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Ground state of a homogeneous Bose gas: A diffusion Monte Carlo calculation
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We use a diffusion Monte Carlo method to calculate the lowest-energy state of a uniform gas of bosons
interacting through different model potentials, both strictly repulsive and with an attractive well. We explicitly
verify that at low density the energy per particle follows a universal behavior fixed by the gas parameterna3.
In the regime of densities typical for experiments in trapped Bose-condensed gases, the corrections to the
mean-field energy greatly exceed the differences due to the details of the potential.@S1050-2947~99!04811-8#

PACS number~s!: 03.75.Fi. 02.70.Lq, 05.30.Jp
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The achievement of Bose-Einstein condensation in m
netically trapped atomic vapors@1# has revived interest in the
theoretical study of Bose gases. Mean-field methods pro
us with relatively simple predictions both for the equilibriu
properties of these systems~energy per particle, density pro
files, and condensate fraction! and for the dynamic behavio
~frequency of collective excitations and interference effec!,
which have been found in close agreement with experime
~for a review, see Ref.@2#!. In fact, the atomic clouds real
ized in experiments are very dilute, the average distance
tween particles being significantly larger than the range
interatomic forces, and mean-field approaches are w
suited. However, the investigation of effects beyond me
field theory is an important task, which would make the
systems even more interesting from the point of view
many-body physics. Theoretical studies of these effects h
already been proposed, either by analytic inclusion of fl
tuations around mean field@3,4# or through numerical calcu
lations based on quantum Monte Carlo methods@5# and,
more recently, also on correlated basis function approac
@6#. All of these investigations are based on the idea that,
the values of density relevant in experiments, the details
the interatomic potential can be neglected and one can sa
use the hard-sphere model in numerical simulations, and
expansion in powers of the gas parameterna3, fixed by the
number densityn and thes-wave scattering lengtha, in ana-
lytic corrections beyond mean field. The main motivation
the present work is to verify the validity of this approach. B
using a diffusion Monte Carlo~DMC! method we calculate
the ground-state energy of a system of bosons interac
through different two-body model potentials. We explicit
show that for the values of the gas parameter reache
magnetic traps (na3.1025–1024), the behavior is universa
and fixed byna3 and the corrections to the mean-field e
ergy are much larger than the differences due to the detai
the interatomic potential.

The ground state of a homogeneous dilute Bose gas
intensively studied in the 1950s and early 1960s. One of
main results of this investigation is that the ground-state
ergy can be expanded in powers ofAna3. In units of
\2/2ma2 the energy per particle takes the form
PRA 601050-2947/99/60~6!/5129~4!/$15.00
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The first term corresponds to the mean-field prediction a
was already calculated by Bogoliubov@7#. The corrections to
mean field have been obtained using perturbation theory;
coefficient of the (na3)3/2 term was first calculated by Lee
Huang, and Yang@8#, while the coefficient of the last term
was first obtained by Wu@9#. Both of them were originally
derived for hard spheres, but it was shown that the sa
expansion is valid for any repulsive potential with scatteri
length a @10,11#. Furthermore, Hugenholtz and Pines@11#
have shown that the higher-order terms in the expansion~1!
depend on the ‘‘shape’’ of the interatomic potential. It
worth pointing out that, for the values ofna3 relevant in
experiments, the corrections to the mean-field energy
very small (.3%). In a recent paper, Lieb and Yngvaso
@12# have also provided a rigorous lower bound for t
ground-state energy of a Bose gas holding for non-negat
finite range, spherical, two-body potentials. The lower bou
coincides with the Bogoliubov mean-field term:E/N
>4p(na3)\2/2ma2. However, what is not well establishe
up to now is the range of validity of the universal law~1!.

In realistic systems, the above restrictions for the int
atomic potential do not hold because an attractive tail is g
erally present. In this case the situation for the ground sta
different. If the potential does not sustain any many-bo
bound states and the scattering length is positive, the gro
state of the system still behaves like a gas and the expan
~1! should hold. Conversely, in the case of potentials t
have two-, three-, or more-body bound states, the grou
state of the system is no longer a homogeneous gas, b
state with clusters of atoms formed. However, if the scat
ing length is positive, a uniform gas can still exist as a me
stable state, which will be long lived at very low densitie
Our results for a simple model of interatomic potential w
5129 ©1999 The American Physical Society
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5130 PRA 60BRIEF REPORTS
an attractive part show that the energy of the gaslike m
stable state still follows the universal law given by Eq.~1!.

We consider a system ofN spinless bosons with massm

described by the many-body HamiltonianĤ5
2(\2/2m)( i 51

N ¹ i
21( i , jV(ur i2r j u), where V(r ) is the

two-body, spherical, interatomic potential. The DMC alg
rithm exactly solves, apart from statistical uncertainty,
N-body Schro¨dinger equation for the ground-state energy
the system~for further details on the method see for examp
Ref. @13#!. We have used different choices for the potent
V(r ):

~i! Hard-sphere~HS! potential defined by

V~r !5H 1` ~r ,a!

0 ~r .a!,
~2!

where the diametera of the hard sphere corresponds to t
scattering length.

~ii ! Soft-sphere~SS! potential defined by

V~r !5H V0 ~r ,R!

0 ~r .R!,
~3!

with a scattering lengtha5R@12tanh(K0R)/K0R# with K0
2

5V0m/\2 and V0.0. For finiteV0 one has alwaysR.a,
while for V0→1` the SS potential coincides with the H
one withR5a. For the SS potential we have considered t
choices:R55a andR510a. It is worth noting that the hard
sphere and the very soft sphere withR510a represent two
extreme cases for a repulsive potential. In the HS case,
energy is entirely kinetic, while for the very ‘‘soft’’ potentia
a.(m/\2)*0

`V(r )r 2dr, according to the Born approxima
tion, and the energy is almost all potential. This oppos
behavior is clearly observed in the curvature of the cor
sponding two-body distribution functiong(r ) shown in Fig.
4.

~iii ! Hard-core square-well~HCSW! potential defined by

V~r !5H 1` ~r ,Rc!

2V0 ~Rc,r ,R!

0 ~r .R!,

~4!

for which the s-wave scattering length is given bya5Rc

1(R2Rc)$12tan@K0(R2Rc)#/K0(R2Rc)% with K0
2

5V0m/\2 and V0.0. For fixed Rc and R the scattering
length coincides with the hard-core radiusRc for V050 and
by increasingV0 it exhibits resonances each time a two-bo
bound state appears in the well. In many real potentials~such
a-
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as in 87Rb and 23Na) the scattering length is much larg
than the size of the atom. To reproduce this situation
have chosenR55Rc and a510R with only one two-body
bound state in the well.

In the case of purely repulsive potentials, we directly a
ply the DMC algorithm to obtain the ground-state energ
For importance sampling we use a Jastrow trial functi
cT(R)[cT(r1 , . . . ,rN)5) i , j f (r i j ). The Jastrow factor
f (r ) is chosen as the exact wave function of a pair of p
ticles interacting throughV(r ) with total energye for r

<R̄, and forr .R̄, a functionf (r )512Ae2r /a, which goes
rapidly to one. The parametera is left as a variational pa-

rameter, while the coefficientA and the matching pointR̄ are
chosen so thatf (r ) and its first derivative be continuous a

r 5R̄ and the local energy (2\2¹2/2m1V) f (r )/ f (r ) be

also continous atr 5R̄. The energye is the second varia-
tional parameter. Before starting the DMC calculation,
perform a variational Monte Carlo analysis to optimize t
parameters of the trial wave function. At low densities, w
find that the DMC calculation improves very little on th
VMC result. For example, for the HS potential atna3

51025 and in units of \2/2ma2, EVMC /N51.278(1)
31024 andEDMC /N51.274(1)31024. This means that a
low densitiescT(R) has a large overlap with the ‘‘true’
ground-state wave function.

The case of the HCSW potential needs a careful tre
ment. Since the potential has a two-body bound state,
gaslike state is not the ground state. To obtain the energ
the metastable gaslike state it is necessary to project ou
bound-state component of the wave function. This can
achieved by using the same trial wave function as for the
potential ~any trial function that is positive in the regio
where the potential is attractive would be equally approp
ate! and then projecting the results for the energy by me
of an auxiliary functioncP(R) orthogonal to any many-body
state with bound pairs. In the Monte Carlo formulation this
realized by the weighted integralE5*dRf (R,t→`)
3@ĤcP(R)#/cT(R)/*dRf (R,t→`)cP(R)/cT(R), where
f (R,t→`) is the density of walkers generated by the DM
calculation. The projecting functioncP(R) is chosen as
cP(R)5) i , j f P(r i j ), where f P(r ) coincides with the trial
two-body functionf (r ) for r .R̄, while for r ,R̄ is given by
the exact solution for two particles interacting throughV(r )
with energye.0 @we require the same continuity condition
at the matching pointR̄ as for f (r )#. Since the matching
point R̄ is much larger than the rangeR of the potential,
TABLE I. Energy per particle for the HS potential.

na3 E/N ~units of \2/2ma2) na3 E/N ~units of \2/2ma2)

1026 1.262(1)31025 531023 8.154(6)31022

531026 6.343(1)31025 1022 1.796(1)31021

1025 1.274(1)31024 531022 1.338~1!

531025 6.469(3)31024 1021 3.626~7!

1024 1.311(1)31023 0.166 8.26~2!

531024 6.880(4)31023 0.244 16.7~1!

1023 1.424(2)31022
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f P(r ) is orthogonal to the bound-state wave function a
cP(R) is orthogonal to any many-body state with one
more bound pairs formed. In this way, we eliminate from t
calculation all states with bound pairs. At low densities
expect that bound pairs give the main contribution to
ground state compared to three or more-body bound sta
By eliminating these bound pairs we are thus left with t
gaslike metastable state with lowest energy.

We are now in a position to discuss our results. In Ta
I we present the DMC results for the equation of state of
HS potential. In all of the calculations we have used a sim
lation box containingN5500 particles in order to reduc
finite size effects well below statistical uncertainty. Previo
Monte Carlo calculations of the ground-state energy of
hard-sphere boson system have been performed at den
typical of liquid 4He (na3.0.1) @14,15#. The results for the
two highest densities in Table I are compatible with t
Green’s Function Monte Carlo results of Ref.@15#. In Fig. 1,
our results for the HS equation of state are shown toge
with the various terms of the analytic expansion~1!. One can
see that the Lee-Huang-Yang~LHY ! correction@second term
in Eq. ~1!# represents a significant improvement on t
mean-field prediction and the inclusion of this term allo
for a good approximation of the equation of state up to v
high densities. On the contrary, the logarithmic correct
@third term in Eq.~1!# goes wrong already at intermedia
densities (na3.1023).

In Table II, we report the results of the comparison b
tween the various potentials considered in this work~the
corresponding results for the HS potential can be read f
Table I!. At low values of the gas parameterna3 all poten-
tials give the same results and only at the largest den
reported (na351023), the results for the SS potential start
deviate from the HS values. The universal behavior is be
shown in Fig. 2, where we plot the difference between
calculated energy per particle and the mean-field term
compare it with the LHY correction. It is worth mentionin
that this difference is always positive in agreement with

FIG. 1. Equation of state for the HS potential. The solid circ
are the DMC energies~error bars are smaller than the size of t
symbols!; the solid line corresponds to the mean-field predict
@first term in Eq.~1!#; the long-dashed line includes the LHY co
rection @first two terms in Eq.~1!#; the short-dashed line include
also the logarithmic correction and corresponds to the full exp
sion ~1!. The energies are in units of\2/2ma2.
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lower bound provided by the mean-field term, as discus
in Ref. @12#. The very low density regime and the relevan
of the logarithmic correction is analyzed in the inset of F
2. The HS and SS results show evidence of the presenc
this logarithmic correction, however, the effect is tiny a
goes rapidly wrong for larger densities. Due to larger er
bars no conclusion can be drawn for the HCSW results c
cerning the logarithmic term.

Another point of interest is the condensate fractionN0 /N,
which we calculate from the long-range behavior of the o
body density matrix:N0 /N5 limr→`r(r ) ~see Ref.@13# for
further details!. In Fig. 3, we show the results forN0 /N as a
function of na3 for the HS and the two SS potentials. Th
results are compared with the analytic expansion

N0

N
512

8

3Ap
~na3!1/2, ~5!

calculated by Bogoliubov@7#. At low densities this law is
universal and agrees very well with the results of the th
model potentials. First, deviations from universality start
appear for thena3.1023 result, which coincides with the
emergence of deviations in the energy values.

In Fig. 4 we show the two-body distribution functiong(r )
for hard spheres at various densities. One can clearly see

-

TABLE II. Energy per particle for the SS and HCSW potenti
~in units of \2/2ma2).

E/N

na3 SS (R55a) SS (R510a) HCSW

1026 1.262(1)31025 1.262(1)31025 1.262(1)31025

1025 1.274(1)31024 1.273(1)31024 1.277(2)31024

1024 1.309(1)31023 1.303(1)31023 1.314(1)31023

1023 1.395(1)31022 1.356(1)31022 1.430(5)31022

FIG. 2. Corrections to the mean-field energy. Circles, HS pot
tial; down triangles, SS potential (R55a); squares, SS potentia
(R510a); up triangles, HCSW potential; solid line, LHY correc
tion @second term in Eq.~1!#. The error bars are smaller than th
size of the symbols. The inset shows the results for the HS,
(R510a), and HCSW potentials in the extremely low-density r
gion; the solid line is again the LHY correction, while the dash
line includes the logarithmic correction@second and third term in
Eq. ~1!#. The energies are in units of\2/2ma2.
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building up of short-range correlations at high densities. T
distribution functiong(r ) can be estimated at low densitie
using the Bogoliubov result for the static form factor:S(k)
5\2k2/2me(k), wheree(k)5(\4k4/4m21gn\2k2/m)1/2 is
the usual Bogoliubov dispersion relation with coupling co
stantg54p\2a/m. The Fourier transform ofS(k) gives the
distribution functiong(r ) directly which, forr @a, exhibits
the asymptotic behavior g(r ).1
2@4p5/2(na3)3/2(r /a)4#21. In Fig. 4 we also compare, at th
densityna351024, the distribution function obtained from
the BogoliubovS(k) with the g(r ) of hard spheres and so
spheres withR510a. The long-range behavior is univers
and agrees with the Bogoliubov result, while at short d
tances the HS and SS potentials give completely differ

FIG. 3. Condensate fraction as a function of the gas param
Circles, HS potential; down triangles, SS potential (R55a);
squares, SS potential (R510a). The solid line corresponds to th
Bogoliubov expansion~5!. The error bars are smaller than the si
of the symbols.
v.
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e

-
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results since in the second case particles can penetrate
repulsive potential. At higher densities the Bogoliubov a
proximation forg(r ) becomes poorer and completely miss
the shell structure of the distribution function.

In conclusion, we have shown that, for the values of d
sity realized in magnetic traps, the corrections to mean fi
are fixed only by the gas parameterna3 and do not depend
on the details of the interatomic potential. These effects,
though small, have a simple theoretical description in ter
of the parameterna3 and, possibly, can be singled out
future precision measurements@4#.

The authors would like to thank S. Stringari and L.
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r.

FIG. 4. Two-body distribution function. Solid lines, hard
spheres at densitiesna351024 ~lowermost!, 1022, 0.1, 0.244~up-
permost!. Long-dashed line, soft-spheres (R510a) and short-
dashed line, Fourier transform of the Bogoliubov static form fac
S(k) at the lowest densityna351024.
@1# M. H. Andersonet al., Science269, 198 ~1995!; K. B. Davis
et al., Phys. Rev. Lett.75, 3969 ~1995!; C. C. Bradleyet al.,
ibid. 75, 1687~1995!.

@2# F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Re
Mod. Phys.71, 463 ~1999!.

@3# E. Timmermans, P. Tommasini, and K. Huang, Phys. Rev
55, 3645~1997!; E. Braaten and A. Nieto, Phys. Rev. B56, 14
745 ~1997!; e-print cond-mat/9712041.

@4# L. P. Pitaevskii and S. Stringari, Phys. Rev. Lett.81, 4541
~1998!; E. Braaten and J. Pearson,ibid. 82, 255 ~1999!.

@5# W. Krauth, Phys. Rev. Lett.77, 3695~1996!; P. Grüter, D. M.
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