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Traversal time in macroscopic quantum tunneling
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We present an interpretation of traversal time results in Josephson junctions, based on a stochastic model of
tunneling processes which include dissipative effects. With the use of semiclassical analysis, the experiments
performed up until now have supplied a time duration of the order of 102 ps ~a remarkably long time, even
considering the macroscopic nature of the systems under examination!. According to our interpretation, this
duration is only the imaginary part of a complex quantity, the real part of which~presumably the true physical
duration! lies in the range of a few picoseconds.@S1050-2947~99!03012-7#

PACS number~s!: 03.65.Sq, 41.20.Jb, 73.40.Gk, 74.50.1r
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Quantum mechanics at a macroscopic level is indubita
a fascinating topic and, within this context, the Joseph
effect is one of the most suitable for observing phenom
such as macroscopic quantum tunneling~MQT! @1#, macro-
scopic quantum coherence~MQC!, and energy levels quan
tization ~ELQ! @2#.

As for the observation of MQT in a current biased Jose
son junction, the single result reported in the literature@3#
has been confirmed only recently, by the results of an an
gous experiment@4#. The traversal time of the barrier ha
been deduced from these measurements by using semic
cal analyses. In both cases, a result of the order of 100
was obtained. To be more precise, for the junction of R
@3#, the semiclassical time given byp/v586 ps is nearly
coincident with the value of 78 ps inferred~not directly ob-
tained! from the measurements at 18 mK. For the junction
Ref. @4#, p/v5158 ps, but from measurements at 50 mK
value of 91 ps was deduced. The shortening which resulte
due to the thermal contribution@5#.

However, the traversal time evaluated asp/v is presum-
ably only the imaginary part of a complex quantity who
real part remains unknown, since it is not accessible fo
direct measurement, as in other experimental situations.
though not yet fully shared, it is, however, largely accep
that the tunneling time has to be considered as a com
quantity @6#. The real part, related to the phase of the co
plex transmission coefficient, is namedphase time, while the
imaginary part, related to the absolute value of the transm
sion coefficient~the attenuation under the barrier! is some-
times namedloss time. The latter is essentially equivalent t
the semiclassical time in the opaque barrier limit@7#. This
work is devoted to the evaluation of the phase time which
agreement with the above framework, is just the real par
the tunneling time.

Since the pioneering work done by Caldeira and Legg
@8#, considerable efforts aimed at understanding this ma
have been made from a theoretical point of view@9#. In
quantum-theoretical analysis, the main difficulties lie in t
inclusion of dissipative effects~which are always present i
macroscopic systems!, as well as other thermodynamic
variables, such as temperature. In this work, we search fo
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alternative approach based on a model which considers
neling as a stochastic process. Our approach represen
alternative method for solving partial differential equatio
when dissipative effects are present. It has already dem
strated its capability to interpret other experimental resu
on tunneling@10#. The advantage of this method lies in i
being able to discriminate between real and imaginary p
of the traversal time. An evaluation of the real part can
performed once the imaginary one has been determined

The deterministic equation of motion for a current bias
junction can be written as@11#

CS F0

2p D 2

f̈1R21S F0

2p D 2

ḟ1
]

]f
V~f!50, ~1!

whereR andC are the shunt resistance and the capacita
of the junction, respectively,f is the phase difference of th
Cooper-pair wave function across the gap, andF0 is the flux
quantum. The functionV(f) represents a tilted periodic po
tential given byV(f)5(2I 0F0/2p)@cosf1(If/I0)#, where
I 0 is the critical current of the junction. The equation
motion ~1! is homologous with the equation of motion

mẍ1h ẋ1
]

]x
V~x!50 ~2!

for a particle of massm moving in a potentialV(x), in the
presence of dissipation with a damping coefficienth. The
potential is well described by a cubic functionV(x)5ex2

2rx3, wheree5mv2/2,v is the angular frequency at th
bottom of the well,r is a positive constant whose value
taken to fitV(f). The equation of motion~2! is easily inte-
grated in the reversed potential2V, for h50 ~absence of
dissipation!. Its solution gives the instanton bounce traje
tory @12#

x~ t !5xb sech2S vt

2 D , ~3!
5087 ©1999 The American Physical Society
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wherexb5e/r is the bounce amplitude~which corresponds
to the barrier length! andt is the imaginary time. The particle
trapped in the well of the potential corresponds to the ze
voltage state of the junction. The superconducting condit
becomes lost when the particle escapes from the well~by
means of tunneling or thermal overcoming of the barrier! and
slides down toward a lower minimum of the potential. Thu
the zero-voltage state is unstable due to quantum and/or
mal fluctuations; the relative importance of the two contrib
tions depends on the temperature. At a very low temperat
quantum tunneling prevails, and its motion can be descri
approximately by Eq.~3!. The presence in Eq.~2! of the
dissipative termh ẋ—which represents the interaction of lo
cal motion with the phonon modes—strongly increases
complexity of the analysis. What is clearly established is t
dissipation increases the action integral, in agreement w
the intuitive behavior that viscous forces reduce the proba
ity of tunneling.

The solution of motion~3! holds exactly forh50 at zero
temperature. At moderate temperatures, below the cross
one~defined asTc5\v/2pkB , around 50 mK in our cases!,
tunneling will occur essentially in proximity with the top o
the barrier. Here the potential is well described by the pa
bolic functionV(x)5V02e(x2x0)2, whereV0 is the barrier
height andx0 its coordinate@4#. In this situation, the equation
of motion ~2! is reduced to that of a damped harmonic osc
lator @13# once—in view of the forbidden character of th
process—its analytical continuation into complex plane
been considered. One way to obtain this continuation is
consider the motion as occurring in imaginary time (t→ i t )
and imaginary frequencies (v→ iv) @14#. Another way is to
replace the damping parametera(5h/2m) with ia @15#. By
putting x2x05y, in both cases, the equation of motion b
comesÿ12iaẏ1v2y50(v2.0). Its solution is then

y~ t !5exp~2 iat !S cosṽt1 i
a

ṽ
sinṽt D y0 , ~4!

whereṽ5Av21a2, andy0 is the amplitude of the pseudo
oscillations (2y0 is the length of the barrier traversal! which,
in imaginary time, are not damped.

We are now in a position to evaluate the action integ
relative to the solution of motion~4! and, in particular, the
variation of this quantity due to the modification of the tr
jectory @the second term in Eq.~4!#. By considering the Eu-
clidean LagrangianL5T1V5mẏ2/22ey2, we can easily
verify that the increase of the absolute value of the actio
of the order ofhy0

2 @8,12#. By collecting only terms of the
first order ina, and for moderate values of the argument 2at,
its real part,DSr results

DSr.
amy0

2

2
@ṽt sin~2ṽt !1cos~2ṽt !#. ~5!

This quantity produces a dephasingDw5DSr /\, whose de-
rivative, with respect to the frequency, contributes to the r
part of the delay by an amount given by (ṽ.v)
-
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]

]v
Dw5

am

\
y0

2vt2Fcos~2vt !2
sin~2vt !

2vt G'at2,

~6!

where we have assumedmvy0
2'\ and vt'p ~half-

oscillation!. This result is in agreement with the analysis
Ref. @10#. There, by considering tunneling in the presence
dissipation as a stochastic process, we demonstrated tha
neling time is a complex quantity whose average, for mo
erate values of the semiclassical timeL/v, is just ^t&
.a(L/v)21 iL /v, whereL/v can be identified with ourt.

The analysis of Ref.@10# is based on analyses of Ref
@13–15# which, in turn, derive from the original work by Ka
regarding a stochastic model related to the telegrapher e
tion @16#. Noteworthy is the fact that this model can be a
plied to solving other~linear! partial differential equations
which include dissipative effects, given a solution of the
principal parts@13#. The solution of the damped harmon
oscillator @Eq. ~4! is its analytical continuation to imaginar
time and frequency# represents an example of such a meth
In order to proceed further with our analysis, we integra
the equation of motion~2! in the presence of~moderate!
dissipation. This was not a trivial task since, as we shall s
there is no exact analytical solution to it, but only som
approximate ones. We consider three kinds of solutions.

~i! By means of a Fourier-integral expansion of the so
tion ~3! in the absence of dissipation, we substitute cos(vt)
functions byy(t), as given by Eq.~4!, and then, by integrat-
ing overv, we obtain ax(t) solution of motion.

~ii ! By adopting the same procedure which allowed us
obtain Eq.~4!, we try to use the same distributionh(t,r ) @13#
for solving Eq.~2!, whose solution forh50 is given byx(t)
of Eq. ~3!. This represents an improper procedure, since i
exactly applicable only to linear equations, while our Eq.~2!
is not linear forV(x)5«x22rx3.

~iii ! From a numerical integration of Eq.~2!, we are able
to obtain an exact solution to the equation of motion. T
solution is not suitable for our analysis, but we can use it
testing the worth of analytical solutions~i! and ~ii !.

Differential equation~2! can be numerically solved, fo
V2(x)52«x21rx3, as follows

ẍ~ t !522aẋ1v2Fx~ t !2
3x2

2xb
G ,

ẋ~ t1Dt !5 ẋ~ t !1 ẍ~ t !Dt,

x~ t1Dt !5x~ t !1 ẋ~ t !Dt1
1

2
ẍ~ t !~Dt !2, ~7!

where a5h/2m, and the boundary conditions areẋ(0)
50,x(0)5xb . For t.0, the resulting trajectories show, a
expected, the shape of damped oscillations. Also, fort→`,
they asimptotically tend towards the value of the potent
minimum coordinatexm52xb/3. With a small increase in
x(0) @e.g., x(0)51.02537xb for a50.25 andv510#, the
trajectory becomes aperiodic@similar to Eq.~3! which is the
trajectory in the absence of dissipation# since it meets the
metastable position again atx50 ~see Fig. 1!.
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According to procedure~i!, we find that the trajectory is
given by

x~ t !5xbE
2`

`

A~ṽ !y~ t !dṽ, ~8!

wherey(t) is given by Eq.~4! andA(ṽ) is

A~ṽ !5
1

2pE2`

`

sech2S vt

2 D cos~ṽt !dt5
2ṽ

v2 sinh~pṽ/v!
.

~9!

By substituting Eq.~9! in Eq. ~8!, we obtain@17#

x~ t !5xbFsech2S vt

2 D1
2a

v
tanhS vt

2 D Gexp~2at! ~10!

which can be considered an approximate solution to our
~2!, at least for moderate values of thevt/2 argument. A
check can be made by comparing Eq.~10! with the numeri-
cal results of item~iii !: we can see that there is good agre
ment between the two kinds of solution for argument valu
up to 1–1.5. However, the extent of the agreement is
creased when we consider the aperiodic solution mentio
above. In this case the agreement—depending on the v
of the parametera—is acceptable for greater argument va
ues, nearly over all the significant extent of the bounce
jectory ~see Fig. 1!.

As for the procedure of item~ii !, in principle the solution
for which we are searching is given simply by quadratu
@13#

X~ t !5E
0

`

x~r !h~ t,r !dr, ~11!

where x(r )5xb sech2(vr /2) is the solution for the
classically-allowed motion@Eq. ~3!# in the reversed potentia
V2(x)52ex21rx3, and h(t,r ) is the distribution of the
randomized paths (t is the true time,r is the effective time!.

FIG. 1. Trajectory shapes in the positive-time domain~half
bounce in the inset which shows the inverted potentialV2) ob-
tained, fora50.25 andv510 using different procedures: numeric
integration@Eqs.~7!#—continous line; analytical solution@Eqs.~10!
or ~13!#—dashed line. The quantitiesa andv are expressed in the
same~arbitrary! units. The dotted line represents the solution o
tained by numerical integration with a small variation in the init
condition.
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For our trajectory, Eq.~11! has no analytical solution; how
ever, we can solve the problem approximately by expand
the terms containinga @13# in the Laplace transformf (s) of
Eq. ~11!. To the second order ina, we obtain

f ~s!5S 11
a

2
2

a2

2s2D F~s!1aF8~s!1
a2

2
F9~s!, ~12!

where F(s)5*0
`exp(2rs) sech2(vr /2)dr. Then, by anti-

transforming, we easily obtain@18#

X~ t !

xb
.

e2at

cosh2S vt

2 D 1
2a

v
tanhS vt

2 D

2
2a2

v2
lnFcoshS vt

2 D G1•••. ~13!

This function, which fora50 rightly gives the unperturbed
solution, represents an asymmetric function fora.0 ~with
respect tot50) whose behavior accounts for the damping
the motion. The coincidence of this result with Eq.~10!, at
the first order ina, is worthy of note. We therefore conside
that the inclusion of the second–order term@third term in Eq.
~13!# represents a better approximation of the solution. T
can be verified by comparison with the numerical soluti
given by Eqs.~7! and reported in Fig. 1. As before with th
harmonic oscillator, we are interested in the analytical c
tinuation of Eq.~13! to imaginary time and frequency. W
therefore obtain a solution of the motion of the type

X~ t !

xb
5

e2 iat

cosh2~vt/2!
1 i

2a

v
tanhS vt

2 D
1

2a2

v2
lnFcoshS vt

2 D G1•••. ~14!

Analogously to what was done for the harmonic oscillat
we consider the Euclidean LagrangianL5T1V5mẋ2/2
1«x22rx3: that is we look at the motion as it was allowe
in the reversed potential. The increase in the action inte
due to dissipation is again of the order ofhxb

2 @12#, and its
real part—retaining terms of the first order ina—is of type
@19#

DSr.2amxb
2F S vt

2 D tanh~vt/2!

cosh4~vt/2!
G . ~15!

Again @see Eq.~6!#, by assumingmvxb
2'\, we evaluatet r

as

t r5
]

]v

DSr

\
5

at

v F tanhS vt

2 D1S vt

2 D sech2S vt

2 D
24S vt

2 D tanh2S vt

2 D Gsech4S vt

2 D , ~16!

of course, if the quantitymvxb
2 is a number of\, the result

for t r must be multiplied for this number. Equation~16! for
vt/2@1 becomes

-
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t r.2at2@4e2vt1O~e22vt!#, ~17!

while for vt/2!1 becomes;at2, which essentially con-
firms the result of Eq.~6!. This result can be interpreted i
the following way. When the analytical continuation
imaginary time is considered@10# and forr @t, the shape of
the distribution h(t,r ) is of the exp(2at2/2r ) type. This
means that the asymptotic average value oft is rather small:
that is, it tends to 1/2a @20#. The width of this distribution is
given byA2r /a, and decreases by increasing the dissipa
parametera @13#. So, for large values ofa ~or large time
values!, we have 2r;at2, which gives an upper limit to the
real time duration of the process. On the contrary, within
limit of small values fora, we obtain a distribution cut att
5r . In this case, therefore, the upper limit of the real time
given by ar2, with t&r , which has to be assumed as t
semiclassical unperturbed time.

For the junction tested in Ref.@4#, we estimated 2a
(5h/m) to be of the order of one (ns)21 @in the equivalent
equation of motion of the junction, Eq.~1!, the quantity 2a is
replaced by (RC)21#, while the semiclassical timer is 0.091
ns @5#. This means that the real-time delay should be giv
approximately, according to Eq.~16!, by t r'ar2'4 ps for
(vt/2)!1, or, according to Eq.~17!, by t r'8at2e2p

'1.4 ps forvt.p.
The situation is slightly different for the junction of Re

@3# since RC'0.1 ns and r 50.078 ns. Therefore,ar2

.30 ps, while t r , evaluated by Eq.~17!, is about 10 ps.
Thus, in the experimental situations considered above@3,4#,
whenevert r would be accessible to a direct measuremen
ro
an

ri,

a

e

e
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it

should be of the order of a few picoseconds, and not of
order of 102 ps, as deduced from semiclassical analyses.

We cannot overlook the fact that, in the model adopt
the real component of the delay originates only from t
dissipative parameter, and that it vanishes asa→0. In the
absence of dissipation, is the real component zero in
case? Certainly this cannot be true: any dephasing of
wave function across the boundaries of the barrier can c
tribute to the real component of delay: the phase time m
tioned at the beginning. This contribution is usually ignor
in semiclassical treatments, but will, more or less, always
present. An estimate of this contribution can be made
cording to the transition elements theory@21#. This theory
supplies an approximate measurement of the reduction
traversal time~with respect to the semiclassical time! given
by exp(2S/\), whereS is the reduced action between clas
cal turning points of motion@12#.

For physical systems under examination in Refs.@3# and
@4#, the action in the zero temperature limit (S
5pV0 /\v,V0 being the barrier height@22#! is about 7–8\;
therefore the reduction factor is of the order of 1023. This
means that, for a semiclassical imaginary time of ab
102 ps, the contribution to the real time duration should
one of subpicoseconds. However, finite temperature eff
produce a lowering of the action and, consequently, an
crease in the real time component likely up to picoseco
scale. We can therefore conclude that the evaluation m
here, performed on dissipative systems, supplies the m
part of the real time which, however, remains distinctly d
ferent from the imaginary one.
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