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Quantum systems coupled to a structured reservoir with multiple excitations
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We present a method for dealing with quantum systems coupled to a structured reservoir with any density of
modes and with more than one excitation. We apply the method to a two-level atom coupled to the edge of a
photonic band gap and a defect mode. Results pertaining to this system provide the solution to the problem of
two photons in the reservoir, and a possible generalization is discy&H50-294799)10512-3

PACS numbsd(s): 42.50—p, 42.70.Qs

The problem of the interaction of small systems withing the isotropic dispersion relation introduced by John and
structured reservoirs is of central importance to a number o¥ang[11], the corresponding density of states reads
areas including nanostructures in semiconductors, atom la-
sers[1], aspects of molecular dynami¢8] and atoms em-
bedded in photonic band-gap materials. A fundamental dif-
ficulty in the theoretical formulation of such problems stems
from the invalidation of the Born-Markov approximations, wherek is a material specific constanb,, is the band-edge
essential in obtaining a master equation, which is the starfrequency, and® (x) is the Heaviside step function. Clearly,
dard vehicle in the presence of smooth reservoirs. Modelthe density of modes diverges at the edge frequency, which
approximating some of the features of such reservoirs sucimvalidates the standard Born-Markov approximations nor-
as superpositions of Lorentzians can be useful, as the intranally employed when dealing with a smooth reservoir. As a
duction of “pseudomodes” can lead to a Markovian masterconsequence the reservoir cannot be eliminated.
equation for a system slightly enlarged through the introduc- The idea is to replace the density of modes in @gnear
tion of the pseudomode8—6]. Alternatively, one may in- the atomic transitiorfwhich for our purposes will be in the
troduce decorrelation approximations in the Heisenbergicinity of the edge frequengyby a collection of discrete
equations of motion for the operators of interest. But in an%armonic oscillators, while the rest of the mode density can
case, one cannot be confident of the validity and degree dqie treate_d perturbatively since it is far_ from resonance. The
accuracy of the approximations. For a general density ofrequencies and the F:oupllngs qf the discrete modes are cho-
states that cannot be modeled by a superposition of Loreng®" such Fhat the discrete oscillators best mode_l the struc-
zians, the dynamics can only be obtained if there is at mostf”.eOI continuum near the_ edge frequency. To this end, we
one photon in the structured reservidit. At this point, there write Eq. (1) in a differential form,

k
p(w)=——=0(w—we), ()

W— Wy

is no generally established approach that can provide a de- AN=p(w)Aw. )
scription of the dynamics for a general density of states and
multiple excitations in the structured continuum. For AN=1, and introducing a discrete index, we fiddy;

It is the purpose of this paper to present such an approach 1/p(w;), and thus
with illustrative applications. The basic idea relies on the
discretization of the continuum, which is thus replaced in the wi+1= 0t Ao = o+ lp(w) ()
formulation by a finite(but large number of discrete modes. , .
Their couplings and frequencies are chosen so as to mod@'d ‘_*’lezf"eJr 9, where 5 is chosen sufficiently small X
the effect of the structured continuum to the desired accu- 1_0 C 3) The couplingg, to the discrete modes is found
racy. The judicious choice of this parametrization is of criti- °Y Integration of Eq(2),
cal importance to the success of this idea. Given the discreti- oy
zation, the system “a}tom plps dlscrc_euzed contmuum” can 2 ngN%f dw|,<w|2p(w), (4)
be handled through differential equations governing the evo- e
lution of the amplitudes entering the ScHilmger equation. . o . .
These differential equations are then solved numerically. Th¥/nere o, is the upper limit of the discretized part of the
discretization of continua in other conte)@] is an estab- density of statesy,, is the coupling between the ccz)ntmuum
lished but always dangerous approach requiring much cargiode with frequencyw and the atom and|«,|“p(w)
as it can lead to unphysical artifacts. =(C/m)[1J(w— we)], whereC s the effective coupling of
To introduce and demonstrate the method, we consider #e atom to the PBG structure. We thus find
two-level atom coupled near-resonantly to the edge of a pho-
tonic band gagPBG) [9—-14]. The photonic band-gap mate- - Em )
rial has a strongly modified dispersion relation, and, employ- Gr Nmg' 4 ¢
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where N is the number of discrete modes. An alternativecan be replaced bgy(t). The remaining integral over the

form of Eq.(3) is exponential is easily performed, with the result
wi+1= 01T Awi= 0i_1+ 2p(w)), (6) N
o . . by (t)=——ap(t). (13
which is actually the form that we have used in our imple- i“A\
mentation.

We consider a two-level atom with grounthf) and ex-  Substituting Eq(13) into Eq. (9), we have
cited (e)) states whose energy differencéii®,. The atom 1 LN o
is coupled to the structured reservoir and a defect mode cen- A== A.ant+ = b 2 14
tered at the frequencyy inside the gap. The Hamiltonian 0 Tt 121 9ib; ; iAo 14
for this system in an interaction picture rotating at the band-

edge frequencyw, (A=1), and in the rotating-wave ap- .1 1
proximation reads b; :i_Ajb]‘ + 0. (15
H:Aoo'ee+Adagad+2 Axalax+gd(ad0++a$0_) Convert[ng t.he mode sum over into an _integral frome
X = w,, to infinity and using Eq(1), we obtain
2 N
- ayo"+alo), 7 . 1 giN 1
; @ +aa) @) ao=i—(A0— u]_ . ao+i—j21 9;b;, (16)

where A = w,— we, aNdA = wg— we, aNd A, = w), — we; 1 1
crf=|e><g| ando™ =|g){e| are the atomic raising and low- bj=>A;b;+ =g, 17)
ering operators, ando..=c o . The field operators I I
(aq.a}) and (a,,a') correspond to the defect mode and o B o
PBG reservoir, respectively, which are coupled to the atony’here for all discretized modegi =g, as given in Eq(5).
via the respective coupling constagfsandg, . The effgct of the smoothly varying part of the denS|t_y of
In order to demonstrate the validity of this method, wemOd.eS is thus to add a vacuum shift ter'm to the 'equatlo'n of
first present the results for spontaneous decay, i.e., the ato otion for the upper-state amplitude which effectively shifts
is initially excited, and we neglect the defect mode, ig., the Iev_el_ down in energy and thus _toward the b_and gap,
—0. Replacing the density of modes of @) for < where it is protected from decay. This approximation leads
by a collection of discrete modes, the wave function fuo,r thel© @ significantly reduced number of differential equations,
full system reads ' and the remaining amplitudes are distributed over a much
narrower frequency interval. Beyond that, the approximation
also provides a surprising insight into the physical process,
|y =ao/e,00+ >, bjlg,l,->+; bylg9.1)), (8)  as discussed above.
! To ensure satisfactory numerical agreement with the
where the amplitudeb; correspond to the discrete modes, known exact solutiori12,14 for this test problem, we find
that we need at least 150 modes. In Fig. 1, we present the

while b, correspond to the modes with frequensy>w,, : )
which are treated pertubatively, i.e., they are eliminated adia €Sults obtained by propagation of Eq$6) and (17). The

batically. dotted line is _for a calculation_ with 50 discrete modes, the
The time evolution of the amplitudes is governed by thelong'da.ShG(.:J line is for 150 discrete mod.es, and the dash-
Schralinger equation, from which we obtain dotted line is for 500 modes. For comparison, we also plot
the exact known solutiofil2—14 (solid line), which shows
1 1 N 1 very good agreement with the calculation involving 150
ap=-Apapt + E gjbj+ — > a,by, (9  modes(estimated error 2% The curve corresponding to 500
! =1 Y modes is practically indistinguishable from the exact solu-
tion. The calculation involving 50 modes exhibits revivals
: _:E h E _ for longer times. These are a consequence of the discretiza-
b; : Ajb;+ ~0jao, (10 . ; )
tion, one of the dangerous artifacts that one must be cogni-
zant of. Increasing the number of discrete modes, the reviv-
.1 1 als appear at later and later times. The number of modes in
bk:i_A%bﬁi_g%aO' (1) our calculations thus determines the time scale on which the
propagation is free of artificial oscillations, white, deter-
Formal integration of Eq(1l) gives mines the proximity of the envelope to the correct result.
This implies considerable flexibility in the method; in the
sense that the size of the calculation can be tailored to the
time scale, over which the behavior of the system is sought,
(120  and the desired accuracy.
Having demonstrated the validity of the method, we now
Since these modes are strongly off-resonant, A¢>>g, , address an open problem. Adding to the system described
and for short timesy(t’) remains almost constard,(t’) above a defect mode near resonant with the atom, this defect

. t o
by (1) by (tp) e~ 10 = 3 j dt/ag(t! e,
to
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FIG. 1. The population in the excited state as function of time  FIG. 2. The evolution of the system is plotted as function of
(dimensionless The solid line is the exact solution. The dotted line time (dimensionless The solid line is the population in the upper
is for N=50. The long-dashed line is fod=150, and the dot- atomic state. The long-dashed line is the mean photon number in
dashed line is foN=500. The inset shows a close-up of the long- the defect mode, the dot-dashed line is the population in the one-
time behavior. Parameterad,=0 andgy=0. photon sector of the reservoir Hilbert space, and the dotted curve is
the population in the two-photon sector of the reservoir Hilbert

. o _ 23 — P 2/3
mode acts as a photon source that can pump the atom. Wifipace. Parameteri=150, g4=C"", andA,=A4=—0.1C""

one photon in the defect mode and the atom excitetl at

=0, we have the possibility of two photons in the reservoir, -1 1 1
a problem not amenable to techniques employed so far. The b= T (At A))bjct T0i@) + 7058, (23
wave function for the system can be written

.2 1

bjj=—Ajbj;+ ~\2g;a;., (24)

[¥(1))=a0le.10.0) +bolg.20,0) + 2 by[9.14.1)
wherej andk are mode indices, and for all discretized modes
n 1)+ 1 gj=9x=9, . For the purposes of this example, the frequency
2 aj/e,0.1;) 2 bji/9.0.1;, 1), (18 w4 of the defect mode is inside the gap as determined by the
value of A4 and the atomic transition on resonance witl,
where the states involved are product states and, for instande-, Ao=A44. _ _ _ _
19.14,1) =|9)|14)|1;) where|1y) is the one-photon state of ~ This set of equations is solved numerically with the re-
the defect mode anhL ) is a one-photon state of the reser- sults presented in Fig. 2. We plot the atomic inversisolid
voir. The amplitudes obey the Schiinger equation, and line), the mean photon number in the defect mdtieng-
through the perturbative elimination of off-resonant modesdashed ling and the populations in the one-photon sector

as described above, we find

1 2
Ag+Ay—

.2 1
bozi—AdboJr i—\/igdao ,

giN

1
aJ:— A0+AJ_

1
+i_\/§gjbjjy

! 1 1
bj=7(3;+A¢)bj+ Tgja0+ 7943,

ao+ \/—gdbo+ 2 gjb;,

(19

(20

(dot-dashed lineand two-photon sectadotted ling of the
reservoir Hilbert space, respectively, as functions of time.
From the figure, we find that there is an exchange of energy
(oscillation between the defect mode and the one-photon
sector of the reservoir. This oscillation must involve the
atom, since the defect mode is not directly coupled to the
reservoir, but is not reflected in the atomic inversion. As is
evident in Fig. 2, although photons are exchanged between
the defect mode and the reservoir through the atom, after
some initial time, the atomic population remains practically
constant: a rather surprising effect. The results presented in
Fig. 2, have of course been tested for convergence in terms
of number of modesp,,, etc.

As the defect mode is pushed further into the gap, we find
that the oscillations of the atomic population begin to extend
to increasingly longer times. Conversely, a change in the
magnitude ofgy in relation toC?? does not seem to affect
the atomic oscillations for longer times, but it does affect the
relative oscillations of the excitations in the defect mode and
the reservoir, as we will discuss in detail elsewhere.
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In conclusion, we have developed an approach that is cdimited our discussion here to two photons. Results from
pable of providing solutions to a class of problems which canvork for more photons will be presented elsewhere, but we
only be treated approximately through other techniques. It iglo mention here that we have also obtained fully converged
applicable to small systems coupled to a density of modes qesults for three photons in the reservoir.
any form, and has allowed us to solve problems involving  Providing solutions for the dynamics of the system is one
multlple eXCitationS in the Continuum. In addition to the aspect of th|s approach' Perhaps an equa”y important aspect
implementation outlined here, we have explored variouss the insight gained by the possibility to combine the per-
other forms of discretizations, as well as other densities of ryative treatment with the nonperturbative treatment of the
modes, with good agreement with other exact results in thosg,st  As discussed above, this sheds light on the physical
aﬁect of the modes around the band edge as compared to the

versatility of the approach, which could be readily employecjsmooth distant part of the density of modes. In addition, the

ljne?]tsr:ti/r g?mgétsssif;?g’;ﬁ] rgi)l(iagpllta waveguides where thpeossibility to monitor the dynamics of additional photons in

We demonstrated, in addition, that off-resonant con-the structured reservoir may prove very valuable when con-

tinuum modes can be eliminated perturbatively. The effect 0§|der|ng the validity of approximations necessary in other

this approximation is to reduce the number of differentiaISChemeS' ) , i
equations to be propagated, thus leading to a drastic en- It should be mentioned in closing that a recently proposed

hancement of the computation speed, essentially withodPrmal approach to similar non-Markovian problems, based
compromise in accuracy. The number of equations to propa" the quantum state diffusion formalism, was presented by
gate scales roughly a¢°, whereN is the number of discrete Diosi, Strunz, and Gisifj17]. At this point we are aware of
modes ang the number of excitations. The ultimate limita- the application of the method to a relatively tractable prob-
tion of the method is determined by computer memory adeém involving a standard cavity reservoir. Its potential, how-
demanded by each problem. In particular, the study of mulever, does not seem at first sight to be limited, and it will be
tiple excitations will probably for the time being be limited interesting to see and explore its applications to problems
to 4 or 5. For the purpose of presenting the method, wenvolving more complicated densities of modes.
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