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Quantum systems coupled to a structured reservoir with multiple excitations
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We present a method for dealing with quantum systems coupled to a structured reservoir with any density of
modes and with more than one excitation. We apply the method to a two-level atom coupled to the edge of a
photonic band gap and a defect mode. Results pertaining to this system provide the solution to the problem of
two photons in the reservoir, and a possible generalization is discussed.@S1050-2947~99!10512-2#

PACS number~s!: 42.50.2p, 42.70.Qs
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The problem of the interaction of small systems w
structured reservoirs is of central importance to a numbe
areas including nanostructures in semiconductors, atom
sers@1#, aspects of molecular dynamics@2# and atoms em-
bedded in photonic band-gap materials. A fundamental
ficulty in the theoretical formulation of such problems ste
from the invalidation of the Born-Markov approximation
essential in obtaining a master equation, which is the s
dard vehicle in the presence of smooth reservoirs. Mod
approximating some of the features of such reservoirs s
as superpositions of Lorentzians can be useful, as the in
duction of ‘‘pseudomodes’’ can lead to a Markovian mas
equation for a system slightly enlarged through the introd
tion of the pseudomodes@3–6#. Alternatively, one may in-
troduce decorrelation approximations in the Heisenb
equations of motion for the operators of interest. But in a
case, one cannot be confident of the validity and degre
accuracy of the approximations. For a general density
states that cannot be modeled by a superposition of Lor
zians, the dynamics can only be obtained if there is at m
one photon in the structured reservoir@7#. At this point, there
is no generally established approach that can provide a
scription of the dynamics for a general density of states
multiple excitations in the structured continuum.

It is the purpose of this paper to present such an appro
with illustrative applications. The basic idea relies on t
discretization of the continuum, which is thus replaced in
formulation by a finite~but large! number of discrete modes
Their couplings and frequencies are chosen so as to m
the effect of the structured continuum to the desired ac
racy. The judicious choice of this parametrization is of cr
cal importance to the success of this idea. Given the disc
zation, the system ‘‘atom plus discretized continuum’’ c
be handled through differential equations governing the e
lution of the amplitudes entering the Schro¨dinger equation.
These differential equations are then solved numerically.
discretization of continua in other contexts@8# is an estab-
lished but always dangerous approach requiring much c
as it can lead to unphysical artifacts.

To introduce and demonstrate the method, we consid
two-level atom coupled near-resonantly to the edge of a p
tonic band gap~PBG! @9–14#. The photonic band-gap mate
rial has a strongly modified dispersion relation, and, empl
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ing the isotropic dispersion relation introduced by John a
Wang @11#, the corresponding density of states reads

r~v!5
k

Av2ve

Q~v2ve!, ~1!

wherek is a material specific constant,ve is the band-edge
frequency, andQ(x) is the Heaviside step function. Clearly
the density of modes diverges at the edge frequency, wh
invalidates the standard Born-Markov approximations n
mally employed when dealing with a smooth reservoir. A
consequence the reservoir cannot be eliminated.

The idea is to replace the density of modes in Eq.~1! near
the atomic transition~which for our purposes will be in the
vicinity of the edge frequency! by a collection of discrete
harmonic oscillators, while the rest of the mode density c
be treated perturbatively since it is far from resonance. T
frequencies and the couplings of the discrete modes are
sen such that the discrete oscillators best model the st
tured continuum near the edge frequency. To this end,
write Eq. ~1! in a differential form,

DN5r~v!Dv. ~2!

For DN51, and introducing a discrete index, we findDv i
51/r(v i), and thus

v i 115v i1Dv i5v i11/r~v i ! ~3!

and v15ve1d, where d is chosen sufficiently small (d
'1022C2/3). The couplinggr to the discrete modes is foun
by integration of Eq.~2!,

( gr
2DN'E

ve

vu
dvukvu2r~v!, ~4!

where vu is the upper limit of the discretized part of th
density of states,kv is the coupling between the continuu
mode with frequencyv and the atom and,ukvu2r(v)
5(C/p)@1/A(v2ve)#, whereC is the effective coupling of
the atom to the PBG structure. We thus find

gr'A2C

Np
Avu2ve, ~5!
5079 ©1999 The American Physical Society
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where N is the number of discrete modes. An alternati
form of Eq. ~3! is

v i 115v i 211Dv i5v i 2112/r~v i !, ~6!

which is actually the form that we have used in our imp
mentation.

We consider a two-level atom with ground (ug&) and ex-
cited (ue&) states whose energy difference is\vo . The atom
is coupled to the structured reservoir and a defect mode
tered at the frequencyvd inside the gap. The Hamiltonia
for this system in an interaction picture rotating at the ba
edge frequencyve (\51), and in the rotating-wave ap
proximation reads

H5D0see1Ddad
†ad1(

l
Dlal

†al1gd~ads11ad
†s2!

1(
l

gl~als11al
†s2!, ~7!

whereDo5vo2ve , and Dd5vd2ve , and Dl5vl2ve ;
s15ue&^gu ands25ug&^eu are the atomic raising and low
ering operators, andsee5s1s2. The field operators
(ad ,ad

†) and (al ,al
†) correspond to the defect mode an

PBG reservoir, respectively, which are coupled to the at
via the respective coupling constantsgd andgl .

In order to demonstrate the validity of this method, w
first present the results for spontaneous decay, i.e., the a
is initially excited, and we neglect the defect mode, i.e.,gd
50. Replacing the density of modes of Eq.~1! for v,vu ,
by a collection of discrete modes, the wave function for
full system reads

uc&5a0ue,0&1(
j

bj ug,1j&1(
l

blug,1l&, ~8!

where the amplitudesbj correspond to the discrete mode
while bl correspond to the modes with frequencyvl.vu ,
which are treated pertubatively, i.e., they are eliminated a
batically.

The time evolution of the amplitudes is governed by t
Schrödinger equation, from which we obtain

ȧ05
1

i
D0a01

1

i (
j 51

N

gjbj1
1

i (
l

glbl , ~9!

ḃ j5
1

i
D jbj1

1

i
gja0 , ~10!

ḃl5
1

i
Dlbl1

1

i
gla0 . ~11!

Formal integration of Eq.~11! gives

bl~ t !2bl~ t0!eDl(t2t0)/ i5
gl

i Et0

t

dt8a0~ t8!eDl(t2t8)/ i .

~12!

Since these modes are strongly off-resonant, i.e.,Dl@gl ,
and for short timesa0(t8) remains almost constant,a0(t8)
-

n-

-

m

e

,

a-

can be replaced bya0(t). The remaining integral over the
exponential is easily performed, with the result

bl~ t !.
gl

i 2Dl

a0~ t !. ~13!

Substituting Eq.~13! into Eq. ~9!, we have

ȧ05
1

i
Doa01

1

i (
j 51

N

gjbj2(
l

gl
2

iDl
a0 , ~14!

ḃ j5
1

i
D jbj1

1

i
gja0 . ~15!

Converting the mode sum overl into an integral fromv
5vu to infinity and using Eq.~1!, we obtain

ȧ05
1

i S D02
gj

2N

vu2ve
Da01

1

i (
j 51

N

gjbj , ~16!

ḃ j5
1

i
D jbj1

1

i
gja0 , ~17!

where for all discretized modesgj5gr , as given in Eq.~5!.
The effect of the smoothly varying part of the density
modes is thus to add a vacuum shift term to the equation
motion for the upper-state amplitude which effectively shi
the level down in energy and thus toward the band g
where it is protected from decay. This approximation lea
to a significantly reduced number of differential equation
and the remaining amplitudes are distributed over a m
narrower frequency interval. Beyond that, the approximat
also provides a surprising insight into the physical proce
as discussed above.

To ensure satisfactory numerical agreement with
known exact solution@12,14# for this test problem, we find
that we need at least 150 modes. In Fig. 1, we present
results obtained by propagation of Eqs.~16! and ~17!. The
dotted line is for a calculation with 50 discrete modes, t
long-dashed line is for 150 discrete modes, and the da
dotted line is for 500 modes. For comparison, we also p
the exact known solution@12–14# ~solid line!, which shows
very good agreement with the calculation involving 1
modes~estimated error 2%!. The curve corresponding to 50
modes is practically indistinguishable from the exact so
tion. The calculation involving 50 modes exhibits reviva
for longer times. These are a consequence of the discre
tion, one of the dangerous artifacts that one must be co
zant of. Increasing the number of discrete modes, the re
als appear at later and later times. The number of mode
our calculations thus determines the time scale on which
propagation is free of artificial oscillations, whilevu deter-
mines the proximity of the envelope to the correct resu
This implies considerable flexibility in the method; in th
sense that the size of the calculation can be tailored to
time scale, over which the behavior of the system is sou
and the desired accuracy.

Having demonstrated the validity of the method, we no
address an open problem. Adding to the system descr
above a defect mode near resonant with the atom, this de
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mode acts as a photon source that can pump the atom.
one photon in the defect mode and the atom excitedt
50, we have the possibility of two photons in the reservo
a problem not amenable to techniques employed so far.
wave function for the system can be written

uC~ t !&5a0ue,1d,0&1b0ug,2d,0&1(
j

bj ug,1d,1j&

1(
j

aj ue,0,1j&1(
j ,k

bjkug,0,1j ,1k&, ~18!

where the states involved are product states and, for insta
ug,1d,1j&5ug&u1d&u1 j& whereu1d& is the one-photon state o
the defect mode andu1 j& is a one-photon state of the rese
voir. The amplitudes obey the Schro¨dinger equation, and
through the perturbative elimination of off-resonant mod
as described above, we find

ȧ05
1

i S D01Dd2
gj

2N

vu2ve
Da01

1

i
A2gdb01

1

i (
j 51

N

gjbj ,

~19!

ḃ05
2

i
Ddb01

1

i
A2gda0 , ~20!

ȧ j5
1

i S D01D j2
gk

2N

vu2ve
Daj1

1

i
gdbj1

1

i (
(kÞ j )

k51

N

gkbjk

1
1

i
A2gjbj j , ~21!

ḃ j5
1

i
~D j1Dd!bj1

1

i
gja01

1

i
gdaj , ~22!

FIG. 1. The population in the excited state as function of ti
~dimensionless!. The solid line is the exact solution. The dotted lin
is for N550. The long-dashed line is forN5150, and the dot-
dashed line is forN5500. The inset shows a close-up of the lon
time behavior. Parameters:D050 andgd50.
ith
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ḃ jk5
1

i
~Dk1D j !bjk1

1

i
gkaj1

1

i
gjak , ~23!

ḃ j j 5
2

i
D jbj j 1

1

i
A2gjaj , ~24!

wherej andk are mode indices, and for all discretized mod
gj5gk5gr . For the purposes of this example, the frequen
vd of the defect mode is inside the gap as determined by
value ofDd and the atomic transition on resonance withvd ,
i.e., D05Dd .

This set of equations is solved numerically with the r
sults presented in Fig. 2. We plot the atomic inversion~solid
line!, the mean photon number in the defect mode~long-
dashed line! and the populations in the one-photon sec
~dot-dashed line! and two-photon sector~dotted line! of the
reservoir Hilbert space, respectively, as functions of tim
From the figure, we find that there is an exchange of ene
~oscillation! between the defect mode and the one-pho
sector of the reservoir. This oscillation must involve t
atom, since the defect mode is not directly coupled to
reservoir, but is not reflected in the atomic inversion. As
evident in Fig. 2, although photons are exchanged betw
the defect mode and the reservoir through the atom, a
some initial time, the atomic population remains practica
constant: a rather surprising effect. The results presente
Fig. 2, have of course been tested for convergence in te
of number of modes,vu , etc.

As the defect mode is pushed further into the gap, we fi
that the oscillations of the atomic population begin to exte
to increasingly longer times. Conversely, a change in
magnitude ofgd in relation toC2/3 does not seem to affec
the atomic oscillations for longer times, but it does affect t
relative oscillations of the excitations in the defect mode a
the reservoir, as we will discuss in detail elsewhere.

FIG. 2. The evolution of the system is plotted as function
time ~dimensionless!. The solid line is the population in the uppe
atomic state. The long-dashed line is the mean photon numbe
the defect mode, the dot-dashed line is the population in the o
photon sector of the reservoir Hilbert space, and the dotted curv
the population in the two-photon sector of the reservoir Hilb
space. Parameters:N5150, gd5C2/3, andD05Dd520.1C2/3.
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In conclusion, we have developed an approach that is
pable of providing solutions to a class of problems which c
only be treated approximately through other techniques.
applicable to small systems coupled to a density of mode
any form, and has allowed us to solve problems involv
multiple excitations in the continuum. In addition to th
implementation outlined here, we have explored vario
other forms of discretizations, as well as other densities
modes, with good agreement with other exact results in th
cases that are available. This demonstrates the generality
versatility of the approach, which could be readily employ
in other contexts such as, for example, waveguides where
density of modes is also singular.@15,16#

We demonstrated, in addition, that off-resonant co
tinuum modes can be eliminated perturbatively. The effec
this approximation is to reduce the number of different
equations to be propagated, thus leading to a drastic
hancement of the computation speed, essentially with
compromise in accuracy. The number of equations to pro
gate scales roughly asNp, whereN is the number of discrete
modes andp the number of excitations. The ultimate limita
tion of the method is determined by computer memory
demanded by each problem. In particular, the study of m
tiple excitations will probably for the time being be limite
to 4 or 5. For the purpose of presenting the method,
s
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limited our discussion here to two photons. Results fro
work for more photons will be presented elsewhere, but
do mention here that we have also obtained fully conver
results for three photons in the reservoir.

Providing solutions for the dynamics of the system is o
aspect of this approach. Perhaps an equally important as
is the insight gained by the possibility to combine the p
turbative treatment with the nonperturbative treatment of
rest. As discussed above, this sheds light on the phys
effect of the modes around the band edge as compared t
smooth distant part of the density of modes. In addition,
possibility to monitor the dynamics of additional photons
the structured reservoir may prove very valuable when c
sidering the validity of approximations necessary in oth
schemes.

It should be mentioned in closing that a recently propos
formal approach to similar non-Markovian problems, bas
on the quantum state diffusion formalism, was presented
Diosi, Strunz, and Gisin@17#. At this point we are aware o
the application of the method to a relatively tractable pro
lem involving a standard cavity reservoir. Its potential, ho
ever, does not seem at first sight to be limited, and it will
interesting to see and explore its applications to proble
involving more complicated densities of modes.
ys.
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