state energy.
rithm exactly solves, apart from statistical uncertainty, theFor importance sampling we use a Jastrow trial function:
N-body Schrdinger equation for the ground-state energy of yr (R)= (14, . .. rn) =1 ;f(r;;). The Jastrow factor
the systenfor further details on the method see for examplef(r) js chosen as the exact wave function of a pair of par-
Ref. [13]). We have used different choices for the potential(cjes interacting throughv/(r) with total energye for r

V(r(i)). Hard-spherdHS) potential defined by SR_’ and forr >R, afunctionf(r)_:l—Ae*”“, Whi.Ch goes
rapidly to one. The parameter is left as a variational pa-
+o  (r<a) rameter, while the coefficie® and the matching poitﬁare
V(r)=[ 0 (r>a), (@ chosen so that(r) and its first derivative be continuous at
r=R and the local energy «{#2V2/2m+\V)f(r)/f(r) be
also continous at=R. The energye is the second varia-

tional parameter. Before starting the DMC calculation, we
perform a variational Monte Carlo analysis to optimize the

where the diametea of the hard sphere corresponds to the
scattering length.
(i) Soft-sphergSS potential defined by

Vo (r<R) parameters of the trial wave function. At low densities, we
V(r)= 0 (r>R) (38)  find that the DMC calculation improves very little on the
' VMC result. For example, for the HS potential ag®
with a scattering lengtta=R[ 1—tanhR)/K,R] with k2~ =107° and in units of #%/2ma’, Eyuc/N=1.278(1)

—V,m/A2 andVy>0. For finiteV, one has alwayR>a, <10 * andEpuc/N=1.274(1)<10"*. This means that at
while for Vo— +c the SS potential coincides with the HS oW densitiesy7(R) has a large overlap with the “true”
one withR=a. For the SS potential we have considered twodround-state wave function. _

choices;R=5a andR=10a. It is worth noting that the hard The case of the HCSW potential needs a careful treat-
sphere and the very soft sphere with=10a represent two ment. Since the potential has a two-body bound state, the

extreme cases for a repulsive potential. In the HS case, tHg@slike state is not the ground state. To obtain the energy of
energy is entirely kinetic, while for the very “soft” potential the metastable gaslike state it is necessary to propct out the
a=(m/#2) [EV(r)rdr, according to the Born approxima- bound-state component of the wave function. This can be

tion, and the energy is almost all potential. This oppositeaChieved by using the same trial wave function as for the SS

behavior is clearly observed in the curvature of the Correp?]tentiarll(any tria_l lfgnction t_hat Is plgsit')[ive in t”he region_
nding two- istribution functiom(r) shown in Fig.  Where the potential is attractive would be equally appropri-
Zpo ding two-body distribution functiog(r) sho g ate and then projecting the results for the energy by means

" ) } ; s of an auxiliary function/p(R) orthogonal to any many-body
(iif) Hard-core square-we{HCSW) potential defined by state with bound pairs. In the Monte Carlo formulation this is
+ o0 (r<R.) realized by the weighted integraE= [dRf(R,7—x)
vin=| —Vo (R<r<rR) @ XLAGR(RIYr(R)IR (R, 7—)p(R)/Yr(R), where
f(R,7—) is the density of walkers generated by the DMC
0 (r>R), calculation. The projecting functionyp(R) is chosen as
for which the swave scattering length is given ty=R, I’IIP(R):HKJ'fP_(r”)’ where fp(r) c_oincideslv_ith J_[he trial
+(R—R){1—tar Ko(R—R)VKo(R—RJ)}  with KS two-body funct!onf(r) for r>Rz Whl|.e forr<R is given by
=V,m/%2 and Vo>0. For fixedR, and R the scattering th_e exact solution for two particles mteractl_ng_throug(r_r)
length coincides with the hard-core radis for V=0 and with energye>0 [we require the same continuity conditions

by increasingV, it exhibits resonances each time a two-bodyat the matching poinR as for f(r)]. Since the matching
bound state appears in the well. In many real potent&@alsh  point R is much larger than the range of the potential,

TABLE |. Energy per particle for the HS potential.

na’ E/N (units of #2/2m&?) na’ E/N (units of #2/2m&?)
106 1.262(1)x10°° 5%x10 3 8.154(6)x 102
5x10 ¢ 6.343(1)x10°° 10 2 1.796(1)x 10!
10°° 1.274(1)x 104 5%x10 2 1.3381)
5x10°° 6.469(3)x 10 * 10t 3.6267)
1074 1.311(1)x10°3 0.166 8.262)
5x10 4 6.880(4)x 103 0.244 16.71)

1073 1.424(2)x 10?2
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1T T TABLE Il. Energy per particle for the SS and HCSW potential
[ (in units of 42/2ma?).

E/N

na’ SS R=5a) SS R=10a) HCSwW

100 1.262(1)x1075 1.262(1x10°° 1.262(1)x10°°
100%  1.274(1)x107%  1.273(1)x10°* 1.277(2)x 104
1004 1.309(1x10°° 1.303(1)x10°% 1.314(1)x10°3
1003 1.395(1)x1072 1.356(1)x10 2 1.430(5)x10 ?

E/N

lower bound provided by the mean-field term, as discussed
in Ref.[12]. The very low density regime and the relevance
na’ of the logarithmic correction is analyzed in the inset of Fig.

2. The HS and SS results show evidence of the presence of
FIG. 1. Equation of state for the HS potential. The solid CirC|ESthis |Ogarithmic Correction’ however, the effect is t|ny and
are the DMC energiegerror bars are smaller than the size of the goes rapidly wrong for larger densities. Due to larger error
symbolg; the solid line corresponds to the mean-field predictionpars no conclusion can be drawn for the HCSW results con-

[first term in Eq.(1)]; the long-dashed line includes the LHY cor- cerning the logarithmic term.

rection [first two te_rms in Eq.(l)]; the short-dashed line includes Another point of interest is the condensate fractigyiN,
:ilgs (T)e leiagtnr;rp;ego;gciﬁo:niz%fg/ozrr;e;zponds to the full expang, hich we calculate from the long-range behavior of the one-
' ' body density matrixNy/N=Iim,_,.p(r) (see Ref[13] for
gfurther detail. In Fig. 3, we show the results fdt,/N as a
function of na® for the HS and the two SS potentials. The

results are compared with the analytic expansion

fp(r) is orthogonal to the bound-state wave function an
Yp(R) is orthogonal to any many-body state with one or
more bound pairs formed. In this way, we eliminate from the
calculation all states with bound pairs. At low densities we

expect that bound pairs give the main contribution to the le_ i(na3)1’2, (5)
ground state compared to three or more-body bound states. N 3Jm

By eliminating these bound pairs we are thus left with the ) - . .
gaslike metastable state with lowest energy. calculated by Bogoliuboy7]. At low densities this law is

We are now in a position to discuss our results. In Tableuniversal and agrees very well with the results of the three
| we present the DMC resu|ts for the equation of state Of thénodel pOtentials. First, deViationS from uniVersaIity start to
HS potential. In all of the calculations we have used a simuappear for thena®~=10"° result, which coincides with the
lation box containingN=500 particles in order to reduce emergence of deviations in the energy values.
finite size effects well below statistical uncertainty. Previous [N Fig. 4 we show the two-body distribution functigir)
Monte Carlo calculations of the ground-state energy of thdor hard spheres at various densities. One can clearly see the
hard-sphere boson system have been performed at densities 7
typical of liquid “He (na®=0.1)[14,15. The results for the L
two highest densities in Table | are compatible with the
Green’s Function Monte Carlo results of REE5]. In Fig. 1,
our results for the HS equation of state are shown together
with the various terms of the analytic expansidh One can
see that the Lee-Huang-YafigHY ) correction[second term
in Eq. (1)] represents a significant improvement on the
mean-field prediction and the inclusion of this term allows
for a good approximation of the equation of state up to very
high densities. On the contrary, the logarithmic correction 107k
[third term in Eqg.(1)] goes wrong already at intermediate
densities fa®=10"3). ol e e
In Table Il, we report the results of the comparison be-
tween the various potentials considered in this wdte na’
corresponding results for the HS potential casn be read from FIG. 2. Corrections to the mean-field energy. Circles, HS poten-
Table ). At low values of the gas parametea” all poten- 45 gown triangles, SS potentiaR=5a); squares, SS potential
tials give the same results and only at the largest densityr—10a); up triangles, HCSW potential; solid line, LHY correc-
reported (a*=10""), the results for the SS potential start to tjon [second term in Eq(1)]. The error bars are smaller than the
deviate from the HS values. The universal behavior is bettegize of the symbols. The inset shows the results for the HS, SS
shown in Fig. 2, where we plot the difference between thqRr=10a), and HCSW potentials in the extremely low-density re-
calculated energy per particle and the mean-field term angion; the solid line is again the LHY correction, while the dashed
compare it with the LHY correction. It is worth mentioning line includes the logarithmic correctidsecond and third term in
that this difference is always positive in agreement with theEq. (1)]. The energies are in units &éf/2ma?.

E/N - 4nna’
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FIG. 3. Condensate fraction as a function of the gas parameters.g?riroe; a:_gﬁn_sét;fe d 1Ii(r)1e (lso(\)lzte.;mr?s:ééo(: 1’0251’;:]'54:(#0%_
Circles, HS potential; down triangles, SS potenti&=(5a); P ) 9 ' P

squares, SS potentiaRE& 10a). The solid line corresponds to the ds?s)h z? :;lr;eiol;?éjsrtle(;;;iﬁsfgrz fg—t? & Bogoliubov static form factor
Bogoliubov expansiolt5). The error bars are smaller than the size v '

of the symbols. results since in the second case particles can penetrate the

éepulsive potential. At higher densities the Bogoliubov ap-
distribution functiong(r) can be estimated at low densities Proximation forg(r) becomes poorer and completely misses

using the Bogoliubov result for the static form fact&(k) the shell structure of the distribution function.
— 12k2/2me(K), where e(K) = (*K44m2+ g 2k2/m) 2 is In conclusion, we have shown that, for the values of den-

sity realized in magnetic traps, the corrections to mean field
are fixed only by the gas parametea® and do not depend
on the details of the interatomic potential. These effects, al-
though small, have a simple theoretical description in terms
of the parametena® and, possibly, can be singled out in
future precision measurement.

building up of short-range correlations at high densities. Th

the usual Bogoliubov dispersion relation with coupling con-
stantg=4m#2a/m. The Fourier transform oB(k) gives the
distribution functiong(r) directly which, forr>a, exhibits
the asymptotic behavior g(r)=1
—[47%4(na®)®(r/a)*]~ . In Fig. 4 we also compare, at the
densityna®=10#, the distribution function obtained from
the BogoliubovS(k) with the g(r) of hard spheres and soft The authors would like to thank S. Stringari and L.P.
spheres withR=10a. The long-range behavior is universal Pitaevskii for many useful discussions. This research has
and agrees with the Bogoliubov result, while at short dis-been partially supported by DGESpain Grant No. PB96-
tances the HS and SS potentials give completely differen®170-C03-02.
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