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Traversal time in macroscopic quantum tunneling
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We present an interpretation of traversal time results in Josephson junctions, based on a stochastic model of
tunneling processes which include dissipative effects. With the use of semiclassical analysis, the experiments
performed up until now have supplied a time duration of the order &fpsda remarkably long time, even
considering the macroscopic nature of the systems under examinaiicecording to our interpretation, this
duration is only the imaginary part of a complex quantity, the real part of wipidsumably the true physical
duration lies in the range of a few picosecon$1050-294{®9)03012-7

PACS numbgs): 03.65.Sq, 41.20.Jb, 73.40.Gk, 74.50.

Quantum mechanics at a macroscopic level is indubitablalternative approach based on a model which considers tun-
a fascinating topic and, within this context, the Josephsomeling as a stochastic process. Our approach represents an
effect is one of the most suitable for observing phenomenalternative method for solving partial differential equations
such as macroscopic quantum tunneliMQT) [1], macro- When dissipative effects are present. It has already demon-
Scopic quantum Coheren(tMQC), and energy levels quan- strated its capability to interpret other experimental results
tization (ELQ) [2]. on tunneling[10]. The advantage of this method lies in its
As for the observation of MQT in a current biased JosephPeing able to discriminate between real and imaginary parts
son junction, the single result reported in the literatigg  Of the traversal time. An evaluation of the real part can be
has been confirmed only recently, by the results of an analg?erformed once the imaginary one has been determined.
gous experimenf4]. The traversal time of the barrier has ~ The deterministic equation of motion for a current biased
been deduced from these measurements by using semiclasiinction can be written afsl 1]
cal analyses. In both cases, a result of the order of 100 ps
was obtained. To be more precise, for the junction of Ref.
[3], the semiclassical time given by/w=286 ps is nearly C(
coincident with the value of 78 ps inferrédot directly ob-
tained from the measurements at 18 mK. For the junction of
Ref. [4], m/o=158 ps, but from measurements at 50 mK awhereR and C are the shunt resistance and the capacitance
value of 91 ps was deduced. The shortening which resulted igf the junction, respectivelyy is the phase difference of the
due to the thermal contributigrb]. Cooper-pair wave function across the gap, dnglis the flux
However, the traversal time evaluated7a&y is presum- quantum. The functioV(¢) represents a tilted periodic po-
ably only the imaginary part of a complex quantity whosetential given byW(¢)=(—1,®q/27)[ cos¢+(1dllg)], where
real part remains unknown, since it is not accessible for &, is the critical current of the junction. The equation of
direct measurement, as in other experimental situations. Almotion (1) is homologous with the equation of motion
though not yet fully shared, it is, however, largely accepted
that the tunneling time has to be considered as a complex J
quantity[6]. The real part, related to the phase of the com- mx+ 7x+ —V(x)=0 2)
plex transmission coefficient, is nampHase timewhile the IX
imaginary part, related to the absolute value of the transmis-
sion coefficient(the attenuation under the barjiés some-  for a particle of massn moving in a potentiaV/(x), in the
times namedoss time The latter is essentially equivalent to presence of dissipation with a damping coefficient The
the semiclassical time in the opaque barrier lif®}. This  potential is well described by a cubic functidfi(x) = ex?
work is devoted to the evaluation of the phase time which, in_ ;3 where e= mw?/2,0 is the angular frequency at the
agreement with the above framework, is just the real part ohottom of the well,p is a positive constant whose value is
the tunneling time. _ taken to fitV(¢). The equation of motior2) is easily inte-
Since the pioneering work done by Caldeira and Leggetbrated in the reversed potentialV, for =0 (absence of

[8], considerable efforts aimed at understanding this mattegjissipation. Its solution gives the instanton bounce trajec-
have been made from a theoretical point of Vig®J. In 51 117]

guantum-theoretical analysis, the main difficulties lie in the
inclusion of dissipative effectevhich are always present in
macroscopic systemsas well as other thermodynamical _ wt
. , X(t)=x,, sech| — 3
variables, such as temperature. In this work, we search for an 2
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wherex,= €/p is the bounce amplitudevhich corresponds 9 am , sin(2wt)

to the barrier lengthandt is the imaginary time. The particle tr:£A¢: 7y0wt2 coq2mt) - ol ~at?,
trapped in the well of the potential corresponds to the zero- ®)
voltage state of the junction. The superconducting condition

becomes lost when the particle escapes from the (il

means of tunneling or thermal overcoming of the baj e oscillation. This result is in agreement with the analysis of

frll'gisegc_)\"/vé}tgovéasag Evﬁrs?;'&?;l;g ?é thfaﬁgiﬁ?gila /-gr":séR_ef. [10]. There, by considering tunneling in the presence of
tag . T q . 5issipation as a stochastic process, we demonstrated that tun-
mal fluctuations; the relative importance of the two contribu-

tions depends on the temperature. At a very low temperaturenellng time is a complex quantity whose average, for mod-

guantum tunneling prevails, and its motion can be describegrate values of the semiclassical tindv, is just (t)

. . =a(L/v)2+iL/v, whereL/v can be identified with out.
approximately by Eq(3). The presence in Eq2) of the The analysis of Ref[10] is based on analyses of Refs.

dissipative terrm;k—which represents the interaction of l0- [13_15 which, in turn, derive from the original work by Kac
cal motion with the phonon modes—strongly increases thgegarding a stochastic model related to the telegrapher equa-
complexity of the analysis. What is clearly established is that;g, [16]. Noteworthy is the fact that this model can be ap-

dissipation increases the action integral, in agreement withjiaq to solving otherlineay partial differential equations,
the intuitive behavior that viscous forces reduce the probabilyhich include dissipative effects, given a solution of their
ity of tunneling. _ principal parts[13]. The solution of the damped harmonic
The solution of motior(3) holds exactly forp=0 atzero  oscjllator[Eq. (4) is its analytical continuation to imaginary
temperature. At moderate temperatures, below the crossovge and frequendyrepresents an example of such a method.
one (defined asT .= w/2mkg, around 50 mK in our casgs |n order to proceed further with our analysis, we integrated
tunneling will occur essentially in proximity with the top of the equation of motior(2) in the presence ofmoderate
the barrier. Here the potential is well described by the paragjissipation. This was not a trivial task since, as we shall see,
bolic functionV(x) =V, — €(x—X)”, whereV, is the barrier  there is no exact analytical solution to it, but only some
height andk, its coordinatg4]. In this situation, the equation approximate ones. We consider three kinds of solutions.
of motion (2) is reduced to that of a damped harmonic oscil- * (j) By means of a Fourier-integral expansion of the solu-
lator [13] once—in view of the forbidden character of the tjgn (3) in the absence of dissipation, we substitute &)s(
process—its analytical continuation into complex plane hasynctions byy(t), as given by Eq(4), and then, by integrat-
been considered. One way to obtain this continuation is t‘i‘ng overw, we obtain ax(t) solution of motion.
consider the motion as occurring in imaginary tinte-(t) (i) By adopting the same procedure which allowed us to
and imaginary frequenciess{—i) [14]. Another way is o gptain Eq.(4), we try to use the same distributidut,r) [13]
replace the damping paramet= »/2m) with ia [15]. By  for solving Eq.(2), whose solution fom=0 is given byx(t)
putting x—Xo=y, in both cases, the equation of motion be- of Eq, (3). This represents an improper procedure, since it is
comesy+ 2iay+ w?y=0(»?>0). Its solution is then exactly applicable only to linear equations, while our E).
is not linear forV(x)=ex?— px>.
(iii) From a numerical integration of E(R), we are able
to obtain an exact solution to the equation of motion. This
solution is not suitable for our analysis, but we can use it for
testing the worth of analytical solutiortg and (ii).
- Differential equation(2) can be numerically solved, for
wherew=\Jw?+a?, andy, is the amplitude of the pseudo- V_(x)=—ex?+px®, as follows
oscillations (3 is the length of the barrier traversabhich,
in imaginary time, are not damped. )
We are now in a position to evaluate the action integral x(t)=—2ax+ w?
relative to the solution of motiod) and, in particular, the
variation of this quantity due to the modification of the tra- _ .
jectory [the second term in Eq4)]. By considering the Eu- X(t+At)=x(t)+x(t)At,
clidean LagrangiarL=T+V=my*/2— ey?, we can easily
verify that the increase of the absolute value of the action is ) 1. 5
of the order ofyy3 [8,12]. By collecting only terms of the X(t+At)=x(t) +x(t)At+ Ex(t)(At) , (7
first order ina, and for moderate values of the argumeat,2
its real part,AS, results

where we have assumed1wy§~h and ot~m (half-

~ a -~
y(t)=exp(— iat)( coswt+i =sinwt
w

® 3x?
X —_——
2Xy,

where a=7/2m, and the boundary conditions arg0)
=0x(0)=x,. Fort>0, the resulting trajectories show, as
amyg -~ ~ expected, the shape of damped oscillations. Alsotfero,
AS = 5 [wt sin(2wt) +cog2wt)]. ©) they asimptotically tend towards the value of the potential-
minimum coordinatex,=2x,/3. With a small increase in
_ . . x(0) [e.g., x(0)=1.0253%, for a=0.25 andw=10], the
This quantity produces a dephasi\g=AS; /%, whose de-  trajectory becomes aperiodisimilar to Eq.(3) which is the
rivative, with respect to the frequency, CPntribUteS to the rea{rajectory in the absence of dissipat]wince it meets the
part of the delay by an amount given by € w) metastable position again a0 (see Fig. L
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For our trajectory, Eq(11) has no analytical solution; how-
ever, we can solve the problem approximately by expanding
the terms containing [13] in the Laplace transform(s) of

Eqg. (11). To the second order ia, we obtain

p— a a2 ! a2 n
f(s)= 1+§—§ F(s)+aF (s)+7F (s), (12

where F(s)=[gexp(—rs) seck(wr/2)dr. Then, by anti-
transforming, we easily obtaii8]

X(t) e at 2a I_(wt)

+ —tan
Xp wt 0]

2

coslit

FIG. 1. Trajectory shapes in the positive-time doméiralf 2
bounce in the inset which shows the inverted poteniia) ob-
tained, fora=0.25 andw=10 using different procedures: numerical 2a? wt
integration[Egs.(7)]—continous line; analytical solutidrEgs.(10) _?In COSV(?)
or (13)]—dashed line. The guantitiesand w are expressed in the
same(arbitrary units. The dotted line represents the solution ob-Thjs function, which fora=0 rightly gives the unperturbed
taine_d_ by numerical integration with a small variation in the initial solution, represents an asymmetric function &0 (with
condition. respect ta=0) whose behavior accounts for the damping of
. . ) . . the motion. The coincidence of this result with EG0), at
: According to procedurd), we find that the trajectory is the first order ina, is worthy of note. We therefore consider
given by that the inclusion of the second—order tdthird term in Eq.
w (13)] represents a better approximation of the solution. This
x(t)szf A(w)y(t)dw, (8)  can be verified by comparison with the numerical solution
- given by Eqs(7) and reported in Fig. 1. As before with the
o -~ harmonic oscillator, we are interested in the analytical con-
wherey(t) is given by Eq.(4) andA(w) is tinuation of Eq.(13) to imaginary time and frequency. We
therefore obtain a solution of the motion of the type

+on (13

~ 1 (= wt ~ 20
Alw)= ﬂf—wseCH<7) cos Wl at= s N male) Xt e 2a ot
9) Xo  cosk(wt/2) ry anl‘( 7)
By substituting Eq(9) in Eqg. (8), we obtain[17] a2 ot
ot 2a ot +?In cos}‘(7 +.e (14)
X(1) =X, seci"r(? +;tan)‘(? exp(—at) (10

Analogously to what was done for the harmonic oscillator,

which can be considered an approximate solution to our Eqwe consider the Euclidean Lagrangian=T+V=mx3/2

(2), at least for moderate values of the/2 argument. A +ex?— px3: that is we look at the motion as it was allowed
check can be made by comparing Ef0) with the numeri- in the reversed potential. The increase in the action integral
cal results of itentiii): we can see that there is good agree-due to dissipation is again of the order %2 [12], and its
ment between the two kinds of solution for argument valueseal part—retaining terms of the first order aa—is of type

up to 1-1.5. However, the extent of the agreement is inf19]

creased when we consider the aperiodic solution mentioned

above. In this case the agreement—depending on the value wt) tanh wt/2)
of the parametea—is acceptable for greater argument val- AS=2amx 2 cost(wt/2) |’ (49
ues, nearly over all the significant extent of the bounce tra-
jectory (see Fig. 1 S _ Again [see Eq.(6)], by assumingnwx3~#, we evaluate,
As for the procedure of iterfii), in principle the solution

for which we are searching is given simply by quadrature
[13] ~J AS at wt N wt P wt

i} e h w22 T\ 7] T

X(t)=fO x(r)h(t,r)dr, (11 ot ot ot
-4 5 tant? > sech il (16)

where x(r)=x,secH(wr/2) is the solution for the

classically-allowed motiofiEq. (3)] in the reversed potential of course, if the quantitynwxﬁ is a number ofi, the result
V_(x)=—ex?>+px3, and h(t,r) is the distribution of the for t, must be multiplied for this number. Equati¢h6) for
randomized pathst (is the true timer is the effective timg wt/2>1 becomes
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t,=2at’[4e “'+0O(e 2*Y], 17

while for wt/2<1 becomes~at?, which essentially con-
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should be of the order of a few picoseconds, and not of the
order of 16 ps, as deduced from semiclassical analyses.

We cannot overlook the fact that, in the model adopted,

firms the result of Eq(6). This result can be interpreted in the real component of the delay originates only from the
the following way. When the analytical continuation to gjssipative parameter, and that it vanishesaas0. In the

imaginary time is considergd 0] and forr>t, the shape of
the distributionh(t,r) is of the expfat?2r) type. This
means that the asymptotic average valugisfrather small:
that is, it tends to 1/2 [20]. The width of this distribution is

absence of dissipation, is the real component zero in any
case? Certainly this cannot be true: any dephasing of the

wave function across the boundaries of the barrier can con-
tribute to the real component of delay: the phase time men-

given by y2r/a, and decreases by increasing the dissipativaioned at the beginning. This contribution is usually ignored

parametera [13]. So, for large values o& (or large time
values, we have 2~ at?, which gives an upper limit to the

in semiclassical treatments, but will, more or less, always be
present. An estimate of this contribution can be made ac-

real time duration of the process. On the contrary, within thecording to the transition elements thed®d]. This theory

limit of small values fora, we obtain a distribution cut at

supplies an approximate measurement of the reduction of

=r. In this case, therefore, the upper limit of the real time istraversal time(with respect to the semiclassical tiingiven
given byar?, with t<r, which has to be assumed as the by exp(-S%), whereSis the reduced action between classi-

semiclassical unperturbed time.

For the junction tested in Ref4], we estimated 2
(= n/m) to be of the order of one (ns} [in the equivalent
equation of motion of the junction, E¢L), the quantity 2 is
replaced by (RC)!], while the semiclassical timeis 0.091

cal turning points of motiorf12].

For physical systems under examination in RE€8.and
[4], the action in the zero temperature limitS (
=7Vy/hw,V, being the barrier heigh22]) is about 7—-8;

therefore the reduction factor is of the order of $0 This

ns[5]. This means that the real-time delay should be givenrmeans that, for a semiclassical imaginary time of about

approximately, according to E16), by t,~ar?~4 ps for
(wt/2)<1, or, according to Eq.17), by t,~8at’e™ ™
~1.4 ps forot=1r.

The situation is slightly different for the junction of Ref.
[3] since RC~0.1 ns andr=0.078 ns. Thereforear?
=30 ps, whilet,, evaluated by Eq(17), is about 10 ps.
Thus, in the experimental situations considered al8y4,

107 ps, the contribution to the real time duration should be

one of subpicoseconds. However, finite temperature effects
produce a lowering of the action and, consequently, an in-
crease in the real time component likely up to picosecond
scale. We can therefore conclude that the evaluation made
here, performed on dissipative systems, supplies the main
part of the real time which, however, remains distinctly dif-

whenevert, would be accessible to a direct measurement iferent from the imaginary one.
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