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Discrete formulation of teleportation of continuous variables
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Teleportation of continuous variables can be described in two different ways, one in terms of Wigner
functions, the other in terms of discrete basis states. The latter formulation provides the connection between the
theory of teleportation of continuous degrees of freedom of a light field and the standard description of
teleportation of discrete variablgs$s1050-294®9)06812-3

PACS numbes): 03.67.Hk, 42.50-p

Teleportation is a process by which one party, Alice, canduced by exp{ 2r), at the cost of increasing the fluctuations
transfer anyunknown quantum statgy) to a distant second  in the complimentary variable by exp{2 Forr — the two-
party, Bob, by sending him just the classical informationmode squeezed state is maximally squeezed and fully en-
containing the outcome, of an appropriate measurement tangled. It is interesting to tabulate the amount of entangle-
performed by Alice, provided the two parties share a nonloment [11], E= —Tr, plog,p with P=Tf3|3r>2,3<5r|, for a
cal entangled pair of particles. Alice’s measurement is a joinfinitely squeezed state,
measurement on two systems, one of which is the particle in
the state|¢), while the other forms half of the entangled E=cosH r log,(cost r)—sint? rlog,(sintér).  (2)
state. Bob can create the stai) on his part of the en-

tangled state by applying a unitary operatidp , the form  Figure 1 shows that the amount of entanglement is approxi-
of which is determined by the classical outcomg@ The  mately linear in the amount of squeezing. In particular, for
original protocol of Bennetet al. [1] concerned quantum r=0.69, for which exp{2r)=0.5 (the squeezing parameter
states in a finite-dimensional Hilbert space, so that the medor the experimen{4]), the amount of entanglement &
surement outcomg, is discrete. Most experimental efforts =1.46. The requirements on the amount of entanglement
towards accomplishing teleportation using entangled photonsnd corresponding fidelity needed to distinguish quantum
[2,3] follow that discrete path. from “classical” teleportation, are discussed [ib0].

A recent experimenft4], however, succeeded in teleport-  Alice is given another field mode 1 which is in the state
ing continuousdegrees of freedom of a light field, following |y), to be teleported. This state can be expanded as
the theoretical proposal of Ref5]. The description of that

experiment made use of the Wigner function, so that its con- *
nection to the original teleportation propo$al may not be | )= > an|n);. 3
entirely clear. Here we describe the experiment in (idis- n=0

crete photon number-state basis and thereby provide that
connection. Moreover, the present formulation is simplerAS in the original teleportation protocol, Alice has to per-
than the one in Ref6] of teleportation ofN variables. The form a joint measurement on modes 1 and 2/4hthe joint
inverse route of linking continuous to discrete descriptiongneasurement consisted of two measurements of the two
by reformulating the protocol dfl] in terms of the Wigner
function for discrete variablgs] will not be followed here.

In the experiment of Ref{4], states of a given single
mode[8] of the electromagnetic field were teleported. One |
way of describing the field is in terms of quadrature ampli-
tudes(see, e.g., Ref9]), which are analogous to the position
and momentum variables of a harmonic oscillafior fact, 4
the electromagnetic field variables are quantized by first re-
writing the Hamiltonian into the form of an infinite set of g |
harmonic oscillators An alternative description is in terms w
of number states. In particular, the entangled state that Alice
and Bob share is a two-mode squeezed state, which can k£ =
written as[9]

]

1 o0
coshr nzo (tanhr)"|n),|n)s, 1)

|Sr>2,3:

[+] 0:2 Ofd Of6 0‘.8 ; 1|2 1 t4 1 fe 1 :8 2
where mode 2 is located in Alice’s laboratory, and mode 3 in '
Bob's. The parameter is a measure for the amount of  FIG. 1. EntanglemenE in units of bits as a function of the

squeezing. The fluctuations in the squeezed variable are requeezing parameter
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commuting observableX=x,—X; and P=(p,+p1)/2, v Py NN
wherex; andp; are proportional to the quadrature amplitudes |¢>1|Sx>2,3=N+1 X=X, PSP, .20 mzzo
referred to above,

N
.1 . X Yim(X,P)[1)1]m)2 > Bu(X,P)[n)s.
xi=5(a+ap), n=0

(10

(4) Here we used that the eigenfunctions of the operatoasd

P form a complete set, so that the surR—and X have be-
come discrete variables now—over all eigenvalXesnd P

in terms of the creation and annihilation operators acting onys tne operators| ¢(X,P))1 A #(X,P)| gives the identity.
the modes=1,2. The joint eigenstate of the two operatdrs The coefficientss,, are give'n by

and P with eigenvaluesX and P can be expanded in the

1

N
eigenstate basis of , Bn(X,P)= N+ 1mZ:0 yE (X, P)am. (12)
|¢(X,p)>12:f dxlf dX, 8(Xo—X;—X) It follows directly from Eq.(10) that after Alice finds two

measurement outcomes, and Py, Bob's state is collapsed
XexgiP(X1+X)1|X)1|Xz),.  (5)  onto

N
This state is fully entangled, and is in fact of the same form W), = X+ Pa)In
as the original EPR stafd3]. ¥)s ngo Bn(Xo,Po)ln)s
Now in order to discuss the limit of infinite squeezing, in NN

which the statd1) is no longer normalizable, we now trun- e %

cate the Hilbert space and consider only photon numbers up =N+ 1,2‘0 nZ:O Ymr(Xo.Po)amln)s. (12
to and includingN, where we may take the limN—  in the o

end. In particular, the two-mode squeezed state in the limitn order for Bob to be able to recover the original stajg

of infinite squeezing —» becomes from |¥), we see now that the matrixN+ 1y,,, indeed
must be unitary: Bob has to apply the operation

N
1 N
S.) 3= n),|n)s. (6)
182020~ R o M2 Urppg M WNF1 S, ymdm)s (13
We can rewrite the eigenstat8) in that truncated space as g effect the transformation
[W)s—=>[4)s, (14)

N N
[A(X,P)1o= 2 2 Yo X P)man),, (D)

m=0 n=0 which completes the teleportation process.

Thus, Bob’s unitary operatiofl.3) and Alice’s measure-
where we do not yet have to specify the precise form of thenent outcome?7) are both described by a single unitary ma-
coefficients y,(X,P) (but see below It is easy to verify trix y, - (just as in the example given [i]). In the experi-
that the reduced density matrix of either mode 1 or 2 in thement [4] this translates into the fact that Alice’s
eigenstate5) is proportional to the identity matrix. This im- measurement outcomes are classical currents that Bob di-
plies that after Alice’s measurement no information aboutectly converts into field amplitudes and subsequently mixes
the identity of the staté) will be left behind in either with his part of the two-mode squeezed state.
system 1 or 2, which is a necessary condition for faithful For completeness, let us now calculate the explicit form

teleportation1]. The fact that of the eigenstatelsp(X, P)); , of the operatorX andP with
1 eigenvalues}( and P in the numbgr—state bgsis. First, Fhe
X PPty o O g (00) v e e
with 1, the (N+1)X (N+1) identity operator on mode 1, (a;—ad)|¢(0,0))1,=0,
implies that the co'\‘efﬂments(mn satisfy (az—aI)|¢(0,0)>1,z= 0, (15
(N+D)S, PP (X P) =3y (9 I TESU X
1
That is, the matrixyN+ 1y, is unitary. In order to show |4(0.0)1.= JN+1 nZO In)alnyz. (18

explicitly that this is a necessary and sufficient condition for _ _ _ .~
teleportation to be possible, we rewrite the joint initial state Then, introducing the two commuting operators= (x;
of modes 1,2,3, in the case of infinite squeezing, as +X,) and Q=(p;—py)/2, it is easy to verify, using the
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commutation relations betweéhandQ, and betweef® and  This then yields in the coefficientg,,,. Because of the still

Y, that relatively complicated form of the coefficientg,,, the
question of how finite squeezing affects the fidelity of the

|p(X,P))y = exp(iP\A()exp(iXQ)|¢(0,0))1,2 (17)  teleportation process is better discussed in the Wigner-state

formalism[5] (see alsd14]).

is indeed the desired eigenstate with eigenvalieand P. In conclusion, the teleportation experiment of Réf| of

Using standard identities for exponentials of creation andtontinuous degrees of freedom of a light beam can be for-

annihilation operator§12] and the relationg15) this state mulated in the number-state basis, thus providing a connec-

can be rewritten as tion with the original formulation of the teleportation proto-
5 ) ) col. The measurements of quadrature amplitudes on Alice’s
| (X, P)) 1= exf =[P+ (X/2)*]/4]exd (iP —X/2)a;] side correspond to entangled measurements that leave no in-
; formation behind in Alice’s field modes about the state to be
Xex(iP+X12)2,]|$(0.0)1.2 (18 teleported. This enables Bob to recreate that state in a field
which can be expanded as mode in his laboratory by applying a particular unitary op-
eration, described by the same unitary matyix, that de-
| p(X,P))1 2= exp{—(P?+(X/2)?)/4} scribes Alice’s measurement scheme.
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