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Quality of variational trial states
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Various measures for the accuracy of approximate eigenstates of semibounded self-adjoint dgerators
guantum theory, derived, e.g., by some variational technique, are scrutinized. In particular, the matrix elements
of the commutator of the operatét and (suitably chosendifferent operators with respect to degenerate
approximate eigenstates Hf obtained by the variational methods are proposed as criteria for the accuracy of
variational eigenstate§S1050-294709)04112-§

PACS numbgs): 03.65.Ge, 31.15.Pf, 03.65.Pm, 11.10.St

I. MOTIVATION (1) The trial statd ¢) is supposed to represent—to a cer-
tain degree of accuracy—the approximate solution of the ei-
A central element in quantum theory is the solution ofgenvalue problem defined in E@l). Consequently, a first
eigenvalue problems. However, usually there is no suitabléndicator for the resemblance pf) with the exact eigenstate
exact solution to which perturbation theory can be applied. Ax) would be the distance between the expectation value of
very efficient way to locate the discrete spectrum of somehe operatoH with respect to the trial statgp), i.e., be-

self-adjoint operatoH bounded from below is provided by tween the obtained upper bourtt=(¢|H|e)/{¢|¢), and

the famous Rayleigh-Ritz variational techniqlte]: If the  the exact eigenvalu. However, the precise location of the
eigenvalues f, k=0,1, ... ,0f H are ordered according to  exact eigenvalu& is usually not known.

Eo<Ei<E,=---, the first d of them are bounded from  (2) The most natural measure for the resemblance of the
above by the d eigenvalueg Ek=0,1,...d—1, (ordered  Hilbert-space vectorgp) and|y) under consideration is the
by E,<E;<---<Eq4_,) of that operator which is obtained overlap

by restricting H to some -dimensional subspace of the do-

main of H i.e, E,<E,, k=0,1,...d—1. However, fre- S= (elx) @)
quently it is not straightforward to quantify how close ap- V{ele){x|x)

proximate and exact eigenstates are. Thus, we embark upon a
systematic study of the accuracy of the variationally deterof the trial state/¢) with the eigenstatéy).

mined eigenstates ¢f and suitable measures to judge their  (3) Consider the commutatdiG,H] of the operatorH
quality. under consideration with any other operat®y where the
domain ofG is assumed to contain the domaintéf Then
Il. MEASURES OF THE QUALITY OF TRIAL STATES the exp.ectation value of thi_s commutator with respect to a
given eigenstatgy) of H vanishes:
Consider some self-adjoint operatdr H'=H, assumed
to be bounded from below. Suppressing, for the moment, the (xI[G,H]|x)=0. 3
indexk=0,1,2 ..., let theeigenvalue equation fd,
Hence, choosing different operato@& generates a whole
Hlx)=E|x), (1) class of_operator_EG,H]_, each of which may serve to test
the quality of a given trial statgp) by evaluating how close
the expectation valuge|[G,H]|¢) with respect to|e)
be solved by somégenerig eigenvector x) corresponding comes to zero. This expectation value vanishes, of course,
to some(rea) eigenvalueE. The Rayleigh-Ritz variational also if, by accident, the state) is an eigenstate ab. How-
technique yields an upper bouiition this eigenvalu€ as  ever, for a given operatds, after having determineldy), it
well as, by diagonalization of the relevant characteristicis straightforward to check for this circumstance, for in-
equation, the corresponding vectar) in the d-dimensional ~ stance, by inspecting the variance ®fwith respect td ¢);
trial space. There exist sevefgbtentially meaningfylmea-  the latter vanishes ife) is an eigenstate d&. Moreover, it
sures of the quality of this trial state) which immediately —goes without saying that an expectation vajye[G,H]| ¢)
come to one’s mind: vanishes also if the state) is an eigenstate of the commu-
tator[ G,H] with eigenvalue 0, or even if the state defined by
[G,H]|¢) proves to be orthogonal to the state).
*Electronic address: wolfgang.lucha@oeaw.ac.at For any self-adjoint operatd®, i.e.,G'=G, this commu-
"Electronic address: franz.schoeberl@univie.ac.at tator is anti-Hermitian, which clearly suggests defining a

1050-2947/99/6@®)/5091(4)/$15.00 PRA 60 5091 ©1999 The American Physical Society



5092

self-adjoint operatorC=C" (on the domain ofH) by
[G,H]=:iC. If, for example G is chosen to be the generator
of dilations,

G=

N[ =

(X'p+p'x)1 (4)

relation (3) is precisely the so-called “master virial theo-
rem” introduced in Ref[2] for a systematic study dfela-
tivistic) virial theoremd[3]. In this case, for operatotd of
the form of some typical Hamiltonian consisting of a
momentum-dependent kinetic-energy operaldp), and a
coordinate-dependent interaction-potential operaifx),
that is,H=T(p) +V(X), the operatoC becomes the “virial
operator”

1% d
C=p: 55 T(P) =X 2 V(X). ®)

The point spectrunii.e., the set of all eigenvalugsf the
dilation generatok4) is empty; in other words, the dilation
generator has no Hilbert-space eigenvectors.

I1l. SPINLESS SALPETER EQUATION
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The solutions of the corresponding eigenvalue equation may
then be found with one of the numerous procedures designed
for the treatment of the nonrelativistic Scdinger equation.

For the harmonic-oscillator potential, it is comparatively
easy to get a first idea of the approximate location of the
energy level€E, by entirely analytical considerations:

On the one hand, every eigenvalkg is bounded from
above by the eigenvalug, g of the nonrelativistic counter-
part of H: E<Ey nRr-

On the other hand, every eigenvalbg is bounded from
below by the eigenvalu&,(m=0) of the HamiltonianH
corresponding to vanishing particle mass E,=E,(m
=0).

IV. THE “LAGUERRE"” TRIAL SPACE

As far as the achieved accuracy of the solutions obtained
is concerned, the most crucial step in all variational games of
the Rayleigh-Ritz kind is, for the given operatbl under
consideration, a reasonable definition of the adopted trial
subspace of the domain #éf.

For spherically symmetric potentia4r), a very popular
choice for the basis states which span the trial space required
for the successful application of the variational technique are
“Laguerre” trial states, defined in configuration-space rep-

Let us apply the above general considerations to the proesentation by11,9,6,7

totype of all (semiy relativistic bound-state equations, the
“spinless Salpeter equation,” defined by the Hamiltonfam

one-particle form, encompassing also the equal-mass two-

particle casg¢4-7))
H=T+V; (6)

hereT is the relativistic kinetic energy of some particle of
massm and momentunp,

T=T(p)=p>+n?,

andV=V(x) is an arbitrary, coordinate-dependent, static in-

2/+2B+1
(2u)? +2BH ki rpn
r2/7+2+k+1)

XeX[X_,LLr)L(kZ/+2B)(2/~Lr)y/m(Qx)v (9)

‘pk,/m(x) =

whereL{”(x) denote the generalized Laguerre polynomials
(for the parametery) [12] and ), ,(Q2) are the spherical
harmonics for angular momentur and its projectionm.
The trial functions(9) involve two variational parameterg,
(with dimension of magsand 8 (dimensionless which, by
the requirement of normalizability of these functions, are

teraction potential. The spinless Salpeter equation is then jusubject to the constrainjg>0 and 28> —1.

the eigenvalue equation for the operatdt, H|y,)
=Ex), k=0,1,2..., for the set ofeigenvectors]y,)
corresponding to the energy eigenvalligs Analytic upper

boundsE, on these eigenvalues have been gif#n10].

One of the advantages of the trial functi@) is the easy
availability of an analytic expression for the corresponding
momentum-space representation of these trial states.

For the present investigation, we employ the “Laguerre”

tral potentialsvV(x)=V(r), r=|x|. Furthermore, in order to

ease of calculation, the variational parameferand 8 kept

facilitate the numerical treatment of the problem, we onlyfixed to the valueg:=m and g=1.

consider the harmonic-oscillator potential

V(r)=ar?, a>0. (7)

The reason for this particular choice is the following: In mo-

mentum space, the operatdris represented by the Laplac-
ian with respect to the momentum rZH—Ap, while the
kinetic energyT, nonlocal in configuration space, is repre-

V. RATES OF CONVERGENCE
OF THE QUALITY MEASURES

Now, let us observe our variational eigenstae$ ap-
proaching the exact eigenstatgs for increasing dimension
d of the employed trial space, by comparing the behavior of
the various measures for the accuracy of approximate eigen-

sented by a multiplication operator. Consequently, exacthstates discussed in Sec. Il.
for a harmonic-oscillator potential the above semirelativistic ~Without doubt, the only genuine “point of reference” of
Hamiltonian H in its momentum-space representation isany variational solution to an eigenvalue problem is the cor-

equivalent to a nonrelativistic Hamiltonian with sorteffec-
tive) interaction potential reminiscent of the square root:

H=—aA,+p°+m?. (8)

responding exact solution. The exact solution sought is com-
puted here with the help of the numerical integration proce-
dure developed for the nonrelativistic Sctiimmger equation

in Ref.[13].
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TABLE I. Characterization of the quality of the variational solution of the eigenvalue problem of the
semirelativistic Hamiltoniam = \Jjp?+m?+ V(r) with harmonic-oscillator potentiaf(r)=ar?, for states of
radial quantum number,=0,1,2 and orbital angular momentum=0,1,2 (called 1S, 2S, 3S, 1P, and 1D in
usual spectroscopic notatipThe variational solutions were obtained with the help of our “Laguerre” trial
states spanning trial spaces of increasing dimendiei,2,25. We compare the nonrelativistic upper bound
Enr and zero-mass lower bouie{m=0) on the energy, théhrumerically computed‘exact” energyE, the
variational upper bouné on this energy, the relative errerof the upper bound, the deviation from unity
of the overlap squared of exact and variational eigenstategagipeopriately normalizedexpectation values
v of the virial operatorC, and the(normalized maximum local differencaw of the momentum-space
representations of exact and variational eigenstates. The physical parameters are fixed to thenvalues
=2 GeV for the particle mass ara=2 Ge\? for the harmonic-oscillator coupling. A simple entry “0”

indicates that the numerical value is closer to 0 than the rounding error.

Quantity d State
1S 2S 3S 1P 1D
n, 0 1 2 0 0
/ 0 0 0 1 2

Enr (GeV) 4.12132 6.94975 9.77817 5.53553 6.94975

E(m=0)(GeV) 2.94583 5.15049 6.95547 4.23492 5.35234

E (GeV) 3.82493 5.79102 7.48208 4.90145 5.89675

E (GeV) 1 4.21624 6.50936 9.77866
2 3.92759 8.10850 5.24154 7.18242
25 3.82494 5.79114 7.48290 4.90149 5.89681

€ 1 0.1023 0.3280 0.6583
2 0.0268 0.4002 0.0694 0.2180
25 0 0 0.0001 0 0

o 1 0.09618 0.36144 0.65587
2 0.02375 0.43693 0.09001 0.34398
25 0 0 0.00008 0 0

v 1 -0.6120 —0.8328 —0.9074
2 +0.0308 —0.8666 —0.5103 —0.7483
25 0 —0.0001 +0.0001 0 0

w 1 +0.9277 +0.7541 +1.0578
2 —0.00754 +2.4577 +0.3598 +0.7262
25 +0.00003 —0.0017 +0.0002 +0.0004 +0.0003

Table | confronts, for the ground state and the lowestrated for the particular example of the dilation genera&or
radial and orbital excitations, the approximate solutions aslefined in Eq.(4), by consideringsuitably normalizegdex-
calculated with the help of the Rayleigh-Ritz variational pectation valueg¢|C|¢) of the virial operatorC given in

technique for “Laguerre” trial subspaces of the domairtHof

of increasing dimensiom with the exact solutions of the
eigenvalue problem for the semirelativistic Hamiltonid
with a central interaction potential of the harmonic-oscillator
form (7). First of all, as discussed in Sec. lll, the exact po-
sition of any eigenvalu& of our HamiltonianH is confined

to a range defined by the nonrelativistic upper bolg
and the zero-mass lower boudm=0) on this energy ei-

genvalueE. There are several quantities which may partici-

Eq. (5):

(¢|Cle)

P
(fplp-%T(p)I@

1.

P P
(@IX-gV(X)I@ <<P|X'5V(X)|<P>

(4) Finally, the normalized maximum difference of the

pate in a competition for “the best or most reasonable meanormalized momentum-space representatipfis) andx(p)
of the variational eigenstatgp) and exact eigenstate),

sure of quality:”

(1) The relative erroe=(E— E)/E of every upper bound
E on the exact energy eigenvaltiss, by definition, always

non-negative, i.e=0.

(2) The deviation from unityg, of the modulus squared

respectively, i.e., the maximum pointwise relative error in

momentum  space w=max,[ ¢(p)— x(p)1/max, x(p), is
listed.
Note that the only measure for the accuracy of approxi-

of the overlapS of exact and variational eigenstates definedmate eigenstatdg) which does not require any information
in Eq. (2), c=1—19|?, is necessarily confined to the range other than the one provided by the variational technique is
i.e., the(normalized expectation values of the commutator

(3) The use of the expectation values of the commutator§G,H] with respect td¢). Inspection of Table | reveals that

O<so=1.

[G,H] with respect to the variational eigenstates$ is illus-

v represents indeed a sensitive measure of quality: for in-
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creasing trial-space dimensiath it converges to zero at taken with respect to the approximate eigenstates, provides a

roughly the same rate as both energy and overlap esror, useful set of criteria for estimating the significance of the

and o, but makes more sense than a pointwise errordike variational solution. This has been illustrated by considering
the commutator of the Hamiltonian of the spinless Salpeter

V1. SUMMARY AND CONCLUSIONS equation and the generator of dilations.

Various measures for t_hg accuracy of approximate eigen- ACKNOWLEDGMENT
states of arbitrary(self-adjoint, semiboundgdoperatorsH
have been studied. The vanishing of the expectation values We would like to thank H. Narnhofer for stimulating dis-
of the commutator oH and any other well-defined operator, cussions and a critical reading of the manuscript.

[1] M. Reed and B. SimonMethods of Modern Mathematical [10] W. Lucha and F. F. Scherl, in Proceedings of the Xith In-

Physics IV: Analysis of OperatoréAcademic, New York, ternational Conference on Problems of Quantum Field Theory,
1978, Secs. XIlll.1 and XIlII.2. Dubna, 1998 edited by B. M. Barbashov, G. V. Efimov, and

[2] W. Lucha and F. F. Scherl, Mod. Phys. Lett. A5, 2473 A. V. Efremov (Joint Institute for Nuclear Research, Dubna,
(1990. 1999, p. 482.

[3]W. Lucha and F. F. Sclerl, Phys. Rev. Lett64, 2733  [11] S. Jacobs, M. G. Olsson, and C. Suchyta Ill, Phys. Re83D
(1990. _ 3338(1986); 34, 3536E) (1986.

[4] W. Lucha and F. F. Scluerl, Phys. Rev. [50, 5443(1994. [12] Handbook of Mathematical Functionsedited by M.

[5] W. Lucha and F. F. Sc]’uerl, Phys. Rev. /4, 3790(1996. Abramowitz and I. A. StegufiDover, New York, 1964

[6] W. Lucha and F. F. Sclierl, Int. J. Mod. Phys. AL4, 2309 [13] P. Falkensteiner, H. Grosse, F. Sbed, and P. Hertel, Com-
(1999. put. Phys. Commuri34, 287 (1989; for the Mathematica 3.0

[7] W. Lucha and F. F. Scherl, Fiz. B8, 193(1999.
[8] W. Lucha and F. F. Scherl, Phys. Lett. B387, 573(1996.
[9] W. Lucha and F. F. Sclerl, Phys. Rev. 266, 139 (1997.

update of this routine, see, W. Lucha and F. F. ®ehb Int. J.
Mod. Phys. C10, 607 (1999.



