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Discrete formulation of teleportation of continuous variables

S. J. van Enk
Norman Bridge Laboratory of Physics, California Institute of Technology 12-33, Pasadena, California 91125

~Received 25 May 1999!

Teleportation of continuous variables can be described in two different ways, one in terms of Wigner
functions, the other in terms of discrete basis states. The latter formulation provides the connection between the
theory of teleportation of continuous degrees of freedom of a light field and the standard description of
teleportation of discrete variables.@S1050-2947~99!06812-2#

PACS number~s!: 03.67.Hk, 42.50.2p
a

on
nt
lo
in

e
d

e
s
to

t-
g

on

th
le

n

ne
li
n

re
f
s
lic
n

i
f

s

en-
le-

oxi-
for
r

ent
um

te

r-

two
Teleportation is a process by which one party, Alice, c
transfer any~unknown! quantum stateuc& to a distant second
party, Bob, by sending him just the classical informati
containing the outcomex0 of an appropriate measureme
performed by Alice, provided the two parties share a non
cal entangled pair of particles. Alice’s measurement is a jo
measurement on two systems, one of which is the particl
the stateuc&, while the other forms half of the entangle
state. Bob can create the stateuc& on his part of the en-
tangled state by applying a unitary operationUx0

, the form

of which is determined by the classical outcomex0. The
original protocol of Bennettet al. @1# concerned quantum
states in a finite-dimensional Hilbert space, so that the m
surement outcomex0 is discrete. Most experimental effort
towards accomplishing teleportation using entangled pho
@2,3# follow that discrete path.

A recent experiment@4#, however, succeeded in telepor
ing continuousdegrees of freedom of a light field, followin
the theoretical proposal of Ref.@5#. The description of that
experiment made use of the Wigner function, so that its c
nection to the original teleportation proposal@1# may not be
entirely clear. Here we describe the experiment in the~dis-
crete! photon number-state basis and thereby provide
connection. Moreover, the present formulation is simp
than the one in Ref.@6# of teleportation ofN variables. The
inverse route of linking continuous to discrete descriptio
by reformulating the protocol of@1# in terms of the Wigner
function for discrete variables@7# will not be followed here.

In the experiment of Ref.@4#, states of a given single
mode @8# of the electromagnetic field were teleported. O
way of describing the field is in terms of quadrature amp
tudes~see, e.g., Ref.@9#!, which are analogous to the positio
and momentum variables of a harmonic oscillator~in fact,
the electromagnetic field variables are quantized by first
writing the Hamiltonian into the form of an infinite set o
harmonic oscillators!. An alternative description is in term
of number states. In particular, the entangled state that A
and Bob share is a two-mode squeezed state, which ca
written as@9#

uSr&2,35
1

coshr (
n50

`

~ tanhr !nun&2un&3 , ~1!

where mode 2 is located in Alice’s laboratory, and mode 3
Bob’s. The parameterr is a measure for the amount o
squeezing. The fluctuations in the squeezed variable are
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duced by exp(22r), at the cost of increasing the fluctuation
in the complimentary variable by exp(2r). For r→` the two-
mode squeezed state is maximally squeezed and fully
tangled. It is interesting to tabulate the amount of entang
ment @11#, E52Tr2 r log2r with r5Tr3uSr&2,3̂ Sr u, for a
finitely squeezed state,

E5cosh2 r log2~cosh2 r !2sinh2 r log2~sinh2 r !. ~2!

Figure 1 shows that the amount of entanglement is appr
mately linear in the amount of squeezing. In particular,
r 50.69, for which exp(22r)50.5 ~the squeezing paramete
for the experiment@4#!, the amount of entanglement isE
51.46. The requirements on the amount of entanglem
and corresponding fidelity needed to distinguish quant
from ‘‘classical’’ teleportation, are discussed in@10#.

Alice is given another field mode 1 which is in the sta
uc&1 to be teleported. This state can be expanded as

uc&15 (
n50

`

anun&1 . ~3!

As in the original teleportation protocol, Alice has to pe
form a joint measurement on modes 1 and 2. In@4# the joint
measurement consisted of two measurements of the

FIG. 1. EntanglementE in units of bits as a function of the
squeezing parameterr.
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commuting observablesX̂5 x̂22 x̂1 and P̂5( p̂21 p̂1)/2,
wherex̂i andp̂i are proportional to the quadrature amplitud
referred to above,

x̂i5
1

2
~ai1ai

†!,

p̂i5
1

2i
~ai2ai

†!, ~4!

in terms of the creation and annihilation operators acting
the modesi 51,2. The joint eigenstate of the two operatorsX̂

and P̂ with eigenvaluesX and P can be expanded in th
eigenstate basis ofx̂i ,

uf~X,P!&1,25E dX1E dX2 d~X22X12X!

3exp@ iP~X11X2!#uX1&1uX2&2 . ~5!

This state is fully entangled, and is in fact of the same fo
as the original EPR state@13#.

Now in order to discuss the limit of infinite squeezing,
which the state~1! is no longer normalizable, we now trun
cate the Hilbert space and consider only photon number
to and includingN, where we may take the limitN→` in the
end. In particular, the two-mode squeezed state in the l
of infinite squeezingr→` becomes

uS`&2,35
1

AN11
(
n50

N

un&2un&3 . ~6!

We can rewrite the eigenstate~5! in that truncated space a

uf~X,P!&1,25 (
m50

N

(
n50

N

gmn~X,P!um&1un&2 , ~7!

where we do not yet have to specify the precise form of
coefficientsgmn(X,P) ~but see below!. It is easy to verify
that the reduced density matrix of either mode 1 or 2 in
eigenstate~5! is proportional to the identity matrix. This im
plies that after Alice’s measurement no information ab
the identity of the stateuc& will be left behind in either
system 1 or 2, which is a necessary condition for faith
teleportation@1#. The fact that

Tr2uf~X,P!&1,2̂ f~X,P!u5
1

N11
I 1 ~8!

with I 1 the (N11)3(N11) identity operator on mode 1
implies that the coefficientsgmn satisfy

~N11!(
l 50

N

gml* ~X,P!gnl~X,P!5dmn . ~9!

That is, the matrixAN11gmn is unitary. In order to show
explicitly that this is a necessary and sufficient condition
teleportation to be possible, we rewrite the joint initial sta
of modes 1,2,3, in the case of infinite squeezing, as
n

up

it

e

e

t

l

r

uc&1uS`&2,35
1

N11 (
X5X0

XN

(
P5P0

PN

(
l 50

N

(
m50

N

3g lm~X,P!u l &1um&2(
n50

N

bn~X,P!un&3 .

~10!

Here we used that the eigenfunctions of the operatorsX̂ and
P̂ form a complete set, so that the sum—P andX have be-
come discrete variables now—over all eigenvaluesX andP
of the operatorsuf(X,P)&1,2̂ f(X,P)u gives the identity.
The coefficientsbn are given by

bn~X,P!5AN11 (
m50

N

gmn* ~X,P!am . ~11!

It follows directly from Eq.~10! that after Alice finds two
measurement outcomesX0 and P0, Bob’s state is collapsed
onto

uC&35 (
n50

N

bn~X0 ,P0!un&3

5AN11 (
m50

N

(
n50

N

gmn* ~X0 ,P0!amun&3 . ~12!

In order for Bob to be able to recover the original stateuc&
from uC&, we see now that the matrixAN11gmn indeed
must be unitary: Bob has to apply the operation

UX0 ,P0
:un&3°AN11 (

m50

N

gmnum&3 ~13!

to effect the transformation

uC&3°uc&3 , ~14!

which completes the teleportation process.
Thus, Bob’s unitary operation~13! and Alice’s measure-

ment outcome~7! are both described by a single unitary m
trix gmn ~just as in the example given in@1#!. In the experi-
ment @4# this translates into the fact that Alice’
measurement outcomes are classical currents that Bob
rectly converts into field amplitudes and subsequently mi
with his part of the two-mode squeezed state.

For completeness, let us now calculate the explicit fo
of the eigenstatesuf(X,P)&1,2 of the operatorsX̂ andP̂ with
eigenvaluesX and P in the number-state basis. First, th
~truncated! eigenstateuf(0,0)&1,2 with zero eigenvalues is
easily found by simply solving the eigenvalue equations

~a12a2
†!uf~0,0!&1,250,

~a22a1
†!uf~0,0!&1,250, ~15!

with the result

uf~0,0!&1,25
1

AN11
(
n50

N

un&1un&2 . ~16!

Then, introducing the two commuting operatorsŶ5( x̂1

1 x̂2) and Q̂5( p̂12 p̂2)/2, it is easy to verify, using the
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commutation relations betweenX̂ andQ̂, and betweenP̂ and
Ŷ, that

uf~X,P!&1,25exp~ iPŶ!exp~ iXQ̂!uf~0,0!&1,2 ~17!

is indeed the desired eigenstate with eigenvaluesX and P.
Using standard identities for exponentials of creation a
annihilation operators@12# and the relations~15! this state
can be rewritten as

uf~X,P!&1,25exp@2@P21~X/2!2#/4#exp@~ iP2X/2!a1#

3exp@~ iP1X/2!a2#uf~0,0!&1,2, ~18!

which can be expanded as

uf~X,P!&1,25exp{2~P21~X/2!2!/4}

3 (
m50

N

(
n50

N

(
l 5min(m,n)

N S ~ l ! !2

m!n! D
1/2

3
~ iP2X/2! l 2m~ iP1X/2! l 2n

~ l 2m!! ~ l 2n!!
um&1un&2 .

~19!
, a

.

cu

.J.

tu
fo
d

This then yields in the coefficientsgmn . Because of the still
relatively complicated form of the coefficientsgmn , the
question of how finite squeezing affects the fidelity of t
teleportation process is better discussed in the Wigner-s
formalism @5# ~see also@14#!.

In conclusion, the teleportation experiment of Ref.@4# of
continuous degrees of freedom of a light beam can be
mulated in the number-state basis, thus providing a conn
tion with the original formulation of the teleportation proto
col. The measurements of quadrature amplitudes on Alic
side correspond to entangled measurements that leave n
formation behind in Alice’s field modes about the state to
teleported. This enables Bob to recreate that state in a
mode in his laboratory by applying a particular unitary o
eration, described by the same unitary matrixgmn that de-
scribes Alice’s measurement scheme.
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