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Quality of variational trial states
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Various measures for the accuracy of approximate eigenstates of semibounded self-adjoint operatorsH in
quantum theory, derived, e.g., by some variational technique, are scrutinized. In particular, the matrix elements
of the commutator of the operatorH and ~suitably chosen! different operators with respect to degenerate
approximate eigenstates ofH obtained by the variational methods are proposed as criteria for the accuracy of
variational eigenstates.@S1050-2947~99!04112-8#
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I. MOTIVATION

A central element in quantum theory is the solution
eigenvalue problems. However, usually there is no suita
exact solution to which perturbation theory can be applied
very efficient way to locate the discrete spectrum of so
self-adjoint operatorH bounded from below is provided b
the famous Rayleigh-Ritz variational technique@1#: If the
eigenvalues Ek , k50,1, . . . ,of H are ordered according to
E0<E1<E2<•••, the first d of them are bounded from

above by the d eigenvalues Eˆ
k , k50,1, . . . ,d21, ~ordered

by Ê0<Ê1<•••<Êd21) of that operator which is obtained
by restricting H to some d-dimensional subspace of the d

main of H, i.e., Ek<Êk , k50,1, . . . ,d21. However, fre-
quently it is not straightforward to quantify how close a
proximate and exact eigenstates are. Thus, we embark up
systematic study of the accuracy of the variationally de
mined eigenstates ofH and suitable measures to judge th
quality.

II. MEASURES OF THE QUALITY OF TRIAL STATES

Consider some self-adjoint operatorH, H†5H, assumed
to be bounded from below. Suppressing, for the moment,
index k50,1,2, . . . , let theeigenvalue equation forH,

Hux&5Eux&, ~1!

be solved by some~generic! eigenvectorux& corresponding
to some~real! eigenvalueE. The Rayleigh-Ritz variationa
technique yields an upper boundÊ on this eigenvalueE as
well as, by diagonalization of the relevant characteris
equation, the corresponding vectoruw& in the d-dimensional
trial space. There exist several~potentially meaningful! mea-
sures of the quality of this trial stateuw& which immediately
come to one’s mind:
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~1! The trial stateuw& is supposed to represent—to a ce
tain degree of accuracy—the approximate solution of the
genvalue problem defined in Eq.~1!. Consequently, a firs
indicator for the resemblance ofuw& with the exact eigenstate
ux& would be the distance between the expectation value
the operatorH with respect to the trial stateuw&, i.e., be-
tween the obtained upper boundÊ[^wuHuw&/^wuw&, and
the exact eigenvalueE. However, the precise location of th
exact eigenvalueE is usually not known.

~2! The most natural measure for the resemblance of
Hilbert-space vectorsuw& and ux& under consideration is the
overlap

S[
^wux&

A^wuw&^xux&
~2!

of the trial stateuw& with the eigenstateux&.
~3! Consider the commutator@G,H# of the operatorH

under consideration with any other operatorG, where the
domain ofG is assumed to contain the domain ofH. Then
the expectation value of this commutator with respect to
given eigenstateux& of H vanishes:

^xu@G,H#ux&50. ~3!

Hence, choosing different operatorsG generates a whole
class of operators@G,H#, each of which may serve to tes
the quality of a given trial stateuw& by evaluating how close
the expectation valuêwu@G,H#uw& with respect to uw&
comes to zero. This expectation value vanishes, of cou
also if, by accident, the stateuw& is an eigenstate ofG. How-
ever, for a given operatorG, after having determineduw&, it
is straightforward to check for this circumstance, for i
stance, by inspecting the variance ofG with respect touw&;
the latter vanishes ifuw& is an eigenstate ofG. Moreover, it
goes without saying that an expectation value^wu@G,H#uw&
vanishes also if the stateuw& is an eigenstate of the commu
tator@G,H# with eigenvalue 0, or even if the state defined
@G,H#uw& proves to be orthogonal to the stateuw&.

For any self-adjoint operatorG, i.e.,G†5G, this commu-
tator is anti-Hermitian, which clearly suggests defining
5091 ©1999 The American Physical Society
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self-adjoint operatorC5C† ~on the domain ofH) by
@G,H#5: iC. If, for example,G is chosen to be the generat
of dilations,

G[
1

2
~x•p1p•x!, ~4!

relation ~3! is precisely the so-called ‘‘master virial theo
rem’’ introduced in Ref.@2# for a systematic study of~rela-
tivistic! virial theorems@3#. In this case, for operatorsH of
the form of some typical Hamiltonian consisting of
momentum-dependent kinetic-energy operator,T(p), and a
coordinate-dependent interaction-potential operator,V(x),
that is,H5T(p)1V(x), the operatorC becomes the ‘‘virial
operator’’

C5p•
]

]p
T~p!2x•

]

]x
V~x!. ~5!

The point spectrum~i.e., the set of all eigenvalues! of the
dilation generator~4! is empty; in other words, the dilation
generator has no Hilbert-space eigenvectors.

III. SPINLESS SALPETER EQUATION

Let us apply the above general considerations to the
totype of all ~semi-! relativistic bound-state equations, th
‘‘spinless Salpeter equation,’’ defined by the Hamiltonian~in
one-particle form, encompassing also the equal-mass
particle case@4–7#!

H5T1V; ~6!

hereT is the relativistic kinetic energy of some particle
massm and momentump,

T5T~p![Ap21m2,

andV5V(x) is an arbitrary, coordinate-dependent, static
teraction potential. The spinless Salpeter equation is then
the eigenvalue equation for the operatorH, Huxk&
5Ekuxk&, k50,1,2, . . . , for the set ofeigenvectorsuxk&
corresponding to the energy eigenvaluesEk . Analytic upper
boundsÊk on these eigenvalues have been given@4–10#.

For the sake of comparison, we focus our interest to c
tral potentialsV(x)5V(r ), r[uxu. Furthermore, in order to
facilitate the numerical treatment of the problem, we on
consider the harmonic-oscillator potential

V~r !5ar2, a.0. ~7!

The reason for this particular choice is the following: In m
mentum space, the operatorr 2 is represented by the Laplac
ian with respect to the momentump, r 2→2Dp , while the
kinetic energyT, nonlocal in configuration space, is repr
sented by a multiplication operator. Consequently, exa
for a harmonic-oscillator potential the above semirelativis
Hamiltonian H in its momentum-space representation
equivalent to a nonrelativistic Hamiltonian with some~effec-
tive! interaction potential reminiscent of the square root:

H52aDp1Ap21m2. ~8!
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The solutions of the corresponding eigenvalue equation m
then be found with one of the numerous procedures desig
for the treatment of the nonrelativistic Schro¨dinger equation.

For the harmonic-oscillator potential, it is comparative
easy to get a first idea of the approximate location of
energy levelsEk by entirely analytical considerations:

On the one hand, every eigenvalueEk is bounded from
above by the eigenvalueEk,NR of the nonrelativistic counter-
part of H: Ek<Ek,NR.

On the other hand, every eigenvalueEk is bounded from
below by the eigenvalueEk(m50) of the HamiltonianH
corresponding to vanishing particle massm: Ek>Ek(m
50).

IV. THE ‘‘LAGUERRE’’ TRIAL SPACE

As far as the achieved accuracy of the solutions obtai
is concerned, the most crucial step in all variational game
the Rayleigh-Ritz kind is, for the given operatorH under
consideration, a reasonable definition of the adopted t
subspace of the domain ofH.

For spherically symmetric potentialsV(r ), a very popular
choice for the basis states which span the trial space requ
for the successful application of the variational technique
‘‘Laguerre’’ trial states, defined in configuration-space re
resentation by@11,9,6,7#

ck,l m~x!5A ~2m!2l 12b11k!

G~2l 12b1k11!
r l 1b21

3exp~2mr !Lk
(2l 12b)~2mr !Yl m~Vx!, ~9!

whereLk
(g)(x) denote the generalized Laguerre polynomi

~for the parameterg) @12# and Yl m(V) are the spherica
harmonics for angular momentuml and its projectionm.
The trial functions~9! involve two variational parameters,m
~with dimension of mass! andb ~dimensionless!, which, by
the requirement of normalizability of these functions, a
subject to the constraintsm.0 and 2b.21.

One of the advantages of the trial function~9! is the easy
availability of an analytic expression for the correspondi
momentum-space representation of these trial states.

For the present investigation, we employ the ‘‘Laguerr
trial states defined by Eq.~9!, with, for both definiteness and
ease of calculation, the variational parametersm andb kept
fixed to the valuesm5m andb51.

V. RATES OF CONVERGENCE
OF THE QUALITY MEASURES

Now, let us observe our variational eigenstatesuw& ap-
proaching the exact eigenstatesux& for increasing dimension
d of the employed trial space, by comparing the behavior
the various measures for the accuracy of approximate eig
states discussed in Sec. II.

Without doubt, the only genuine ‘‘point of reference’’ o
any variational solution to an eigenvalue problem is the c
responding exact solution. The exact solution sought is co
puted here with the help of the numerical integration pro
dure developed for the nonrelativistic Schro¨dinger equation
in Ref. @13#.
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TABLE I. Characterization of the quality of the variational solution of the eigenvalue problem o
semirelativistic HamiltonianH5Ap21m21V(r ) with harmonic-oscillator potentialV(r )5ar2, for states of
radial quantum numbernr50,1,2 and orbital angular momentuml 50,1,2 ~called 1S, 2S, 3S, 1P, and 1D i
usual spectroscopic notation!. The variational solutions were obtained with the help of our ‘‘Laguerre’’ tr
states spanning trial spaces of increasing dimensiond51,2,25. We compare the nonrelativistic upper bou
ENR and zero-mass lower boundE(m50) on the energy, the~numerically computed! ‘‘exact’’ energyE, the

variational upper boundÊ on this energy, the relative error« of the upper bound, the deviation from unitys
of the overlap squared of exact and variational eigenstates, the~appropriately normalized! expectation values
n of the virial operatorC, and the~normalized! maximum local differencev of the momentum-space
representations of exact and variational eigenstates. The physical parameters are fixed to the vm
52 GeV for the particle mass anda52 GeV3 for the harmonic-oscillator coupling. A simple entry ‘‘0’
indicates that the numerical value is closer to 0 than the rounding error.

Quantity d State
1S 2S 3S 1P 1D

nr 0 1 2 0 0
l 0 0 0 1 2

ENR (GeV) 4.12132 6.94975 9.77817 5.53553 6.94975
E(m50)(GeV) 2.94583 5.15049 6.95547 4.23492 5.35234
E ~GeV! 3.82493 5.79102 7.48208 4.90145 5.89675

Ê ~GeV! 1 4.21624 6.50936 9.77866

2 3.92759 8.10850 5.24154 7.18242
25 3.82494 5.79114 7.48290 4.90149 5.89681

« 1 0.1023 0.3280 0.6583
2 0.0268 0.4002 0.0694 0.2180
25 0 0 0.0001 0 0

s 1 0.09618 0.36144 0.65587
2 0.02375 0.43693 0.09001 0.34398
25 0 0 0.00008 0 0

n 1 20.6120 20.8328 20.9074
2 10.0308 20.8666 20.5103 20.7483
25 0 20.0001 10.0001 0 0

v 1 10.9277 10.7541 11.0578
2 20.00754 12.4577 10.3598 10.7262
25 10.00003 20.0017 10.0002 10.0004 10.0003
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Table I confronts, for the ground state and the low
radial and orbital excitations, the approximate solutions
calculated with the help of the Rayleigh-Ritz variation
technique for ‘‘Laguerre’’ trial subspaces of the domain ofH
of increasing dimensiond with the exact solutions of the
eigenvalue problem for the semirelativistic Hamiltonian~6!
with a central interaction potential of the harmonic-oscilla
form ~7!. First of all, as discussed in Sec. III, the exact p
sition of any eigenvalueE of our HamiltonianH is confined
to a range defined by the nonrelativistic upper boundENR
and the zero-mass lower boundE(m50) on this energy ei-
genvalueE. There are several quantities which may parti
pate in a competition for ‘‘the best or most reasonable m
sure of quality:’’

~1! The relative error«[(Ê2E)/E of every upper bound
Ê on the exact energy eigenvalueE is, by definition, always
non-negative, i.e.,«>0.

~2! The deviation from unity,s, of the modulus squared
of the overlapS of exact and variational eigenstates defin
in Eq. ~2!, s[12uSu2, is necessarily confined to the rang
0<s<1.

~3! The use of the expectation values of the commuta
@G,H# with respect to the variational eigenstatesuw& is illus-
t
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trated for the particular example of the dilation generatorG
defined in Eq.~4!, by considering~suitably normalized! ex-
pectation valueŝwuCuw& of the virial operatorC given in
Eq. ~5!:

n[
^wuCuw&

^wux•
]

]x
V~x!uw&

5

^wup•
]

]p
T~p!uw&

^wux•
]

]x
V~x!uw&

21.

~4! Finally, the normalized maximum difference of th
normalized momentum-space representationsw̃(p) andx̃(p)
of the variational eigenstateuw& and exact eigenstateux&,
respectively, i.e., the maximum pointwise relative error
momentum space,v[maxp@w̃(p)2x̃(p)#/maxp x̃(p), is
listed.

Note that the only measure for the accuracy of appro
mate eigenstatesuw& which does not require any informatio
other than the one provided by the variational technique isn,
i.e., the~normalized! expectation values of the commutat
@G,H# with respect touw&. Inspection of Table I reveals tha
n represents indeed a sensitive measure of quality: for
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creasing trial-space dimensiond it converges to zero a
roughly the same rate as both energy and overlap erro«
ands, but makes more sense than a pointwise error likev.

VI. SUMMARY AND CONCLUSIONS

Various measures for the accuracy of approximate eig
states of arbitrary~self-adjoint, semibounded! operatorsH
have been studied. The vanishing of the expectation va
of the commutator ofH and any other well-defined operato
l

n-

es

taken with respect to the approximate eigenstates, provid
useful set of criteria for estimating the significance of t
variational solution. This has been illustrated by consider
the commutator of the Hamiltonian of the spinless Salpe
equation and the generator of dilations.
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